
9

Machine Learning (In) Security: A Stream of Problems

FABRÍCIO CESCHIN, Federal University of Paraná, Brazil and Georgia Institute of Technology, USA
MARCUS BOTACIN, Texas A&M University, USA
ALBERT BIFET and BERNHARD PFAHRINGER, University of Waikato, New Zealand
LUIZ S. OLIVEIRA, Federal University of Paraná, Brazil
HEITOR MURILO GOMES, Victoria University of Wellington, New Zealand
ANDRÉ GRÉGIO, Federal University of Paraná, Brazil

Machine Learning (ML) has been widely applied to cybersecurity and is considered state-of-the-art for solving many of the
open issues in that !eld. However, it is very di"cult to evaluate how good the produced solutions are, since the challenges
faced in security may not appear in other areas. One of these challenges is the concept drift, which increases the existing arms
race between attackers and defenders: malicious actors can always create novel threats to overcome the defense solutions,
which may not consider them in some approaches. Due to this, it is essential to know how to properly build and evaluate an
ML-based security solution. In this article, we identify, detail, and discuss the main challenges in the correct application of
ML techniques to cybersecurity data. We evaluate how concept drift, evolution, delayed labels, and adversarial ML impact
the existing solutions. Moreover, we address how issues related to data collection a#ect the quality of the results presented in
the security literature, showing that new strategies are needed to improve current solutions. Finally, we present how existing
solutions may fail under certain circumstances and propose mitigations to them, presenting a novel checklist to help the
development of future ML solutions for cybersecurity.

CCS Concepts: • Security and privacy→ Intrusion/anomaly detection and malware mitigation; Systems security;
Additional Key Words and Phrases: Machine learning, cybersecurity, data streams

ACM Reference format:
Fabrício Ceschin, Marcus Botacin, Albert Bifet, Bernhard Pfahringer, Luiz S. Oliveira, Heitor Murilo Gomes, and André Grégio.
2024. Machine Learning (In) Security: A Stream of Problems. Digit. Threat. Res. Pract. 5, 1, Article 9 (March 2024), 32 pages.
https://doi.org/10.1145/3617897

Authors’ addresses: F. Ceschin, Federal University of Paraná, Rua Cel. Francisco H. dos Santos, 100, Curitiba, PR, 81531-980, Brazil and
Georgia Institute of Technology, 756 West Peachtree Street NW, Atlanta, GA, 30308-4016; e-mail: fjoceschin@inf.ufpr.br; M. Botacin,
Texas A&M University, Department of Computer Science & Engineering, College Station, TX, 77843-3127; e-mail: botacin@tamu.edu;
A. Bifet and B. Pfahringer, University of Waikato, Department of Computer Science, Waikato, Hamilton, New Zealand; e-mails: {abifet,
bernhard}@waikato.ac.nz; L. S. Oliveira and H. M. Gomes, Federal University of Paraná, Rua Cel. Francisco H. dos Santos, 100, Curitiba, PR,
81531-980, Brazil; e-mails: lesoliveira@inf.ufpr.br, heitor.gomes@vuw.ac.nz; A. Grégio, Federal University of Paraná, Rua Cel. Francisco H.
dos Santos, 100, Curitiba, PR, 81531-980, Brazil; e-mail: gregio@inf.ufpr.br.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
2576-5337/2024/03-ART9
https://doi.org/10.1145/3617897

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.

https://orcid.org/0000-0001-6853-8083
https://orcid.org/0000-0001-6870-1178
https://orcid.org/0000-0002-8339-7773
https://orcid.org/0000-0002-3732-5787
https://orcid.org/0000-0002-1804-8147
https://orcid.org/0000-0002-5276-637X
https://orcid.org/0000-0003-1766-5757
https://doi.org/10.1145/3617897
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3617897
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617897&domain=pdf&date_stamp=2024-03-21


9:2 • F. Ceschin et al.

1 INTRODUCTION
The massive amount of data produced daily demands automated solutions capable of keeping Machine
Learning (ML) models updated and working properly, even with all emerging threats that constantly try to
evade these models. This arms race between attackers and defenders moves the cybersecurity research forward:
Malicious actors are continuously creating new variants of attacks, exploring new vulnerabilities, and crafting
adversarial samples, whereas researchers are trying to counter those threats and improve detection models.
For instance, 68% of phishing emails blocked by GMail are di#erent from day to day [30], requiring Google to
update and adapt its security components regularly. In addition, 30% of Windows malware released daily may
belong to unknown families, which requires ML models to be updated with behavioral reports to detect drifting
samples [151]. Furthermore, at least 53% of organizations are deploying AI in di#erent areas of cybersecurity [91].
Thus, applying ML on cybersecurity is a challenging endeavor. One of the main challenges is the volatility of the
data used for building models, as attackers constantly develop adversarial samples to avoid detection [6, 34, 36].
This leads to a situation where the models need to be constantly updated to keep track of new attacks. Another
challenge is related to the application of fully supervised methods, since the class labels tend to depict an extreme
imbalance, i.e., dozens of attacks among thousands of benign samples. Labeling such instances is also problem-
atic as it requires domain knowledge and it can detain the learning method, i.e., the analyst labeling the data is
a bottleneck in the learning process. This motivates the development of semi-supervised and anomaly detection
methods [9, 49].

To improve the process of continuously updating an ML cybersecurity solution, the adoption of stream learn-
ing (also incremental learning or online learning) algorithms are recommended so they can operate in real-time
using a reasonable amount of resources, considering that we have limited time and memory to process each
new sample incrementally, predict samples at any time, and adapt to changes [20]. However, many works in the
literature do not consider these challenges when proposing a solution, which makes them not feasible in reality.
Thus, multiple cybersecurity research papers cannot be straightforwardly applied to solve real-world problems
and sometimes are not focused on “machine learning that matters” [155], i.e., there is a high discrepancy between
research and practice [8].

Some previous work reported the relevance of some of these problems and provided research directions. Ede
et al. studied how to automatically correlate security events and automate parts of the security operator workload
in a semi-supervised manner [49]. Papernot et al. systematized !ndings on ML security and privacy, focusing
on attacks identi!ed on ML systems and defense solutions, creating a threat model for ML, and categorizing
attacks and defenses within an adversarial framework [117]. Maiorca et al. explored adversarial attacks against
PDF (Portable Document Format) malware detectors, highlighting how the arms race between attackers and
defenders has evolved over the past decade [100]. Arnaldo et al. described a set of challenges faced when devel-
oping a real cybersecurity ML platform, stating that many research papers are not valid in many use cases, with
a special focus on label acquisition and model deployment [10]. Kaur et al. presented a comparative analysis of
some approaches used to deal with imbalanced data (pre-processing methods, algorithmic-centered techniques,
and hybrid ones), applying them to di#erent data distributions and application areas [86]. Gibert et al. listed a
set of methods and features used in a traditional ML work$ow for malware detection and classi!cation in the
literature with emphasis on deep learning approaches, exploring some of their limitations and challenges, such
as class imbalance, open benchmarks, concept drift, adversarial learning, and interpretability of the models [62].

Boenisch et al. investigated the security and privacy awareness of ML practitioners through an online survey
and concluded that their awareness of threats and ML security practices is relatively low, as well as their famil-
iarity with security and privacy libraries for ML [24], which evidence that this kind of study is very important
for the community. Grosse et al. found that there are occurrences of adversarial ML attacks but regular secu-
rity threats still pose a larger concern in industry [69]. The authors deduce that adversarial machine learning
in practice is not as common as regular security problems but that monitoring ML security might be bene!cial.

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:3

Bieringer et al. showed that practitioners confuse ML security with threats that are not directly related to ML
and consider that the security of ML is related to the entire work$ow that consists of multiple components [19].
Apruzzese et al. highlight the lists of all the tasks where ML outperforms traditional security mechanisms and
reveal some of the challenges that require the contribution of all stakeholders involved to improve the quality
of ML-based security solutions [8]. Arp et al. conducted a study of 30 papers from top-tier security conferences
within the past 10 years and showed that many pitfalls are widespread in the current security literature [11]. Fi-
nally, Apruzzese et al. state positions that increase the real-world impact of future research, bringing researchers
and practitioners closer to improving the security of ML-based solutions [6].

In this work, we present a broad collection of gaps, pitfalls, and challenges that are still a problem in many
scenarios of ML solutions applied in cybersecurity, which may overlap with other areas, suggesting, in some
cases, possible mitigation for them. As a study case, in most cases, we focus on malware detection or classi!cation
tasks (for Android, Windows, and Linux operational systems) given that they may contain all the problems listed.
We want to acknowledge that we are not pointing !ngers at anyone, given that our own work is subject to many
problems stated here. We also understand that, despite many problems stated, it does not mean that the !ndings
of research papers are not useful from a practical perspective. Our main contributions are the following:

— We show that many of the pitfalls are related to improperly considering the time when proposing solutions.
This problem may be present in all the ML pipeline, from the data collection to the evaluation steps, and
may be related to not considering the problem as a data stream.

— We advocate that more observational studies (i.e., research that focuses on analyzing ecosystem landscape,
platforms, or speci!c types of attacks), are required so to the creation of useful datasets and solutions.

— We state that di#erent approaches for attribute extraction impose varied costs and might also lead to
distinct ML outcomes. Thus, it is important to understand that each ML model and feature extraction
algorithm serve di#erent threat models, and it should be considered when evaluating a solution to avoid
common pitfalls, such as applying the same criteria for online and o%ine applications.

— We show that concept drift detectors do no work in practice as intended in realistic experimental scenarios.
Thus, new drift detection strategies that consider the challenges related to cybersecurity, such as the delay
of labels and class imbalance, are needed to produce better solutions.

— We point directions to future cybersecurity research works that make use of ML, aiming to improve their
quality to be used in real applications. To do so, we developed a novel checklist1 to help the development
of future ML solutions for cybersecurity based on the challenges, pitfalls, and problems reported in this
work. Thus, anyone developing or reviewing a solution can use this checklist and get feedback reporting
what could be improved or corrected according to our !ndings.

This article is organized as follows: First, in Section 2, we discuss how to identify the correct ML task for a
given cybersecurity problem; further, this work is organized according to each step of the pipeline to develop
ML solutions to cybersecurity (also presented in Section 2), including data collection (obtaining data for the ML
solution) in Section 3, attribute extraction (extracting metadata from the data previously obtained) in Section 4,
feature extraction (extracting features from the attributes collected) in Section 5, model (training and updating the
model using the features extracted) in Section 6, and evaluation (evaluating the proposed solution) in Section 7.
In Section 8, we discuss how ML applications should be understood, their limitations, and existing open gaps.
We conclude our work in Section 9.

2 ON THE MODELING OF SECURITY TASKS AS MACHINE LEARNING PROBLEMS
ML has been applied in cybersecurity to solve di#erent tasks. Table 1 presents illustrative examples we found in
the literature on how di#erent ML approaches can be used to solve di#erent security problems. Our goal is not

1The draft version of the checklist is available at REMOVED FOR BLIND REVIEW.

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:4 • F. Ceschin et al.

Table 1. Representative Examples of Applications
of ML to Cybersecurity

Security Task Specialized Task ML Task

Attack
Detection

Malware Detection Classi!cation [12]
Intrusion Detection Outlier Detection [93]

Spam Filtering Classi!cation [115]
Incident
Response

Malware Labelling Clustering [136]
Log Analysis Clustering [50]

Security
Analysis

Malware Analysis Reinforcement
Learning/Ranking [53]

Risk Assessment Regression [67]

System
Forensics

Attribution Clustering [128]

Object Recognition Dimensionality
Reduction [87]

Distinct approaches are applied according to the speci!c security need. The
same approach might be used to solve distinct security tasks. The placement of
the solution in each pipeline step will present di#erent pros and cons.

to present a new taxonomy or an exhaustive list of approaches, but to highlight that, on the one hand, (i) the
same security problem might be addressed via di#erent ML approaches and, on the other hand, (ii) the same ML
solutions might be used for di#erent security tasks and at di#erent stages of a solution pipeline.
Observation: The same security problem presents different pros and cons depending on the adopted ML model.
Attack detection tasks are typically modeled via binary classi!ers that learn what are the benign and malicious
classes. This strategy often achieves a reasonable detection level on the detection of known or similar attacks,
but they are hardly ever able to detect new attacks (0 days). Modeling the attack detection problem as an outlier
detection problem, in turn, tends to increase the ability to detect new threats. In this modeling, the ML model
learns what is considered the normal behavior of the system and detects any deviation. A drawback of this
approach in comparison to the typical classi!cation problem is that it is hard to explain the detection result, as
the model does not have knowledge of the attack class, but only about the normal pro!le. This di#erence might
be key for choosing one or another approach for a given application, depending on the requirements for that
scenario.

In some cases, the ML techniques present similar characteristics, such that they can be applied to multiple
security tasks. For instance, clustering can be used as a classi!cation approach in tasks ranging from (i) adding
malware variants to the same bucket for triaging; (ii) adding security logs in a bucket of similar events; to
(iii) adding forensic evidence in similar buckets, depending on the attacker authorship. In other cases, the nature
of the ML solution must be as di#erent from the others as the nature of the security task they need to solve. For
instance, when malware analysts are reversing engineering samples, they want to know which strings are more
informative about the malware nature. For that, they need a ranking algorithm, not a binary classi!er.
Challenge: Selecting the proper ML task to solve the Security task. Whereas multiple ML tasks can be applied
to security tasks, the identi!cation of the right task for a given scenario is far from straightforward and requires
reasoning about multiple corner conditions, given that cybersecurity solutions are systems that may have mul-
tiple applications of ML integrated within a complex pipeline. For instance, for the malware detection case, it
is usual to !nd in the literature multiple solutions proposing an ML-based engine to be applied by antiviruses
(AVs). Most of these solutions are initially modeled as a classi!cation problem (goodware vs. malware), which
su"ces for the detection task, but does not cover AV operation as a whole. In practice, AVs provide more than
detection labels [26]; they also attribute malware samples to families (e.g., ransomware, banker, and so on) to
present a family label, which is essential to allow incident response procedures. Therefore, an ML engine [27] for

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:5

Fig. 1. Pipeline to develop and evaluate Machine Learning solutions for cybersecurity. Each step is executed in sequence,
considering that (i) the model is first trained and then (ii) tested/evaluated and updated (if needed).

an AV should also be modeled as a family attribution problem, which requires the application of both classifying
and clustering algorithms [38].

2.1 Machine Learning Pipeline for Cybersecurity
In Figure 1, we show a pipeline to develop and evaluate ML solutions (both supervised and unsupervised methods)
for cybersecurity based on the literature, which is similar to any pattern classi!cation task. It consists of two
phases: train, i.e., training a model with the data available at a given time (for supervised methods, using the
available labels and features to create decision boundaries, for unsupervised, using only the features to create
clusters) and test, i.e., testing it considering the new data collected (for both supervised and unsupervised, using
their labels—to check if they were correctly predicted—and features to update decision boundaries and clusters).
Note that we de!ned two steps after the data collection, given that, in many cybersecurity tasks, the raw data
collected needs to have their metadata (attributes) extracted before actually being used by the ML model as
features (attributes processed by a feature extractor). We understand that these steps may overlap in some cases,
but for a more !ne-grained discussion, we analyzed them separately. Also, it is important to notice that security
data, the input of the process, is available from a data stream that is in constant production, and the model and
its metrics, the output of the process, are produced during the execution of the scheme. Thus, di#erent from
many works in the literature, we focus on problems related to data streams, since they are close to real-world
solutions for cybersecurity [35].

In the following sections, we discuss the challenges and pitfalls of multiple modeling strategies. Our goal is to
help the reader to spot the quirks of ML applications at their multiple steps and abstraction layers.

3 DATA COLLECTION CHALLENGES
The quality, quantity, and distribution of data inputted to a Machine Learning algorithm (dataset) are the basis
of an adequate learning process, since ML algorithms rely on the samples presented to them in the training
step and the resulting model will allow further decision making. Thus, data collection, which comprises ac-
quisition, enrichment/augmentation, and labeling [68, 129], may be one of the most challenging steps of an ML
project [130]. Besides real-world problems take these steps into consideration [64], certain research works might
miss some of them. This might happen either due to the format of the dataset used or external reasons, such as
privacy requirements about the data (might need di#erential privacy [48]), local laws that prevent the distribu-
tion of potentially harmful pieces of code, ease of accomplishing reproducibility of the experiments, and so on.

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:6 • F. Ceschin et al.

Considering the steps performed in ML-based cybersecurity systems [133] and to provide a straightforward dis-
cussion, we assume that data can be available in three formats, which may overlap according to the task at hand
or the chosen approach:

— Raw Data: data available in the same way they were collected, usually used to analyze their original
behavior. For example: PE executables [37], ELF [153], APK packages [3], or network tra"c data captured
in PCAP format [73, 111, 114, 140]. Compared to computer vision, the raw data are the images collected
to create an image recognition model [43]. In cybersecurity, AndroZoo [3] provides many APK packages
collected from several sources that could be used for malware detection systems or forensics analysis;

— Attributes: !ltered metadata extracted from the raw data with less noise and focus on the data that matters,
being very suited for ML. For example, CSV with metadata, execution logs of software or data extracted
from its header [5, 37], or a summary of information from a subset of network tra"c data. In computer vi-
sion, the attributes would be the gradient images extracted from the original ones [43]. EMBER [5] is a good
example of a dataset containing attributes, available in JSON, extracted statically from raw data (Windows
PE !les). DREBIN [12] is another example containing static attributes extracted from APK packages.

— Features: features extracted from the attributes or raw data that distinguish samples, ready to be used in
a classi!er. For example the transformation of logs into feature vectors for every software mentioned in
the previous item, whose positions of this vector correspond to the features [37], or a transformation of
tra"c data into features containing the frequency of pre-determined attributes (i.e., protocols, amount of
packages, bytes, etc.). In an image recognition problem, the features would be the histogram of gradients
extracted using the gradient images created before [43]. This type of data is usually used by researchers
to make their experiments faster, given that they extract the features once and can share them to use
as input for their models.

The data collection or even any of the dataset formats above are susceptible to problems that may a#ect the
whole process of using ML in any cybersecurity scenario and are frequently seen in the literature, such as data
leakage (or temporal inconsistency), data labeling, class imbalance, and anchor bias.

3.1 Data Leakage (Temporal Inconsistency)
To evaluate an ML system, it is common to split the dataset into at least two sets: one to train the model and
another to test it. The k-fold cross-validation is used to create k partitions and evaluate a given model k times,
using one of the partitions as a test set and the remaining as a training set, taking the average of the metrics
as a !nal result [105]. This is a common practice for many ML experiments, such as image classi!cation, where
temporal information may not be important and is used in batches. However, when considering cybersecurity
data, which are obtained from a stream, it is not real to consider data from di#erent or mixed epochs to train
and test a model (known as data leakage [85], data snooping [11], or temporal inconsistency), given that it could
increase the detection accuracy because the model knows how future threats are (i.e., the model is exposed to
test data when it was trained) [37]. For instance, consider a malware detector that works similarly to an antivirus,
i.e., given a software, our model wants to know if it is malware or not to block an unwanted behavior. To create
this model, we train it using a set of malicious and benign software that are known and were seen in the past.
Then, this model is used to detect if !les seen in the future are malign, even if they perform totally di#erent
attacks than before. These new threats will just be used to update the model after they are known and labeled,
which will probably increase the coverage of di#erent unknown attacks, detecting more malware than before.

Due to this temporal inconsistency problem, it is very important to collect the timestamp of the samples
during the data collection and it is something not considered by some authors in cybersecurity. For instance, the
DREBIN dataset [12] (malware detection) makes all the malicious APKs available and also their attributes, but
does not include the timestamp that they were found in the wild, making all the research works that use this
dataset exposed to data leakage. We understand that sometimes it is di"cult to set a speci!c release date for a

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:7

sample, but they are needed to avoid this problem. For malware detection, for example, researchers usually use
the date when they were !rst seen in VirusTotal as a timestamp [37, 84, 121, 154].

3.2 Data Labeling
Labeling artifacts is essential to training and evaluating models. However, having artifacts properly labeled is as
hard as collecting the malicious artifact themselves, as previously discussed. In many cases, researchers leverage
datasets of crawled artifacts and make a strong hypothesis about them, such as “all samples collected by crawling
a blacklist are malicious,” or “all samples collected from an App Store are benign.” These hypotheses are strong,
because previous work has demonstrated that even samples downloaded from known sources might be trojanized
with malware [25]. Therefore, a model trained based on this assumption would make the model also learn some
malicious behaviors as legitimate. Also, some labels may be inaccurate, unstable, or erroneous, which may a#ect
the overall classi!cation performance of ML-based solutions [11].

A common practice to obtain labels and mitigate the aforementioned problems is to rely on the labels as-
signed by AVs by using the VirusTotal service [154], which provides detection results based on more than 60
antivirus engines available on the platform. Unfortunately, AV labels are not uniform [26], with each vendor
reporting a distinct label. Therefore, researchers have either to select a speci!c AV to label their samples (accord-
ing to their established criteria) or adopt a committee-based approach to unify the labels. For Windows malware,
AVClass [136] is widely used for this purpose and, for Android malware, Euphony [78] is used. Both of these
techniques were evaluated by the authors using a high number of malware (8.9M in AVClass and more than 400k
samples in Euphony), obtaining a signi!cant F-measure score (bigger than 90% in both cases) and generating con-
sistent results to create real datasets such as AndroZoo [3], which uses Euphony [78] to generate malware family
labels. Although AVs can mitigate the labeling problem, their use should consider the drawbacks of AV internals.
AVs provide two labels: detection and family attribution. Both the detection label as well as the family attribution
label change very often over time: newly released samples are often assigned a generic and/or heuristic label at
the initial time, and this is further evolved as new, more speci!c signatures are added to the AV to detect this
threat class. Therefore, the date on which the samples are labeled might signi!cantly a#ect the ML results. Re-
cent research shows that AVs labels might not establish before 20 or 30 days after a new threat is released [26].
To mitigate this problem, delayed evaluation approaches should be considered, as shown in Section 7.

3.3 Class Imbalance
Class imbalance is a problem in which the data distribution between the classes of a dataset di#ers relatively
by a substantial margin, and it is usually present in many research works [86]. If we consider the Android
landscape, the AndroZoo dataset contains only about 18% of malicious apps (the remaining apps are considered
benign [3, 121]). This makes the Android malware detection problem more challenging due to the presence of
imbalanced data. There are several methods in the literature whose aim is to overcome this problem by making
use of pre-processing techniques, improving the learning process (cost-sensitive learning), or using ensemble
learning methods [64, 86]. The two latter methods will be discussed in Section 6, since they are part of the
process of training/updating the model. The former method (pre-processing) relies on resampling, i.e., removing
instances from the majority classes (undersampling) or creating synthetic instances for the minority classes
(oversampling) [64].

In the context of cybersecurity, undersampling may a#ect the dataset representation, given that removing
some samples from a certain class can a#ect its detection. For instance, considering malware detection, remov-
ing malware samples may reduce the detection of some malware families (the ones that had samples removed)
and also make their prevalence in a given time (monthly or weekly) less important than reality when creating
a dataset, possibly not capturing a concept drift or sub-classes of the majority classes. Figure 2 presents a hy-
pothetical dataset distribution with two classes (green and red/orange); one of the classes has two concepts or

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:8 • F. Ceschin et al.

Fig. 2. Undersampling examples in a dataset. Samples in green and red/orange represent di!erent classes. Red and orange
colors represent di!erent sub-classes or concepts of the same class. The gray color with circles represents ignored/removed
instances.

two sub-classes (red and orange) as time goes by, i.e., consider it as being a dataset with normal and malicious
behavior, the malicious one behavior that evolves or has sub-classes of behaviors as time goes by, something that
is known to happen in real-world cybersecurity datasets [37]. In Figure 2(a), we can see the original distribution
of the dataset, with no technique applied. In Figure 2(b), we can see the dataset distribution when removing
samples (in gray) to keep the same distribution by class, which results in a di#erent scenario than the reality,
since the orange concept or sub-class is not seen in some periods. In Figure 2(c), we see the ideal scenario for
undersampling when the proportion of concepts or sub-classes is the same for the same period while keeping
the same number of samples for both classes (this may be a mitigation for the undersampling problem, but even
with this solution important samples may be discarded).

An example of the oversampling technique is SMOTE, which consists in selecting samples that are close in
the feature space, drawing a line between them, and generating new samples along with it [39]. Although such
techniques are interesting, they may generate results that produce data leakage if they do not consider the time
when creating synthetic samples. For instance, consider Figure 3, where we present again a hypothetical dataset
distribution with two classes, with the same classes and problems as Figure 2. In the !rst case, in Figure 3(a),
we see the original dataset distribution, where the class red/orange is the minority one. In Figure 3(b) the prob-
lem of data leakage is shown: The arti!cial data generated (with dashed lines and circles) is based on all the
dataset, without considering any temporal information. Thus, we can see the orange concept/sub-class at time
0 in the synthetic instances, which does not represent the real distribution of this class at that time (this prob-
lem happens all the time in this case, with the red concept/sub-class being shown even at time 4). In contrast,
in Figure 3(c), we can see an oversampling technique that considers the temporal information, generating syn-
thetic data that correspond to the actual concept/sub-class of a given time, resulting in the same distribution
of concepts/sub-classes as the original data. Despite also being an interesting approach, for the cybersecurity
context, oversampling works at the feature level, which means that it may not generate synthetic raw data. For
instance, if we consider these data as being applications, then oversampling will only create synthetic feature
vectors and not real applications that work.

3.4 Dataset Size Definition
A major challenge in creating a dataset is to de!ne its size. Although it is a problem that a#ects all ML domains, it
has particularly severe implications in cybersecurity. On the one hand, a small dataset may not be representative

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:9

Fig. 3. Oversampling examples in a dataset. Samples in green and red/orange represent di!erent classes. Red and orange
colors represent di!erent sub-classes or concepts of the same class. Samples with dashed line and circles are the synthetic
instances created by oversampling.

of a real scenario, which invalidates the results of possible experiments using it. Also, some models may not
generalize enough and not work as intended, presenting bad classi!cation performance [68]. Limited evaluations
are often seen in the cybersecurity context, because collecting real malicious artifacts is a hard task, as most
organizations do not share the threats that a#ect them to not reveal their vulnerabilities. However, a big dataset
may result in long training time and produce too-complex models and decision boundaries (according to the
classi!er and parameters used) that are not feasible in reality (e.g., real-time models for resource-constrained
devices), such as some deep learning models that usually require a large amount of data to achieve good
results [109]. As an analogy, consider that a dataset is a map and, for instance, represents a city. It is almost
impossible that this map has the same scale as the city, however, it can be useful by representing what is needed
for a given purpose. For example, a map of public transportation routes is enough if our objective is to use it,
but if we need to visit touristic places, this very same map will not be useful, i.e., new data or a new map is
required [145]. These circumstances re$ect the ideas of both George Box and Alfred Korzybski. Box said that
“essentially, all models are wrong, but some are useful” [141], i.e., a model built using a dataset might be useful
for a given task, but it will not be perfect—there will be errors, we just need to know how wrong they have
to be—and it will not be good for other tasks, which makes necessary to collect more (or new) data and select
new parameters for a new model. Korzybski mentioned that “the map is not the territory” [88], meaning that it
can be seen as a symbol, index, or representation of it, but it is not the place itself and it is prone to errors. In
our case, a model or a dataset can represent a real scenario, but it is just a representation of it and may contain
errors. These errors may present results that do not re$ect reality. For instance, considering a malware detection
task that uses grayscale images as representation for Windows binaries, when using a dataset that represents
the real scenario with no data !ltering, i.e., without removing speci!c malware families, the accuracy (≈ 35%)
was much worse than other scenarios where the authors !lter the number of malware families, reducing the
complexity of the problem and achieving almost 90% of accuracy, as shown in Figure 4 [18].

Another point to consider when building a cybersecurity solution is that they may have regional character-
istics that are re$ected in the dataset and, as a consequence, in the model and its predictions [36]. For instance,
considering a malware detection task with two models that are based on classi!cation trees: Model 1 (random
forest with PE metadata [37]) is trained using data from region A (BRMalware dataset [37]) and Model 2 (Light-
GBM with PE metadata [5]) is trained with data from region B (EMBER dataset [5]). Ceschin et al. showed that
when testing both models with test data from both regions (test dataset A, from region A, and test dataset B,
from region B), they perform better in their respective regions and present a much higher false negative rate

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:10 • F. Ceschin et al.

Fig. 4. Reducing dataset complexity. The more the dataset
is filtered, the bigger the accuracy achieved, which means
that researchers must avoid filtered datasets to not produce
misleading results [18].

Fig. 5. Regional datasets. Models may have a bias towards
the scenario where the dataset used to train them was col-
lected, indicating that they need to be specially cra"ed in
some cases [36].

(FNR) in the opposite region (allowing malware to be executed if this solution is applied in a di#erent region
that it was designed for, for example), as shown in Figure 5. Thus, it is important to consider collecting new data
when implanting a known solution to a new target scenario (or region).

To elaborate on our discussion about dataset size de!nition, we created two experiments to better understand
how much data we need to achieve representative results using a subset of AndroZoo dataset [3, 35] for malware
detection, composed of 347, 444 samples (267, 342 benign and 80, 102 malicious applications) spanning from 2016
to 2018. Both experiments consist in understanding how much data we need to achieve a stable classi!cation
performance based on the dataset proportion used to train our models. To do so, we divided the dataset by months
and reduced the proportion of goodware and malware in both the training and test set (the !rst half of the dataset,
ordered by their !rst seen date in virus total, is used to train and the second, to test). Thus, in the !rst experiment,
we tested di#erent classi!ers using temporal classi!cation (using the training set with “known data” to train the
models and “future data” to test them), with di#erent proportions of data in the training and test dataset, to
see how each one of them was going to perform. Surprisingly, all classi!ers (Multi-layer Perceptron, Linear SVC,
Random Forest, and Naive Bayes [120]) had similar behaviors, also presenting similar curves as consequence and
reaching an “optimal” classi!cation performance by using only around 10% to 20% of the original dataset, with
multi-layer perceptron and random forest achieving the best overall results, as shown in Figure 6(a). It is clear
to see that, after these proportions, the f1score was almost stable, improving just a little even when increasing
a lot the amount of data used. Furthermore, in the second experiment, we compared di#erent approaches in a
unique classi!er (Random Forest) to see if they present the same behavior as the !rst one. To do so, we used
only random forest in four di#erent approaches: cross-validation (randomly selecting train and test samples,
with data leakage), temporal classi!cation (the same approach as the !rst experiment), and stream with and
without drift detector (initializing a stream version of the random forest [63]—known as adaptive random forest—
with the training data and incrementally updating it with testing data, using the ADWIN drift detector [21]
to detect changes in data distribution when it is enabled). As we can see in Figure 6(b), all the approaches
also presented similar behavior and curves, but this time, all of them started to stabilize their f1score after 30%
to 40% proportions, which means that they just need at least half of the dataset to present almost the same result
as using the entire dataset. With both experiments, we conclude that, at some point, it may be more important
to look for new features or representation strategies than to add more data to the training set, given that the
classi!cation performance is not improved so much according to our experiments.

The implication of these !ndings for cybersecurity is that more observational studies—research that focuses
on analyzing ecosystem landscape, platforms, or speci!c types of attacks to inform the development of future

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:11

Fig. 6. Dataset size definition in terms of f1score. In both experiments a similar behavior is seen, with a certain stability in
classification performance a"er using only a given proportion of the original dataset.

solutions—are required to allow for the creation of useful datasets and ML solutions. Due to the parsimonious
number of this kind of study, one might fall for the Anchor bias [51], a cognitive bias where an individual relies
too heavily on an initial piece of information o#ered (the “anchor”) during decision-making to make subsequent
judgments. When the value of the anchor is set, future decisions are made using it as a baseline. For instance, if
we consider research that uses a one million samples dataset, then it is going to become the anchor for future
research, even if this dataset is not consistent with the real scenario. Thus, choosing or creating a dataset is not
about its size, but its representation of the real world for the task being performed, as a map. In addition, concept
drift and evolution are the nature of cybersecurity datasets, which makes it necessary to collect samples from
di#erent epochs to correctly evaluate any solution [37, 62]. We acknowledge here that some approaches need
more data to achieve better results, such as deep learning techniques [152], and it may be a limitation for them.
A good example of building a real dataset is the one built by Pendlebury et al. for malware detection, where the
proportion of samples found in the dataset is the same found in the wild by AndroZoo collection of Android
applications [3, 121].

4 ATTRIBUTE EXTRACTION
Extracting attributes, i.e., selecting !ltered metadata collected from the raw data, is a key step to creating useful
features for the ML models. In this section, we pinpoint the impact of di#erent attributes in ML solutions. Note
that we have separate de!nitions for attributes and features (see Section 3): The former is !ltered metadata
extracted from the raw data obtained in the data collection step and strictly related to the security task being
performed, whereas the latter is the attributes transformation into a distinct set of samples representation ready
to serve as input to a model. They usually cannot be directly used by an ML model, given that they need to be
preprocessed and/or transformed into features (generally, numerical) to be used as input of a classi!er.

4.1 The Impact of Di!erent A#ributes
Di#erent approaches for attribute extraction impose varied costs and might also lead to distinct ML outcomes.
Naturally, executing an artifact to extract feature costs more than statically inspecting it, but the precision of
the classi!cation approach might get higher if this data is properly used. Therefore, the selection of the attribute

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:12 • F. Ceschin et al.

Fig. 7. Static vs. Dynamic a#ributes in malware detection. According to the classifier used, accuracy is highly impacted by
the type of a#ributes used (experiments derived from Galante et al. [57]).

extraction procedure should consider its e#ect on the outcome. Galante et al. show the e#ect of attribute extrac-
tion procedures over three distinct pairs of models to detect Linux malware (SVM with RBF kernel, Multi-layer
Perceptron, and Random Forest) [57]. These three pairs of models consider the same set of features, one of them
considering statical attributes and the other, dynamic attributes. For instance, in statically extracted attributes,
the authors consider the presence of the fork system call in the import table of the sample’s binary to build a
feature vector, whereas, in the corresponding dynamic attributes, they consider the frequency of the fork system
call invocation during the sample execution in a sandbox to build a feature vector as well. The authors used a bal-
anced dataset of Linux binaries with benign and malign applications as input to all of the aforementioned models
and the outcome was that the dynamic extraction approach outperformed the static approach, as shown in the
accuracy rates (Figure 7). Although the dynamic attributes greatly impacted SVM and Multi-layer Perceptron
results, it did not hold for Random Forest—the di#erence between feature vectors resulting from dynamic and
static attributes was not signi!cant, which means that using only static attributes is enough for this particular
model and scenario.

Nguyen et al. compared four di#erent attribute extraction methods for malware detection [112]: raw
bytes [125], EMBER features (static PE !le header attributes) [5], CAPA features [17], and dynamic analysis.
While the raw bytes attributes take 0.002 second per !le to be classi!ed, the static attributes (EMBER) take 0.09
second, the CAPA features takes 45.75 seconds, and the dynamic analysis takes 526 seconds per !le, i.e., using
raw bytes on a !le is over 26, 300 times faster than running dynamic analysis. Finally, according to their exper-
iments, the raw bytes model achieved a higher malware detection accuracy than the dynamic analysis (≈ 90%
vs. ≈ 85%), while the ensemble using both of them achieves almost 93%, showing that, by combining di#erent
features, it is possible to improve classi!cation performance considering that it would be much more expensive.

5 FEATURE EXTRACTION PITFALLS
It is faster and simpler to use numerical or categorical attributes in any model, either by just encoding the
categorical ones or normalizing both of them. However, these attributes may not be directly used in the ML
model, depending on their type after being extracted from raw data. For instance, a list of system calls or libraries
used by software must pass through one more processing step before it can serve as input to the ML algorithm.
This step is known as feature extraction, and its goal is to transform these attributes into something readable
by the classi!er and simplify the data while keeping the level of provided information, but reducing the number
of resources used to describe them [68, 133]. Thus, there are several approaches to extracting features from
attributes, and they usually rely on well-known techniques from ML literature, such as text classi!cation, image

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:13

Fig. 8. Data stream pipeline. Comparing the traditional data stream pipeline with possible mitigation that adds the feature
extractor in the process, generating updated features as time goes by [35].

recognition or classi!cation, graph feature learning, and deep learning [15, 62]. Finally, according to the feature
extraction selected, an ML solution may present several challenges and pitfalls.

5.1 Adapting to Changes
Many of the feature extractors mentioned in the literature need to be created based on a training dataset to,
for instance, create a vocabulary (e.g., TF-IDF [81]) or to compute the weights of the neural network used (e.g.,
Word2Vec [106]), similar to an ML model. Thus, as time goes by, it is necessary to update the feature extractor
used if a concept drift or evolution happens in the application domain, which is something very common in
cybersecurity environments due to new emerging threats [37, 62, 83]. For instance, when using any vocabulary-
based feature extractor for malware detection based on static features, such as the list of libraries used by a
software, new libraries may be developed as time goes by (and they are not present in the vocabulary), which
can result in a concept drift and make the representation created for all the new software outdated. In response
to concept drift, the feature extractor may also need to be updated when it is detected and not only the classi!er
itself, requiring an e"cient performance to update both of them.

To illustrate this challenge, Ceschin et al. created an experimental scenario using a proportionally reduced ver-
sion of the AndroZoo dataset [3] with almost 350k samples (the same we used in Section 3.4), and the DREBIN
dataset [12], composed of 129, 013 samples (123, 453 benign and 5, 560 malicious Android applications) [35]. The
authors sorted the samples by their !rst seen date in VirusTotal [154] and trained two base Adaptive Random
Forest classi!ers [63] with the !rst year of data; both of them include the ADWIN drift detector [21], which usu-
ally has the best classi!cation performance in the literature. When a concept drift is detected, the !rst classi!er
is updated using always the same features from the start, while the second one is entirely retrained from scratch,
updating not only the classi!er but also the feature extractor. In a traditional data stream learning problem that
includes concept drift, the classi!er is updated with new samples, which already had their features extracted
previously using a feature extractor, when a change occurs (generally the ones that created the drift), as shown
by steps in Figure 8(a) [60]. Alternatively, the data stream pipeline proposed in this experiment as mitigation to
this problem also considers the feature extractor under changes, retraining both feature extractor and classi!er
according to the following !ve steps in Figure 8(b) [35].

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:14 • F. Ceschin et al.

Fig. 9. Adapting features improves classification performance. When considering the feature extractor in the pipeline, up-
dating it when dri" occurs is be#er than using a static representation (using a unique feature extractor based on the first
training set). Experiments derived from Ceschin et al. [35].

Figure 9 shows the results presented by the authors regarding the impact on classi!cation performance caused
when the feature extractor is updated after a concept drift is detected (AndroZoo dataset in Figure 9(a) and
DREBIN dataset in Figure 9(b)), improving by almost 10 percentage points of f1score when classifying AndroZoo
dataset (from 65.86% to 75.05%). Thus, we emphasize the importance of including the feature extractor in the
incremental learning process [35].

5.2 Adversarial Features (Robustness)
There are multiple ways to choose features that represent the samples involved in a security problem, and the
!nal accuracy is not the only metric that should be considered during the choosing step. Another important point
to take into account is the robustness of the resulting model against adversarial machine learning: Attackers may
try to adapt their malicious samples to make their features look similar to benign samples while maintaining the
same original behavior [34]. Thus, researchers must think like an attacker when choosing which attributes and
features will be used to build an ML system for cybersecurity, given that some of them might be easily changed
to trick the ML model.

To illustrate the impact of adversarial machine learning in cybersecurity solutions, let us consider the fol-
lowing malware detection models proposed in the academic literature: (i) MalConv [125] and Non-Negative
MalConv [54], which are deep learning classi!ers whose features are the raw bytes of an input !le; and
(ii) LightGBM [97], whose features consist of a matrix created using a hashing trick and histograms based on
the inputted binary !les characteristics (PE header information, !le size, timestamp, imported libraries, strings,
etc.). Both of these models can be easily bypassed using simple strategies that create totally functional adver-
sarial malware. The formers (raw bytes-based models) can be tricked by simply appending goodware bytes or
strings present in goodware applications at the end of the malware binary. The performed appendage does not
a#ect the original binary execution and biases the detector toward the statistical identi!cation of these goodware
features. The latter (!le characteristics-based model) can be bypassed by embedding the original binary into a
generic !le dropper, which extracts the embedded malicious content in runtime and executes it. The dropping
technique, presented in Figure 10, bypasses detection, because the classi!er would inspect the external dropper
(only contains characteristics of benign applications, such as headers) instead of the embedded payload (the de
facto malicious application). Previous work showed that the combination of the aforementioned counter-ML
strategies can generate adversarial malware capable of bypassing both types of detection models, as well as

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:15

Fig. 10. Adversarial malware generation. It is possible to change classifiers’ output by just using an embedding function to
add malware payloads within a new file and adding goodware data to it, such as strings and bytes from a set of goodware [34].

a#ect the detection rate of antiviruses that rely on ML in their engines (as shown in Figure 10, where a malware
with 91.69% average con!dence is transformed into a goodware with 93.28% of average con!dence) [34].

Other types of attributes may be more resistant to these attacks. Although approaches based on Control Flow
Graphs (CFGs) are not a#ected by the appending of extra, spurious bytes, they can be bypassed by malware
samples that modify their internal control $ow structures to resemble legitimate software pieces [31]. A strategy
to handle this problem is to select the features that are more resistant to modi!cations on the original binary (e.g.,
the use of loop instructions whose code is enough to distinguish malicious programs, followed by the building of
a feature space containing a set of labels for each of them, thus making adversarial feature vectors more di"cult
to attackers [99]).

In summary, we advocate for more studies about the robustness of features for cybersecurity, given that it is
something crucial for the development of real applications. Thus, the aphorism “Garbage In, Garbage Out” used
in many ML contexts is also valid for the quality of a solution, since it may become useless if subject to successful
adversarial attacks. Proper ML models require high-quality training data and robust features to produce high-
quality and robust classi!ers [61]. Security-wise, it is important to understand that each ML model and feature
extraction algorithm serve di#erent threat models. Therefore, the resistance of a feature to a given type of attack
should be evaluated considering the occurrence, prevalence, and impact of this type of attack in the speci!c
application scenario (e.g., newly released binaries being distributed with no validation codes, such as signatures
and/or MAcs, are more prone to be vulnerable to random data append attacks than the cases in which the original
binary integrity is veri!ed).

6 ML MODELLING ISSUES AND SOLUTIONS
An ML model is a mathematical model that generates predictions by !nding relationships between patterns of the
input features and labels in the data [137]. Thus, when using machine learning for any task, it is common to test
di#erent types of models and !ne-tune them to !nd the one that best suits the application [23]. In cybersecurity,
due to the dynamic scenarios presented in many tasks, streaming data models are strongly recommended to
achieve a good performance, given that they belong to non-stationary distributions, new data are produced
all the time, and they can be easily updated or adapted with them [20]. As a consequence, it is important to
understand how to e#ectively use and, sometimes, implement an ML model in these scenarios, given that they
may present many drawbacks that are not feasible in a real application.

6.1 Concept Dri" and Evolution
Concept drift is the situation in which the relation between the input data and the target variable (the variable
that needs to be learned, such as class or regression variable) changes over time [60]. It usually happens when
there are changes in a hidden context, which makes it challenging, since this problem spans di#erent research

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:16 • F. Ceschin et al.

Fig. 11. Dri" types. Di!erent types of concept dri" presented in the literature [95].

!elds [156]. In cybersecurity, these changes are caused by the arms race between attackers and defenders, once
attackers are constantly changing their attack vectors when trying to bypass defenders’ solutions [34]. In addi-
tion, concept evolution is another problem related to this challenge, which refers to the process of de!ning and
re!ning concepts, resulting in new labels according to the underlying concepts [92]. Thus, both problems (drift
and evolution) might be correlated in cybersecurity, given that new concepts may result in new labels, such as
new types of attacks produced by attackers. As shown in Figure 11, there are four types of concept drift accord-
ing to the literature: (i) sudden drift, when a concept is suddenly replaced by a new one; (ii) recurring concepts,
when a previous active concept reappears after some time; (iii) gradual drift, when the probability of !nding the
previous concept decreases and the new one increases until it is completely replaced; and (iv) incremental drift,
when the di#erence between the old concept and the new one is very small and the di#erence is only noticed
when looking at a longer period [95]. In security contexts, a sudden drift is when an attacker creates a totally new
attack; gradual drift is when new types of attacks are created and replace previous ones; the recurring concept is
when an old type of attack starts to appear again after a given time; and incremental drift is when the attackers
make few modi!cations in their attacks in a way that their concepts change over a large period.

Despite being considered a challenge in cybersecurity [62], few works addressed both problems in the litera-
ture. For instance, Masud et al., to the best of our knowledge, were the !rst to treat malware detection as a data
stream classi!cation problem and mention concept drift. The authors proposed an ensemble of classi!ers that
are trained from consecutive chunks of data using v-fold partitioning of the data, reducing classi!cation error
compared to other ensembles and making it more resistant to changes when classifying real botnet tra"c data
and real malicious executables [102]. Singh et al. proposed two measures to track concept drift in static features
of malware families: relative temporal similarity and meta-features [143]. The former is based on the similarity
score (cosine similarity or Jaccard index) between two time-ordered pairs of samples and can be used to infer the
direction of the drift. The latter summarizes information from a large number of features, which is an easier task
than monitoring each feature individually. Narayanan et al. presented an online ML-based framework named
DroidOL to handle it and detect malware [110]. To do so, they use inter-procedural control-$ow sub-graph fea-
tures in an online passive-aggressive classi!er, which adapts to the malware drift and evolution by updating the
model more aggressively when the error is large and less aggressively when it is small. They also propose a vari-
able feature-set regimen that includes new features to samples, including their values when present and ignoring
them when absent (i.e., their values are zero). Deo et al. proposed the use of Venn-Abers predictors to measure
the quality of binary classi!cation tasks and identify antiquated models, which resulted in a framework capa-
ble of identifying when they tend to become obsolete [46]. Jordaney et al. presented Transcend, a framework

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:17

to identify concept drift in classi!cation models, which compares the samples used to train the models with
those seen during deployment [82]. To do it, their framework uses a conformal evaluator to compute algorithm
credibility and con!dence, capturing the quality of the produced results that may help to detect concept drift.
Anderson et al. showed that, by using reinforcement learning to generate adversarial samples, it is possible to
retrain a model and make these attacks less e#ective, also protecting it against possible concept drift, given that
it hardens a machine learning model against worst-case inputs [4]. Xu et al. proposed DroidEvolver, an Android
malware detection system that can be automatically updated without any human involvement, requiring neither
retraining nor true labels to update itself [157]. The authors use online learning techniques with evolving feature
sets and pseudo labels, keeping a pool of di#erent detection models and calculating a juvenilization indicator,
which determines when to update its feature set and each detection model. Finally, Ceschin et al. compared a
set of Windows malware detection classi!ers that use batch machine-learning models with ones that take into
account the change of concept using data streams, emphasizing the need to update the decision model immedi-
ately after a concept drift is detected by a concept drift detector, which are state-of-the-art techniques used in
the data stream learning literature [37]. The authors also show that the malware concept drift is strictly related
to their concept evolution, i.e., due to the appearance of new malware families.

In contrast, data stream learning literature already proposed some approaches to deal with concept drift and
evolution, called concept drift detectors, that, to the best of our knowledge, were not totally explored by cyberse-
curity researchers. There are supervised drift detectors that take into account the ground-truth label to make a
decision and unsupervised ones that do not. DDM (Drift Detection Method) [59], EDDM (Early Drift Detec-
tion Method) [14], and ADWIN (ADaptive WINdowing) [21] are examples of supervised approaches. Both
DDM and EDDM are online supervised methods based on sequential error (prequential) monitoring, where each
incoming example is processed separately estimating the prequential error rate. This way, they assume that the
increase in consecutive error rate suggests the occurrence of concept drifts. DDM directly uses the error rate,
while EDDM uses the distance error rate, which measures the number of examples between two classi!cation
errors [14]. These errors trigger two levels: warning and drift. The warning level suggests that the concept starts
to drift, updating an alternative classi!er using the examples that rely on this level. The drift level suggests that
the concept drift occurred, and the alternative classi!er built during the warning level replaces the current classi-
!er. ADWIN keeps statistics from sliding windows of variable size, which are used to compute the average of the
change observed by cutting these windows at di#erent points. If the di#erence between two windows is greater
than a prede!ned threshold, then it considers that a concept drift happened, and the data from the !rst window
is discarded [21]. Di#erent from the other two methods, ADWIN has no warning level. Once a change occurs,
the data that is out of the window is discarded and the remaining ones are used to retrain the classi!er. Unsu-
pervised drift detectors such as the ones proposed by &liobaité et al. may be useful when delays are expected
given that they do not rely on the real label of the samples, which need to be known by supervised methods,
and most of the time in cybersecurity it does not happen in practice [161]. These unsupervised strategies consist
in comparing di#erent detection windows of !xed length using statistical tests over the data themselves, on the
classi!er output labels or its estimations (that may contain errors) to detect if both come from the same source. In
addition, active learning may complement these unsupervised methods by requiring the labels of only a subset
of the unlabeled samples, which could improve drift detection and overall classi!cation performance.

Some authors also created di#erent classi!cation models and strategies that deal with both concept drift and
concept evolution. Shao et al. proposed SyncStream, a classi!cation model for evolving data streams that use
prototype-based data representation, P-Tree data structure, and just a small set of both short- and long-term sam-
ples based on error-drive representativeness learning (instead of using base classi!ers or windows of data) [139].
ZareMoodi et al. created a new supervised chunk-based method for novel class detection using ensemble learn-
ers, local patterns, and connected components of neighborhood graphs [158]. The same authors also proposed
a new way to detect evolving concepts by optimizing an objective function using a fuzzy agglomerative clus-
tering method [159]. Hosseini et al. created SPASC (Semi-supervised Pool and Accuracy-based Stream

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:18 • F. Ceschin et al.

Classi!cation), an ensemble of classi!ers where each classi!er holds a speci!c concept, and new samples are
used to add new classi!ers to the ensemble or to update the existing ones according to their similarity to the
concepts [74]. Dehghan et al. proposed a method based on the ensemble to detect concept drift by monitoring the
distribution of its error, training a new classi!er on the new concept to keep the model updated [45]. Ahmadi et al.
created GraphPool, a classi!cation framework that deals with recurrent concepts by looking at the correlation
among features, using a statistical multivariate likelihood test, and maintaining the transition among concepts
via a !rst-order Markov chain [2]. Gomes et al. presented the Adaptive Random Forest (ARF) algorithm, an
adaptation of the classical random forest algorithm with dynamic update methods to deal with evolving data
streams. The ARF also contains an adaptive strategy that uses a concept drift detector in each tree to track pos-
sible changes and to train new trees in the background [63]. Finally, Siahroudi et al. proposed a method using
multiple kernel learning to detect novel classes in non-stationary data streams [142]. The authors do it by clas-
sifying each new instance by computing their distance to the previously known classes in the feature space and
updating the model based on their true labels.

We advocate for more collaboration between data stream learning and cybersecurity, given that the major-
ity of cybersecurity works presented in this section do not use data stream approaches (including concept drift
detectors), they both have a lot of practice problems in common and may bene!t each other. For instance, data
stream learning could bene!t from real cybersecurity datasets that could be used to build real-world ML security
solutions, resulting in higher-quality research that may also be useful in other ML research !elds. Finally, devel-
oping new drift detection algorithms is important to test their e#ectiveness in di#erent cybersecurity scenarios
and ML models.

6.2 Adversarial A#acks
In most cybersecurity solutions that use Machine Learning, models are prone to su#er adversarial attacks, where
attackers modify their malicious vectors to somehow make them not be detected [34]. These techniques were
proven e#ective in both malware and intrusion scenarios [101], for instance. We already mentioned this problem
related to feature robustness in Section 5.2, but ML models are also subject to adversaries. These adversarial
attacks may have several consequences such as allowing the execution of malicious software, poisoning an
ML model or drift detector if they use new unknown samples to update their de!nitions (without a ground
truth from other sources), and producing, as a consequence, concept drift and evolution. Thus, when developing
cybersecurity solutions using ML, both features and models must be robust against adversaries.

Aside from using adversarial features, attackers may also directly attack ML models. There are two types of
attacks: white-box attacks, where the adversary has full access to the model, and black-box attacks, where the
adversary has access only to the output produced by the model, without directly accessing it [13]. A good example
of white-box attacks is gradient-based adversarial attacks, which consist in using the weights of a neural network
to obtain perturbation vectors that, combined with an original instance, can generate an adversarial one that
may be classi!ed by the model as being from another class [66]. Many strategies use neural network weights to
produce these perturbations [13], which not only a#ects neural networks but a wide variety of models [66]. Other
simpler white-box attacks such as analyzing the model, for instance, the nodes of a decision tree or the support
vectors used by an SVM, could be used to manually craft adversarial vectors by simply changing the original
characteristics of a given sample in a way that it can a#ect its output label. In contrast, black-box attacks tend
to be more challenging and real for adversaries, given that they usually do not have access to implementations
of cybersecurity solutions or ML models, i.e., they have no knowledge about which features and classi!ers a
given solution is using and usually only know which is the raw input and the output. Thus, black-box attacks
rely on simply creating random perturbations and testing them in the input data [71], changing characteristics
from samples looking at instances from all classes [13], or trying to mimic the original model by creating a local
model trained with samples submitted to the original one, using the labels returned by it, and then analyzing or
using this new model to create an adversarial sample [118].

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:19

In response to adversarial attacks, defenders may try di#erent strategies to overcome them, searching for
more robust models that make this task harder for adversaries. One response to these attacks is Generative
Adversarial Networks (GANs), which are two-part, coupled deep learning systems in which one part is trained
to classify the inputs generated by the other. The two parts simultaneously try to maximize their performance,
improving the generation of adversaries, which are used to defeat the classi!er and then used to improve their
detection by training the classi!er with them [65, 76]. Another valid strategy is to create an algorithm that, given
a malign sample, automatically generates adversarial samples, similar to data augmentation or oversampling
techniques that insert benign characteristics into it, which are then used to train or update a model. This way, the
model will learn not only the normal concept of a sample but also the concept of its adversaries’ versions, which
will make it more resistant to attacks [70, 119]. Instead of using the hard class labels, Apruzzese et al. propose
using the probability labels to make random forest-based models more resilient to adversarial perturbations,
achieving comparable or even superior results even in the absence of attacks [7].

Some approaches also tried to !x limitations of already developed models, such as MalConv [125], an
end-to-end deep learning model, which takes as input raw bytes of a !le to determine its maliciousness.
Non-Negative MalConv proposes an improvement to MalConv, with an identical structure, but having only
non-negative weights, which forces the model to look only for malicious evidence rather than look for both
malicious and benign ones, being less prone to adversaries that try to copy benign behavior [54]. Despite that,
even Non-Negative MalConv has weaknesses that can be explored by attackers [34], which makes this topic
an open problem to be solved by future research. We advocate for more work and competitions, such as the
Machine Learning Security Evasion Competition (MLSEC) [16], that encourage the implementation of
new defense solutions that minimize the e#ects of adversarial attacks.

6.3 Class Imbalance
Class imbalance is a problem already mentioned in this work, but on the dataset side (Section 3.3). In this section,
we are going to discuss the e#ects of class imbalance in the ML model and present some possible mitigation
techniques that rely on improving the learning process (cost-sensitive learning), using ensemble learning (algo-
rithms that combine the results of a set of classi!ers to make a decision) or anomaly detection (or one-class)
models [64, 86]. This way, when using cost-sensitive learning approaches, the generalization made by most al-
gorithms, which makes minority classes ignored, is adapted to give each class the same importance, reducing
the negative impact caused by class imbalance. Usually, cost-sensitive learning approaches increase the cost of
incorrect predictions of minority classes, biasing the model in their favor and resulting in better overall classi-
!cation results [86]. Such techniques are not easy to implement in comparison to sampling methods presented
in Section 3.3 but tend to be much faster given that they just adapt the learning process without generating any
arti!cial data [64].

In addition, ensemble learning methods that rely on bagging [29] or boosting techniques (such as Ad-
aBoost [55]) present good results with imbalanced data [58], which is one of the reasons that random forest
performs well in many cybersecurity tasks with class imbalance problems, such as malware detection [37]. Bag-
ging consists in training the classi!ers from an ensemble with di#erent subsets of the training dataset (with
replacement), introducing diversity to the ensemble and improving overall classi!cation performance [29, 58].
The AdaBoost technique consists in training each classi!er from the ensemble with the whole training dataset
in iterations. After each iteration, the algorithm gives more importance to di"cult samples, trying to correctly
classify the samples that were incorrectly classi!ed by giving them di#erent weights, very similar to what cost-
sensitive learning does, but without using a cost to update the weights [55, 58].

Even though all the methods presented so far are valid strategies to handle imbalanced datasets, sometimes the
distribution of classes is too di#erent that it is not viable to use one of them, given that the majority of the data will
be discarded (undersampling), poor data will be generated (oversampling), or the model will not be able to learn
the concept of the minority class [64]. In these cases, anomaly detection algorithms are strongly recommended,

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:20 • F. Ceschin et al.

given that they are trained over the majority class only and the remaining ones (minority class) are considered
anomalous instances [64, 131]. Two great examples of anomaly detection models are isolation forest [98] and
one-class SVM [135]. Both of them try to !t the regions where the training data is most concentrated, creating
a decision boundary that de!nes what is normal and what is an anomaly.

Finally, when building an ML solution that has imbalanced data, as well as testing several classi!ers and feature
extractors, it is also important to consider the approaches presented here for both the dataset and model sides.
Also, it is possible to combine more than one method, for instance, generating a set of arti!cial data and using
cost-sensitive learning strategies, which could increase classi!cation performance in some cases. We strongly
recommend that cybersecurity researchers include some of these strategies in their work, given that it is di"cult
to !nd solutions that actually consider class imbalance.

6.4 Transfer Learning
Transfer learning is the process of learning a given task by transferring knowledge from a related task that has
already been learned. It has shown to be very e#ective in many ML applications [150], such as image classi!-
cation [79, 126] and natural language processing problems [75, 124]. Recently, Microsoft and Intel researchers
proposed the use of transfer learning from computer vision to static malware detection [40], representing bina-
ries as grayscale images and using inception-v1 [147] as the base model to transfer knowledge [41]. The results
presented by the authors show a recall of 87.05%, with only a 0.1% of false positive rate, indicating that transfer
learning may help to improve malware classi!cation without the need of searching for optimal hyperparameters
and architectures, reducing the training time and the use of resources.

In addition, if the network used as the base model is robust, then they probably contain robust feature ex-
tractors. Consequently, by using these feature extractors, the new model produced inherits their robustness,
producing new solutions that are also robust to adversarial attacks, achieving high classi!cation performances
without much data and with no need to use a lot of resources as some adversarial training approaches [138].
At the same time that transfer learning might be an advantage, it may also be a problem according to the base
model used because, usually, these base models are publicly available, which means that any potential attack-
ers might have access to them and produce an adversarial vector that might a#ect both models: the base and
the new one [127]. Thus, it is important to consider the robustness of the base model when using it to trans-
fer learning to produce a solution without security weaknesses. Finally, despite presenting promising results,
the model proposed to detect malware by using transfer learning cited at the beginning of this subsection [41]
may be a#ected by adversarial attacks, given that its base model is a#ected by them, as already shown in the
literature [32, 66].

6.5 Implementation
Building a good Machine Learning model is not the last challenge to deploying ML approaches in practice. The
implementation of these approaches might also be challenging [113]. The existing frameworks, such as scikit-
learn [120] and Weka [72], usually rely on batch learning algorithms, which may not be useful in dynamic
scenarios where new data are available all the time (as a stream), requiring the model to be updated frequently
with them [64]. In these cases, ML implementations for streaming data, such as Scikit-Multi$ow [108], Massive
Online Analysis (MOA) [22], River [107], and Spark [103, 144], are highly recommended, once they provide
ML algorithms that could be easily used in real cybersecurity applications. Also, adversarial machine learning
frameworks, such as CleverHans [116] and SecML [104], are important to test and evaluate the security of ML
solutions proposed. Thus, contributing to streaming data and adversarial machine learning projects is as im-
portant as contributing to well-known ML libraries, and we advocate for that to make all research closer to
real-world applications. Note that we are not just talking speci!cally about contributing with new models, but
also prepossessing and evaluating algorithms that may be designed only in batch learning and could also be a
good contribution to streaming learning libraries. We believe that more contributions to these projects would

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:21

bene!t both industry and academia with higher-quality solutions and research, given the high number of re-
search works using only batch learning algorithms nowadays, even in cybersecurity problems.

In addition, multi-language codebases may be a serious challenge when implementing a solution, once di#er-
ent components may be written in di#erent languages, not being completely compatible, becoming incompatible
with new releases, or being too slow according to the code implementation and language used [134]. Thus, it is
common to see ML implementations being optimized by C and C++ under the hood, given that they are much
faster and more e"cient than Python and Java, for instance. Despite such optimizations being needed to make
many solutions feasible in real-world solutions, they are not always performed, given that (i) researchers create
their solutions as prototypes that only simulate the real world, not requiring optimizations, and (ii) optimizations
require knowledge about code optimization techniques that are very speci!c or may be limited to a given type
of hardware, such as GPUs [134]. Also, implementing data stream algorithms is a hard task, given that we need
to execute the whole pipeline continuously: If any component of this pipeline fails, then the whole system may
fail [64].

Another challenge is to ensure a good performance for the proposed algorithms and models [42]. A good
performance is essential to deploy ML in the security context, because most of the detection solutions operate
in runtime to detect attacks as early as possible and slow models will result in a signi!cant slowdown to the
whole system operation. To overcome the performance barriers of software implementations, many security
solutions opt to outsource the processing of ML algorithms to third-party components. A frequent approach in
the security context is to propose hardware devices to perform critical tasks, among which is the processing
of ML algorithms [28]. Alternatively, security solutions might also outsource scanning procedures to the cloud.
Many research works proposed cloud-based AVs [47, 80], which have the potential to include ML-based scans
among their detection capabilities and streamline such checks to the market. We understand that these scenarios
should be considered for the proposal of new ML-based detection solutions.

7 EVALUATION
Knowing how to correctly evaluate an ML system is essential to building a security solution, given that some
evaluations may result in wrong conclusions that may back!re in security contexts, even when using traditional
ML evaluation best practices [33, 37, 121]. For instance, consider that a malicious threat detection model is
evaluated using 10 samples: 8 of them are benign and 2 are malign. This model has an accuracy of 80%. Is 80%
a good accuracy? Assuming that the model classi!es correctly only the 8 benign samples, it is not capable of
identifying any malign sample, and yet it has an accuracy of 80%, giving a false impression that the model works
signi!cantly well. Thus, it is important to take into account the metric used to produce high-quality systems that
solve the problem proposed by a certain threat model.

7.1 Metrics
To correctly evaluate a solution, the right metrics need to be selected to provide signi!cant insights that can
present di#erent perspectives of the problem according to its real needs, re$ecting the real world [68]. One of the
most-used metrics by ML solutions is accuracy, which consists in measuring the percentage of samples correctly
classi!ed by the model divided by the total number of samples seen by it (usually from the testing set) [52].
The main problem with this metric is that it may provide wrong conclusions according to the distribution of
the datasets used, as already shown by the malicious threat detection model example. Thus, if the dataset is
imbalanced, then accuracy is not recommended, since it will give much more importance to the majority class,
presenting, for instance, high values even if a minority class is completely ignored by the classi!er [52].

An interesting way to evaluate model performance is by checking the confusion matrix, a matrix where each
row represents the real label and each column represents a predicted class (or vice versa) [68]. By using this
matrix, it is possible to check a lot of information about the model, for instance, which class is more di"cult
to classify or which ones are being confused the most. In addition, it is possible to calculate false positives and

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:22 • F. Ceschin et al.

false negatives, which leads us to recall, precision, and, consequently, f1score. Recall measures the percentage
of positive examples that are correctly classi!ed, precision measures the percentage of examples classi!ed as
positive that are positive, and f1score is the harmonic mean of both of them [44]. With these metrics, it is possible
to calibrate the model according to the task being performed [37]. For a malware detector, for instance, it may be
better to not detect malware than to block benign software (high precision), given that it would directly a#ect
the user experience. Imagine that a user is using his computer and, when opening Microsoft Word, the classi!er
believes that it is malware and blocks its execution. Even detecting the majority of the malware, the classi!er
may turn the computer useless, as it would block a great part of the benign applications. In contrast, in more
sensitive systems, one might want the opposite (high recall), blocking all the malign actions, even with some
benign being “sacri!ced.”

Recently, some authors introduced metrics to evaluate the quality of the models produced. Jordaney et al. pro-
posed Conformal Evaluator (CE), an evaluation framework that computes two metrics (algorithm con!dence
and credibility) to measure the quality of the produced ML results, evaluating the robustness of the predictions
made by the algorithm and their qualities [82]. Pendlebury et al. introduced another evaluation framework called
Te((e)a+,, which compares classi!ers in a realistic setting by introducing a new metric, Area Under Time
(AUT). This metric captures the impact of time decay on a classi!er, which is not evaluated in many works, con-
!rming that some of them are biased. Thus, we support the development of these kinds of work to better evaluate
new ML solutions considering a real-world scenario that allows the implementation to be used in practice.

7.2 Comparing Apples to Orange
It is not unusual for researchers to compare their evaluation results with other prior literature solutions that face
the same problems (e.g., comparing the accuracy of two detection models). Such comparison, however, should
be carefully performed to avoid misleading conclusions.

The lack of standard publicly available repositories is responsible for lots of work using their own dataset
when building a solution. These new solutions have their results usually compared with other works reported
in the literature. Whereas comparing approaches seems to be straightforward, authors should care to perform
fair evaluations, such as comparing studies leveraging the same datasets, avoiding presenting results deemed to
outperform literature results but which do not achieve such performance in actual scenarios.

As an analogy, consider image classi!cation problems whose objective is to identify objects represented in
images (for instance, buildings, animals, locations, etc). These challenges often provide multiple datasets that
are used as a baseline by many solutions. For instance, the CIFAR challenge [90] is composed of two datasets:
CIFAR-100, which has 100 classes of images, and CIFAR-10, which is a !ltered version of CIFAR-100, containing
just 10 classes. Imagine two research works proposing distinct engineering solutions for image classi!cation,
one of them leveraging CIFAR-10 and the other leveraging CIFAR-100. Although one of the approaches presents
a higher accuracy than the other, is it fair to say that one is better than the other? No, because the task involved
in classifying distinct classes is also distinct. The same reasoning is valid for any cybersecurity research involv-
ing ML. Thus, authors should care to not perform comparisons involving distinct classes of applications, such
as comparing, for instance, approaches involving Dynamic System Call Dependency Graphs, a computationally
costly approach, with static feature extraction approaches. This is misleading, because each type of work presents
di#erent natures and challenges. Finally, it is strongly recommended that researchers share their source codes
with the community to make their work compatible with any other dataset (which in the majority of the works
are not shared), allowing future researchers to compare di#erent approaches in the same scenario.

7.3 Delayed Labels Evaluation
One particularity of security data is that they usually do not have ground-truth labels available right after new
data are collected, as already shown in Section 3.2. Due to that, there is a gap between the data collection and

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:23

Fig. 12. Delayed Labels Evaluations. Models with dri" detection may not perform as expected in real-world solutions, despite
having the best performance in scenarios where delays are not considered.

their labeling process, which is not considered in many cybersecurity types of research that use ML, i.e., in
many proposed solutions in the literature, the labels are available at the same time as the data, even in online
learning solutions. Some of them ignore the ground-truth label and use the same labels that the ML classi!er
predicts [157], which may make the model subject to poisoning attacks and, consequently, decrease its detection
rate as time goes by [148].

Considering malware detection, the majority of the works use only a single snapshot of scanning results from
platforms like VirusTotal, without considering a given delay before actually using the labels, which may vary
from 10 days to more than two years [160]. A recent study from Botacin et al. analyzed the labels provided by
VirusTotal for 30 consecutive days from two distinct representative malware datasets (from Windows, Linux,
and Android) and showed that solutions took about 19 days to detect the majority of the threats [26]. To study
the impact of these delayed labels in malware detectors using ML, we simulated a scenario using the AndroZoo
dataset [3] and online ML techniques with and without drift detectors by providing the labels of each sample N
days after they are available to further update the decision model (Adaptive Random Forest [63] trained using
TF-IDF feature extractor). The results of this experiment are shown in Figure 12(a) and Figure 12(b). We can note
that when not considering a delay, using a drift detector improves the detection rate a lot. However, after one
day of delay, this is not true anymore: The model that does not consider concept drift performs better overall,
despite both being very a#ected by this problem, dropping to half of the original precision in the case of Adaptive
Random Forest with ADWIN. These results indicate that: (i) in scenarios where delayed labels exist, ML models
do not perform the way they are evaluated without these conditions, and (ii) models that make use of drift
detectors, such as ADWIN, present lower detection rates in comparison to those that do not use them, since the
concept being learned by the model is outdated when a drift is detected, increasing false negatives.

Finally, we advocate for drift detection strategies that consider the delay of labels and mitigation techniques
to overcome this problem, such as active learning or approaches to provide real labels with less delay, to produce
better solutions [89].

7.4 Online vs. O!line Experiments
We previously advocated for real-world considerations when developing an ML model (Section 6). We also advo-
cate for real-world considerations when evaluating the developed solutions. Each evaluation should consider the

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:24 • F. Ceschin et al.

scenario in which it will be applied. A major implication of this requirement is that online and o%ine solutions
must be evaluated using distinct criteria. O%ine solutions are often leveraged by security companies in their
internal analysis (e.g., an AV company investigating whether a given payload is malicious or not to develop a
signature for it that will be distributed to the customers in the future). Online solutions, in turn, are leveraged by
the endpoints installed in the user machines (e.g., a real-time AV monitoring a process behavior, a packet !lter
inspecting the network tra"c, and so on). Due to their distinct nature, o%ine solutions are much more $exible
than online solutions. Whereas o%ine solutions can rely on complex models that are run on large clusters, online
solutions must be fast enough to be processed in real time without adding a signi!cant performance overhead
to the system. Moreover, o%ine solutions can collect huge amounts of data during a sandboxed execution and
thus input them into models relying on a large moving window for classi!cation. Online solutions, in turn, op-
erate in memory-limited environments and aim to detect the threat as soon as possible. Thus, they cannot rely
on large moving windows. These di#erences must be considered when evaluating the models to avoid common
pitfalls, such as applying the same criteria for both applications. Due to their distinct nature, online solutions
are expected to present more false negatives than o%ine solutions, as they have to make fast decisions about the
threat. However, o%ine solutions will detect more samples, as they have more data to decide, but the detection
is likely to happen later than in an online detector, only after multiple windows (e.g., when malware already in-
fected the system and/or when a remote payload already exploited a vulnerable application). For a more complete
security treatment, modern security solutions should consider hybrid models that employ multiple classi!ers,
each one with a distinct window size [146].

8 DISCUSSION: UNDERSTANDING ML
Once we have presented all the steps required to apply ML to security problems, we now discuss how this
application should be understood, its limitations, and existing open gaps.

8.1 An ML Model Is a Type of Signature
A frequent claim of most products and research work leveraging ML as part of their operation, mainly antivirus
and intrusion detection systems, is that this use makes their approaches more $exible and precise than the so-
far applied signature schemes [122]. This is somehow a pitfall, as, in the last instance, an ML model is just a
weighted signature of Boolean values. One can even convert an ML model to typical YARA signatures [132],
as deployed by many security solutions. Although the weights can be adjusted to add some $exibility to an
ML model, the model itself cannot be automatically extended beyond the initially considered Boolean values
without additional processing (re-training or feature re-extraction), which is an already existing drawback for
signature schemes. In this sense, the adversarial attacks against the ML models can be seen as analogous to the
polymorphic attacks against typical signature schemes [149]: whereas a typical polymorphic threat attempts to
directly change its features to pass the checks (weight=1), a modern attack against ML models indirectly attempts
to do so by presenting a relative feature frequency higher or lower than the considered in the ML model.

8.2 There Is No Such Thing as a 0-day Detector
It is usual for many ML-based detector proposals to state that their approach is resistant to 0-day attacks (i.e.,
attacks leveraging so-far unknown threats and/or payloads) because they rely on an ML model [1, 94]. This is
also somehow a pitfall, and we credit this as the poor understanding that ML models are a type of signature, as
previously presented. In fact, the ability of a model to detect a new threat depends on the de!nition of what is
new. If a new sample is understood as any sample that an attacker can create, then certainly ML models will
be able to detect many 0-days, as many of these new payloads will be variations of previously known threats, a
scenario for which weighted signatures generalize well. However, if we consider as new something unknown to
the model in all senses (e.g., a payload having a feature that is not present in the model), then no ML model will

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



Machine Learning (In) Security: A Stream of Problems • 9:25

Fig. 13. A#ack vs. Defense Solutions. The arms race created by both generates a never-ending cycle.

be able to detect it as malicious, thus nature of the presented problem of concept drift and evolution. Therefore,
ML models should not be understood as simply more resistant detectors than typical signature schemes, but as
a type of signature that can be more generalized.

8.3 Security & Explainable Learning
Most research works put a big focus on achieving good detection rates, but not all of them put the same e#ort
into discussing and explaining the results [12], which would be essential to allow security incident response
teams (CSIRTs) to !ll the identi!ed security breaches. The scenario is even more complicated when deep learn-
ing approaches are considered, as in most cases there is no clear explanation for the model operation [56]. A
model to detect cybersecurity threats can yield valuable insights besides its predictions, since based on the ex-
planation provided by the model, the security around the monitored object can be improved in future versions.
As an example, a model able to explain that some threats were identi!ed due to the exploitation of a given vul-
nerability might trigger patching procedures to !x the associated applications. Explainability has di#erent levels
of relevance according to the domain; we argue that for several cybersecurity tasks, they are essential to make
it possible to apply countermeasures to security threats.

8.4 The Arms Race Will Always Exist
The arms race between attack and defense solutions is a cycle that will always exist, requiring that both sides
keep investing in new approaches to overcome their adversaries. Thus, new approaches from one of the sides
result in a reaction from another one, as shown in Figure 13, where defense solutions follow the steps mentioned
in this work to build ML defense solutions and attackers follow the steps required to create an attack: They !rst
!nd the weakness of the defense solutions, use this weakness to develop an exploit, which is then delivered to
be executed, producing new data for ML models to be trained, restarting the cycle [77]. Finally, we advocate that
defense solutions try to reduce the gap present in this cycle (the development of new attacks and the generation
of solutions for them) by following the recommendations of this work and other works in the literature that
make use of robustness veri!cation to prevent attacks against adversaries [96].

To help the development of future ML solutions for cybersecurity, we created a checklist2 that is an adaptation
based on the challenges, pitfalls, and problems reported in this work. Thus, anyone developing or reviewing a
solution can !ll the questions on this checklist and get feedback reporting what could be improved or corrected
according to our !ndings.

8.5 The Future of ML for Cybersecurity
ML for cybersecurity has become so popular that it is hard to imagine a future without it. However, this does
not mean that there is no room for improvement. As an immediate task, researchers will put their e#ort toward

2The draft version of the checklist is available at REMOVED FOR BLIND REVIEW; validation tests ongoing.

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.



9:26 • F. Ceschin et al.

mitigating adversarial attacks, which will enable even more applications to migrate ML solutions. A massive
migration will require not only robust security guarantees but also privacy ones, which is likely to be achieved
via merging ML and cryptography. The !eld is experiencing the rise of ML classi!ers based on homomorphic
cryptography [123], which allows data to be classi!ed without decryption. We believe that this type of approach
has the potential to upstream many ML-powered solutions, such as cloud-based AVs, which will be able to scan
!les in the cloud while preserving the privacy of the !le’s owners.

9 CONCLUSION
In this article, we introduced a set of problems and challenges that have been observed (too often) in ML tech-
niques applied to diverse cybersecurity solutions. We presented practical examples of cybersecurity scenarios in
which ML might either be incorrectly applied or contain blind spots (important details that were not considered,
discussed, or observed). When possible, we showed techniques to address those common issues. To make a step
toward that, in this article, we summarized and provided insights on the following main points: data collection
issues (data leakage, data labeling, class imbalance, and dataset size de!nition); modeling (di#erent attribute and
feature extraction methods, adaptation to changes, i.e., concept drift/evolution, adversarial features and model
attacks, one-class models, cost-sensitive, ensemble learning, transfer learning, and implementation challenges);
and evaluation concerns (adequate use of metrics, thorough comparison of previous/existing solutions, delayed
labels, and online vs. o%ine experiments).

Finally, our main recommendations to improve ML in security are the following:
— Stop looking only at metrics, and start looking at e"ects: Many of the challenges presented in this

work remain as open research problems, which would bene!t both academia and industry if properly
solved. In addition, their mitigation would foster the use of ML for cybersecurity problems and improve the
cybersecurity !eld in the same way ML advanced other research !elds. Community players (security and
machine learning) have to take into consideration the plenty of peculiarities associated with cybersecurity
data and its sources.

— Commit yourself to the real world: We advocate that future research works always keep the motto
“machine learning that matters” [155] in mind when developing new solutions. If your work is losing
connection to problems of the real world, science, and society, then we have a problem!

— Check your work: Our recommendation is to carefully observe all the items and to consider each of them
during the design and implementation of ML models for cybersecurity. To encourage that, we presented a
checklist (draft version available at REMOVED FOR BLIND REVIEW; validation tests ongoing) to serve
as a reminder and prevent researchers and practitioners from committing these common mistakes or at
least being aware of their existence.

REFERENCES
[1] F. Abri, S. Siami-Namini, M. A. Khanghah, F. M. Soltani, and A. S. Namin. 2019. Can machine/deep learning classi!ers detect zero-day

malware with high accuracy? In IEEE International Conference on Big Data (Big Data’19). 3252–3259.
[2] Zahra Ahmadi and Stefan Kramer. 2017. Modeling recurring concepts in data streams: A graph-based framework. Knowl. Inf. Syst. 55

(2017), 15–44.
[3] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo: Collecting millions of Android apps for

the research community. In 13th International Conference on Mining Software Repositories (MSR’16). ACM, New York, NY, 468–471.
DOI:https://doi.org/10.1145/2901739.2903508

[4] Hyrum S. Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth. 2018. Learning to Evade Static PE Machine Learning
Malware Models via Reinforcement Learning. arXiv:1801.08917 [cs.CR].

[5] H. S. Anderson and P. Roth. 2018. EMBER: An open dataset for training static PE malware machine learning models. ArXiv E-prints
(Apr. 2018). arXiv:1804.04637 [cs.CR].

[6] Giovanni Apruzzese, Hyrum S. Anderson, Savino Dambra, David Freeman, Fabio Pierazzi, and Kevin A. Roundy. 2023. “Real attack-
ers don’t compute gradients”: Bridging the gap between adversarial ML research and practice. In 1st IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML’23).

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.

https://doi.org/10.1145/2901739.2903508
http://arxiv.org/abs/1801.08917
http://arxiv.org/abs/1804.04637


Machine Learning (In) Security: A Stream of Problems • 9:27

[7] Giovanni Apruzzese, Mauro Andreolini, Michele Colajanni, and Mirco Marchetti. 2020. Hardening random forest cyber detectors
against adversarial attacks. IEEE Trans. Emerg. Topics Comput. Intell. 4 (08 2020), 427–439. DOI:https://doi.org/10.1109/TETCI.2019.
2961157

[8] Giovanni Apruzzese, Pavel Laskov, Edgardo Montes de Oca, Wissam Mallouli, Luis Brdalo Rapa, Athanasios Vasileios Grammatopoulos,
and Fabio Di Franco. 2023. The role of machine learning in cybersecurity. Digit. Threats: Res. Pract. 4, 1 (Mar. 2023), 1–38. DOI:https://
doi.org/10.1145/3545574

[9] Giovanni Apruzzese, Pavel Laskov, and Aliya Tastemirova. 2022. SoK: The impact of unlabelled data in cyberthreat detection. In IEEE
7th European Symposium on Security and Privacy (EuroS&P’22). IEEE. DOI:https://doi.org/10.1109/eurosp53844.2022.00010

[10] Ignacio Arnaldo and Kalyan Veeramachaneni. 2019. The holy grail of “Systems for machine learning”: Teaming humans and machine
learning for detecting cyber threats. SIGKDD Explor. Newslett. 21, 2 (Nov. 2019), 39–47. DOI:https://doi.org/10.1145/3373464.3373472

[11] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and
Konrad Rieck. 2022. Dos and don’ts of machine learning in computer security. In USENIX Security Symposium.

[12] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad Rieck. 2014. DREBIN: E#ective and explainable detection
of android malware in your pocket. In Symposium on Network and Distributed System Security (NDSS’14). DOI:https://doi.org/10.14722/
ndss.2014.23247

[13] Anish Athalye, Nicholas Carlini, and David A. Wagner. 2018. Obfuscated gradients give a false sense of security: Circumventing
defenses to adversarial examples. CoRR abs/1802.00420 (2018).

[14] Manuel Baena-Gar-ıa, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, Ricard Gavaldà, and Rafael Morales-Bueno. 2006. Early drift
detection method.

[15] Maroua Bahri, Albert Bifet, Silviu Maniu, and Heitor Murilo Gomes. 2020. Survey on feature transformation techniques for data streams.
In 29th International Joint Conference on Arti!cial Intelligence (IJCAI’20), Christian Bessiere (Ed.). International Joint Conferences on
Arti!cial Intelligence Organization, 4796–4802. DOI:https://doi.org/10.24963/ijcai.2020/668

[16] Zoltan Balazs. 2020. CUJO AI Partners with Microsoft for the Machine Learning Security Evasion Competition 2020. Retrieved from
https://cujo.com/machine-learning-security-evasion-competition-2020/

[17] Willi Ballenthin and Moritz Raabe. 2020. capa: Automatically Identify Malware Capabilities. Retrieved from https://www.mandiant.
com/resources/blog/capa-automatically-identify-malware-capabilities

[18] Tamy Beppler, Marcus Botacin, Fabrício Ceschin, Luiz E. S. Oliveira, and André Grégio. 2019. L(a)ying in (Test)Bed: How biased
datasets produce impractical results for actual malware families’ classi!cation. In Conference on Information Security, Zhiqiang Lin,
Charalampos Papamanthou, and Michalis Polychronakis (Eds.). Springer International Publishing, Cham, 381–401. Retrieved from
https://link.springer.com/chapter/10.1007/978-3-030-30215-3_19

[19] Lukas Bieringer, Kathrin Grosse, Michael Backes, Battista Biggio, and Katharina Krombholz. 2022. Industrial practitioners’ mental
models of adversarial machine learning. In 18th Symposium on Usable Privacy and Security (SOUPS’22). USENIX Association, Boston,
MA, 97–116. Retrieved from https://www.usenix.org/conference/soups2022/presentation/bieringer

[20] Albert Bifet, Ricard Gavaldà, Geo# Holmes, and Bernhard Pfahringer. 2018. Machine Learning for Data Streams with Practical Examples
in MOA. MIT Press. Retrieved from https://moa.cms.waikato.ac.nz/book/

[21] Albert Bifet and Ricard Gavaldà. 2007. Learning from time-changing data with adaptive windowing, In SIAM International Conference
on Data Mining.

[22] Albert Bifet, Geo# Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010. MOA: Massive online analysis. J. Mach. Learn. Res. 11 (Aug.
2010), 1601–1604.

[23] C. M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer.
[24] Franziska Boenisch, Verena Battis, Nicolas Buchmann, and Maija Poikela. 2021. “I never thought about securing my machine learning

systems”: A study of security and privacy awareness of machine learning practitioners. In Mensch Und Computer (MuC’21). Association
for Computing Machinery, New York, NY, 520–546. DOI:https://doi.org/10.1145/3473856.3473869

[25] Marcus Botacin, Giovanni Bertão, Paulo de Geus, André Grégio, Christopher Kruegel, and Giovanni Vigna. 2020. On the security of
application installer & online software repositories. In Conference on Detection of Intrusions and Malware & Vulnerability (DIMVA’20).
Springer.

[26] Marcus Botacin, Fabricio Ceschin, Paulo de Geus, and André Grégio. 2020. We need to talk about antiviruses: Challenges & pitfalls of
AV evaluations. Comput. Secur. (2020), 101859. DOI:https://doi.org/10.1016/j.cose.2020.101859

[27] Marcus Botacin, Felipe Duarte Domingues, Fabrício Ceschin, Raphael Machnicki, Marco Antonio Zanata Alves, Paulo Lício de Geus,
and André Grégio. 2022. AntiViruses under the microscope: A hands-on perspective. Comput. Secur. 112 (2022), 102500. DOI:https://
doi.org/10.1016/j.cose.2021.102500

[28] M. Botacin, L. Galante, F. Ceschin, P. C. Santos, L. Carro, P. de Geus, A. Grégio, and M. A. Z. Alves. 2019. The AV says: Your hardware
de!nitions were updated! In 14th International Symposium on Recon!gurable Communication-centric Systems-on-Chip (ReCoSoC’19).
27–34.

[29] Leo Breiman. 1996. Bagging predictors. Mach. Learn. 24, 2 (Aug. 1996), 123–140. DOI:https://doi.org/10.1023/A:1018054314350
[30] Elie Bursztein and Daniela Oliveira. 2019. Deconstructing the phishing campaigns that target gmail users. Black Hat USA 2019 (2019).

Retrieved from https://elie.net/talk/deconstructing-the-phishing-campaigns-that-target-gmail-users/

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.

https://doi.org/10.1109/TETCI.2019.2961157
https://doi.org/10.1145/3545574
https://doi.org/10.1109/eurosp53844.2022.00010
https://doi.org/10.1145/3373464.3373472
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.24963/ijcai.2020/668
https://cujo.com/machine-learning-security-evasion-competition-2020/
https://www.mandiant.com/resources/blog/capa-automatically-identify-malware-capabilities
https://link.springer.com/chapter/10.1007/978-3-030-30215-3_19
https://www.usenix.org/conference/soups2022/presentation/bieringer
https://moa.cms.waikato.ac.nz/book/
https://doi.org/10.1145/3473856.3473869
https://doi.org/10.1016/j.cose.2020.101859
https://doi.org/10.1016/j.cose.2021.102500
https://doi.org/10.1023/A:1018054314350
https://elie.net/talk/deconstructing-the-phishing-campaigns-that-target-gmail-users/


9:28 • F. Ceschin et al.

[31] Alejandro Calleja, Alejandro Martín, Héctor D. Menéndez, Juan Tapiador, and David Clark. 2018. Picking on the family: Disrupting
Android malware triage by forcing misclassi!cation. Expert Syst. Applic. 95 (2018), 113–126. DOI:https://doi.org/10.1016/j.eswa.2017.
11.032

[32] Nicholas Carlini and David A. Wagner. 2016. Towards evaluating the robustness of neural networks. CoRR abs/1608.04644 (2016).
[33] Lorenzo Cavallaro. 2019. When the Magic Wears O": Flaws in ML for Security Evaluations (and What to Do about It). USENIX Association,

Burlingame, CA.
[34] Fabrício Ceschin, Marcus Botacin, Heitor Murilo Gomes, Luiz S. Oliveira, and André Grégio. 2019. Shallow security: On the creation

of adversarial variants to evade machine learning-based malware detectors. In 3rd Reversing and O"ensive-Oriented Trends Symposium
(ROOTS’19). Association for Computing Machinery. DOI:https://doi.org/10.1145/3375894.3375898

[35] Fabrício Ceschin, Marcus Botacin, Heitor Murilo Gomes, Felipe Pinagé, Luiz S. Oliveira, and André Grégio. 2022. Fast & furious: On
the modelling of malware detection as an evolving data stream. Expert Syst. Applic. (2022), 118590. DOI:https://doi.org/10.1016/j.eswa.
2022.118590

[36] Fabricio Ceschin, Marcus Botacin, Gabriel Lüders, Heitor Murilo Gomes, Luiz Oliveira, and Andre Gregio. 2020. No need to teach new
tricks to old malware: Winning an evasion challenge with XOR-based adversarial samples. In Reversing and O"ensive-Oriented Trends
Symposium (ROOTS’20). Association for Computing Machinery, 13–22. DOI:https://doi.org/10.1145/3433667.3433669

[37] Fabrício Ceschin, Felipe Pinage, Marcos Castilho, David Menotti, Luis S. Oliveira, and André Gregio. 2018. The need for speed: An
analysis of Brazilian malware classifers. IEEE Secur. Priv. 16, 6 (2018), 31–41.

[38] Tanmoy Chakraborty, Fabio Pierazzi, and V. S. Subrahmanian. 2020. EC2: Ensemble clustering and classi!cation for predicting Android
malware families. IEEE Trans. Depend. Secur. Comput. 17, 2 (Mar. 2020), 262–277. DOI:https://doi.org/10.1109/TDSC.2017.2739145

[39] Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and W. Kegelmeyer. 2002. SMOTE: Synthetic minority over-sampling technique. J. Artif.
Intell. Res. 16 (01 2002), 321–357. DOI:https://doi.org/10.1613/jair.953

[40] Li Chen. 2018. Deep transfer learning for static malware classi!cation. CoRR abs/1812.07606 (2018).
[41] Li Chen, Ravi Sahita, Jugal Parikh, and Marc Marino. 2020. STAMINA Deep Learning for Malware Protection. Retrieved from https://

www.intel.com/content/www/us/en/arti!cial-intelligence/documents/stamina-deep-learning-for-malware-protection-whitepaper.
html

[42] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and
Matei Zaharia. 2019. Analysis of DAWNBench, a time-to-accuracy machine learning performance benchmark. SIGOPS Oper. Syst. Rev.
53, 1 (July 2019), 14–25. DOI:https://doi.org/10.1145/3352020.3352024

[43] N. Dalal and B. Triggs. 2005. Histograms of oriented gradients for human detection. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), Vol. 1. 886–893.

[44] Jesse Davis and Mark Goadrich. 2006. The relationship between precision-recall and ROC curves. In 23rd International Conference
on Machine Learning (ICML’06). Association for Computing Machinery, New York, NY, 233–240. DOI:https://doi.org/10.1145/1143844.
1143874

[45] M. Dehghan, H. Beigy, and Poorya Zaremoodi. 2016. A novel concept drift detection method in data streams using ensemble classi!ers.
Intell. Data Anal. 20 (2016), 1329–1350.

[46] Amit Deo, Santanu Kumar Dash, Guillermo Suarez-Tangil, Volodya Vovk, and Lorenzo Cavallaro. 2016. Prescience: Probabilistic guid-
ance on the retraining conundrum for malware detection. In ACM Workshop on Arti!cial Intelligence and Security (AISec’16). Associa-
tion for Computing Machinery, New York, NY.

[47] M. Dev, H. Gupta, S. Mehta, and B. Balamurugan. 2016. Cache implementation using collective intelligence on cloud based antivirus
architecture. In International Conference on Advanced Communication Control and Computing Technologies (ICACCCT’16). 593–595.

[48] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations of di#erential privacy. Found. Trends Theor. Comput. Sci. 9, 3–4
(Aug. 2014), 211–407. DOI:https://doi.org/10.1561/0400000042

[49] Thijs van Ede, Hojjat Aghakhani, Noah Spahn, Riccardo Bortolameotti, Marco Cova, Andrea Continella, Maarten van Steen, Andreas
Peter, Christopher Kruegel, and Giovanni Vigna. 2022. DEEPCASE: Semi-supervised contextual analysis of security events. In IEEE
Symposium on Security and Privacy (SP’22). 522–539. DOI:https://doi.org/10.1109/SP46214.2022.9833671

[50] M. A. El Hadj, M. Erradi, A. Khoumsi, and Y. Benkaouz. 2018. Validation and correction of large security policies: A clustering and
access log based approach. In IEEE International Conference on Big Data (Big Data’18). 5330–5332.

[51] Nicholas Epley and Thomas Gilovich. 2006. The anchoring-and-adjustment heuristic: Why the adjustments are insu"cient. Psychol.
Sci. 17, 4 (2006), 311–318. DOI:https://doi.org/10.1111/j.1467-9280.2006.01704.x

[52] C. Ferri, J. Hernández-Orallo, and R. Modroiu. 2009. An experimental comparison of performance measures for classi!cation. Pattern
Recog. Lett. 30, 1 (2009), 27–38. DOI:https://doi.org/10.1016/j.patrec.2008.08.010

[53] FireEye. 2019. StringSifter. Retrieved from https://github.com/!reeye/stringsifter
[54] William Fleshman, Edward Ra#, Jared Sylvester, Steven Forsyth, and Mark McLean. 2018. Non-negative Networks Against Adversarial

Attacks. Retrieved from https://arxiv.org/abs/1806.06108
[55] Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J.

Comput. Syst. Sci. 55, 1 (Aug. 1997), 119–139. DOI:https://doi.org/10.1006/jcss.1997.1504

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.

https://doi.org/10.1016/j.eswa.2017.11.032
https://doi.org/10.1145/3375894.3375898
https://doi.org/10.1016/j.eswa.2022.118590
https://doi.org/10.1145/3433667.3433669
https://doi.org/10.1109/TDSC.2017.2739145
https://doi.org/10.1613/jair.953
https://www.intel.com/content/www/us/en/artificial-intelligence/documents/stamina-deep-learning-for-malware-protection-whitepaper.html
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1561/0400000042
https://doi.org/10.1109/SP46214.2022.9833671
https://doi.org/10.1111/j.1467-9280.2006.01704.x
https://doi.org/10.1016/j.patrec.2008.08.010
https://github.com/fireeye/stringsifter
https://arxiv.org/abs/1806.06108
https://doi.org/10.1006/jcss.1997.1504


Machine Learning (In) Security: A Stream of Problems • 9:29

[56] Krishna Gade, Sahin Geyik, Krishnaram Kenthapadi, Varun Mithal, and Ankur Taly. 2020. Explainable AI in industry: Practical
challenges and lessons learned. In the Web Conference (WWW’20). Association for Computing Machinery, New York, NY, 303–304.
DOI:https://doi.org/10.1145/3366424.3383110

[57] Lucas Galante, Marcus Botacin, André Grégio, and Paulo de Geus. 2019. Machine learning for malware detection: Beyond accuracy
rates. In Brazilian Security Symposium (SBSeg’19).

[58] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. 2012. A review on ensembles for the class imbalance problem:
Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst., Man, Cybern., Part C (Applic. Rev.) 42, 4 (2012), 463–484.

[59] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. 2004. Learning with drift detection. In Advances in Arti!cial Intelligence
– SBIA 2004, Ana L. C. Bazzan and So!ane Labidi (Eds.). Springer Berlin, 286–295.

[60] João Gama, Indrė &liobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey on concept drift adaptation.
ACM Comput. Surv. 46, 4, Article 44 (Mar. 2014), 37 pages. DOI:https://doi.org/10.1145/2523813

[61] R. Stuart Geiger, Kevin Yu, Yanlai Yang, Mindy Dai, Jie Qiu, Rebekah Tang, and Jenny Huang. 2020. Garbage in, garbage out? Do
machine learning application papers in social computing report where human-labeled training data comes from? In Conference on
Fairness, Accountability, and Transparency (FAT*’20). Association for Computing Machinery, New York, NY, 325–336. DOI:https://doi.
org/10.1145/3351095.3372862

[62] Daniel Gibert, Carles Mateu, and Jordi Planes. 2020. The rise of machine learning for detection and classi!cation of malware: Research
developments, trends and challenges. J. Netw. Comput. Applic. 153 (2020), 102526. DOI:https://doi.org/10.1016/j.jnca.2019.102526

[63] Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard Pfahringer, Geo# Holmes, and Talel
Abdessalem. 2017. Adaptive random forests for evolving data stream classi!cation. Mach. Learn. (06 2017), 1–27. DOI:https://doi.org/
10.1007/s10994-017-5642-8

[64] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama. 2019. Machine learning for streaming data: State of
the art, challenges, and opportunities. SIGKDD Explor. Newslett. 21, 2 (Nov. 2019), 6–22. DOI:https://doi.org/10.1145/3373464.3373470

[65] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
2014. Generative Adversarial Networks. arXiv:1406.2661 [stat.ML].

[66] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and Harnessing Adversarial Examples.
arXiv:1412.6572 [stat.ML].

[67] Dimitris Gritzalis, Giulia Iseppi, Alexios Mylonas, and Vasilis Stavrou. 2018. Exiting the risk assessment maze: A meta-survey. ACM
Comput. Surv. 51, 1, Article 11 (Jan. 2018), 30 pages. DOI:https://doi.org/10.1145/3145905

[68] Aurlien Gron. 2017. Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems (1st ed.). O’Reilly Media, Inc.

[69] Kathrin Grosse, Lukas Bieringer, Tarek R. Besold, Battista Biggio, and Katharina Krombholz. 2023. Machine learning security in indus-
try: A quantitative survey. IEEE Trans. Inf. Forens. Secur. 18 (2023), 1749–1762. DOI:https://doi.org/10.1109/tifs.2023.3251842

[70] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick D. McDaniel. 2017. Adversarial examples for
malware detection. In European Symposium on Research in Computer Security (ESORICS’17).

[71] Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Q. Weinberger. 2019. Simple black-box adversarial
attacks. CoRR abs/1905.07121 (2019).

[72] Mark Hall, Eibe Frank, Geo#rey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The WEKA data mining
software: An update. SIGKDD Explor. Newslett. 11, 1 (Nov. 2009), 10–18. DOI:https://doi.org/10.1145/1656274.1656278

[73] Paul Hick, Emile Aben, KC Cla#y, and Josh Polterock. 2007. The CAIDA DDoS attack 2007 dataset. Retrieved from https://www.caida.
org/data/passive/ddos-20070804_dataset.xml

[74] Mohammad Javad Hosseini, Ameneh Gholipour, and Hamid Beigy. 2015. An ensemble of cluster-based classi!ers for semi-supervised
classi!cation of non-stationary data streams. Knowl. Inf. Syst. 46 (04 2015). DOI:https://doi.org/10.1007/s10115-015-0837-4

[75] Jeremy Howard and Sebastian Ruder. 2018. Fine-tuned language models for text classi!cation. CoRR abs/1801.06146 (2018).
[76] Weiwei Hu and Ying Tan. 2017. Generating adversarial malware examples for black-box attacks based on GAN. CoRR abs/1702.05983

(2017).
[77] Keman Huang, Michael Siegel, and Stuart Madnick. 2018. Systematically understanding the cyber attack business: A survey. ACM

Comput. Surv. 51, 4, Article 70 (July 2018), 36 pages. DOI:https://doi.org/10.1145/3199674
[78] Mederic Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawende F. Bissyande, Yves Le Traon, Jacques Klein, and Lorenzo

Cavallaro. 2017. Euphony: Harmonious uni!cation of cacophonous anti-virus vendor labels for Android malware. In IEEE International
Working Conference on Mining Software Repositories. IEEE Computer Society, 425–435. DOI:https://doi.org/10.1109/MSR.2017.57

[79] Mahbub Hussain, Jordan J. Bird, and Diego R. Faria. 2019. A study on CNN transfer learning for image classi!cation. In Advances in
Computational Intelligence Systems, Ahmad Lot!, Hamid Bouchachia, Alexander Gegov, Caroline Langensiepen, and Martin McGinnity
(Eds.). Springer International Publishing, Cham, 191–202.

[80] Chris Jarabek, David Barrera, and John Aycock. 2012. ThinAV: Truly lightweight mobile cloud-based anti-malware. In 28th Annual
Computer Security Applications Conference (ACSAC’12). Association for Computing Machinery, New York, NY, 209–218. DOI:https://
doi.org/10.1145/2420950.2420983

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.

https://doi.org/10.1145/3366424.3383110
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3351095.3372862
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1145/3373464.3373470
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1412.6572
https://doi.org/10.1145/3145905
https://doi.org/10.1109/tifs.2023.3251842
https://doi.org/10.1145/1656274.1656278
https://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://doi.org/10.1007/s10115-015-0837-4
https://doi.org/10.1145/3199674
https://doi.org/10.1109/MSR.2017.57
https://doi.org/10.1145/2420950.2420983


9:30 • F. Ceschin et al.

[81] Karen Spärck Jones. 1972. A statistical interpretation of term speci!city and its application in retrieval. J. Document. 28 (1972), 11–21.
[82] Roberto Jordaney, Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Tran-

scend: Detecting concept drift in malware classi!cation models. In 26th USENIX Security Symposium (USENIX Security’17). USENIX
Association, 625–642. Retrieved from https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney

[83] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam, Brad Miller, Michael Carl Tschantz, Rachel Greenstadt, Anthony D.
Joseph, and J. D. Tygar. 2013. Approaches to adversarial drift. In ACM Workshop on Arti!cial Intelligence and Security (AISec’13). Asso-
ciation for Computing Machinery, New York, NY, 99–110. DOI:https://doi.org/10.1145/2517312.2517320

[84] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal Shankar, Rekha Bachwani, Anthony D. Joseph, and J. D.
Tygar. 2015. Better malware ground truth: Techniques for weighting anti-virus vendor labels. In 8th ACM Workshop on Arti!cial
Intelligence and Security, co-located with CCS 2015. Association for Computing Machinery, Inc, New York, New York, 45–56. DOI:https://
doi.org/10.1145/2808769.2808780

[85] Shachar Kaufman, Saharon Rosset, and Claudia Perlich. 2011. Leakage in data mining: Formulation, detection, and avoidance. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining 6, 556–563. DOI:https://doi.org/10.1145/2020408.2020496

[86] Harsurinder Kaur, Husanbir Singh Pannu, and Avleen Kaur Malhi. 2019. A systematic review on imbalanced data challenges in machine
learning: Applications and solutions. ACM Comput. Surv. 52, 4 (2019), 1–36.

[87] R. K. Keser and B. U. Töreyin. 2019. Autoencoder based dimensionality reduction of feature vectors for object recognition. In 15th
International Conference on Signal-Image Technology Internet-Based Systems (SITIS’19). 577–584.

[88] A. Korzybski. 1931. A Non-Aristotelian System and Its Necessity for Rigour in Mathematics and Physics: Abstract.
[89] Georg Krempl, Indre &liobaite, Dariusz Brzezi.ski, Eyke Hüllermeier, Mark Last, Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja

Sievi, Myra Spiliopoulou, and Jerzy Stefanowski. 2014. Open challenges for data stream mining research. SIGKDD Explor. Newslett. 16,
1 (Sept. 2014), 1–10. DOI:https://doi.org/10.1145/2674026.2674028

[90] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images. University of Toronto.
[91] Nir Kshetri. 2021. Economics of arti!cial intelligence in cybersecurity. IT Profess. 23, 5 (2021), 73–77. DOI:https://doi.org/10.1109/MITP.

2021.3100177
[92] Todd Kulesza, Saleema Amershi, Rich Caruana, Danyel Fisher, and Denis Charles. 2014. Structured labeling to facilitate concept evo-

lution in machine learning. In Conference on Human Factors in Computing Systems. DOI:https://doi.org/10.1145/2556288.2557238
[93] M. Kumar and R. Mathur. 2014. Unsupervised outlier detection technique for intrusion detection in cloud computing. In International

Conference for Convergence for Technology. 1–4.
[94] S. Kumar and C. Bhim Bhan Singh. 2018. A zero-day resistant malware detection method for securing cloud using SVM and sandboxing

techniques. In 2nd International Conference on Inventive Communication and Computational Technologies (ICICCT’18). 1397–1402.
[95] Vincent Lemaire, Christophe Salperwyck, and Alexis Bondu. 2015. A Survey on Supervised Classi!cation on Data Streams. Springer

International Publishing, Cham, 88–125. DOI:https://doi.org/10.1007/978-3-319-17551-5_4
[96] Linyi Li, Xiangyu Qi, Tao Xie, and Bo Li. 2020. SoK: Certi!ed Robustness for Deep Neural Networks. arXiv:2009.04131 [cs.LG].
[97] LightGBM. 2018. LightGBM. Retrieved from https://lightgbm.readthedocs.io/en/latest/
[98] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2012. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 6, 1, Article

3 (Mar. 2012), 39 pages. DOI:https://doi.org/10.1145/2133360.2133363
[99] Aravind Machiry, Nilo Redini, Eric Gustafson, Yanick Fratantonio, Yung Ryn Choe, Christopher Kruegel, and Giovanni Vigna. 2018.

Using loops for malware classi!cation resilient to feature-unaware perturbations. In 34th Annual Computer Security Applications Con-
ference (ACSAC’18). Association for Computing Machinery, New York, NY, 112–123. DOI:https://doi.org/10.1145/3274694.3274731

[100] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. 2019. Towards adversarial malware detection: Lessons learned from PDF-based
attacks. ACM Comput. Surv. 52, 4 (2019), 1–36.

[101] Nuno Martins, José Magalhães Cruz, Tiago Cruz, and Pedro Henriques Abreu. 2020. Adversarial machine learning applied to intrusion
and malware scenarios: A systematic review. IEEE Access 8 (2020), 35403–35419. DOI:https://doi.org/10.1109/ACCESS.2020.2974752

[102] Mohammad M. Masud, Tahseen M. Al-Khateeb, Kevin W. Hamlen, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani Thuraisingham.
2008. Cloud-based malware detection for evolving data streams. ACM Trans. Manag. Inf. Syst. (Oct. 2008).

[103] Michael Armbrust Matei Zaharia, Tathagata Das, and Reynold Xin. 2016. Spark Structured Streaming: A New High-level API for Stream-
ing. Retrieved from https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

[104] Marco Melis, Ambra Demontis, Maura Pintor, Angelo Sotgiu, and Battista Biggio. 2019. SecML: A Python library for secure and
explainable machine learning. arXiv preprint arXiv:1912.10013 (2019).

[105] Donald Michie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell (Eds.). 1994. Machine Learning, Neural and Statistical Classi!cation.
Ellis Horwood, Upper Saddle River, NJ.

[106] Tomas Mikolov, Kai Chen, Greg Corrado, and Je#rey Dean. 2013. E"cient estimation of word representations in vector space. CoRR
abs/1301.3781 (2013).

[107] Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geo#rey Bolmier, Raphael Sourty, Robin Vaysse, Adil Zouitine,
Heitor Murilo Gomes, Jesse Read, Talel Abdessalem, and Albert Bifet. 2020. River: Machine learning for streaming data in Python.
arXiv:2012.04740 [cs.LG]

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://doi.org/10.1145/2517312.2517320
https://doi.org/10.1145/2808769.2808780
https://doi.org/10.1145/2020408.2020496
https://doi.org/10.1145/2674026.2674028
https://doi.org/10.1109/MITP.2021.3100177
https://doi.org/10.1145/2556288.2557238
https://doi.org/10.1007/978-3-319-17551-5_4
http://arxiv.org/abs/2009.04131
https://lightgbm.readthedocs.io/en/latest/
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1145/3274694.3274731
https://doi.org/10.1109/ACCESS.2020.2974752
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
http://arxiv.org/abs/2012.04740


Machine Learning (In) Security: A Stream of Problems • 9:31

[108] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. 2018. Scikit-multi$ow: A multi-output streaming framework. J. Mach.
Learn. Res. (2018).

[109] Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya, Randall Wald, and Edin Muharemagic. 2015. Deep
learning applications and challenges in big data analytics. J Big Data 2, 1 (24 Feb. 2015), 1. DOI:https://doi.org/10.1186/s40537-014-
0007-7

[110] A. Narayanan, L. Yang, L. Chen, and L. Jinliang. 2016. Adaptive and scalable Android malware detection through online learning. In
International Joint Conference on Neural Networks (IJCNN’16).

[111] NetResec. 2020. Publicly available PCAP !les. Retrieved from https://www.netresec.com/?page=PcapFiles
[112] Andre Nguyen, Richard Zak, Luke Edward Richards, Maya Fuchs, Fred Lu, Robert Brandon, Garay David Lopez Munoz, Ed Ra#, Charles

Nicholas, and James Holt. 2022. Minimizing compute costs: When should we run more expensive malware analysis? In Conference on
Applied Machine Learning in Information Security (CAMLIS’22). Retrieved from https://www.camlis.org/andre-nguyen-2022

[113] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D. Lawrence. 2022. Challenges in deploying machine learning: A survey of case studies.
ACM Comput. Surv. 55, 6, Article 114 (Dec. 2022), 29 pages. DOI:https://doi.org/10.1145/3533378

[114] Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, and Brian Tierney. 2005. A !rst look at modern enterprise tra"c.
In 5th ACM SIGCOMM Conference on Internet Measurement. 2–2.

[115] P. K. Panigrahi. 2012. A comparative study of supervised machine learning techniques for spam e-mail !ltering. In 4th International
Conference on Computational Intelligence and Communication Networks. 506–512.

[116] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey Kurakin, Cihang Xie, Yash Sharma,
Tom Brown, Aurko Roy, Alexander Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan
Sheatsley, Abhibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber, and Rujun
Long. 2018. Technical report on the cleverhans v2.1.0 adversarial examples library. arXiv preprint arXiv:1610.00768 (2018).

[117] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P. Wellman. 2018. SoK: Security and privacy in machine learning. In
IEEE European Symposium on Security and Privacy (EuroS&P’18). 399–414. DOI:https://doi.org/10.1109/EuroSP.2018.00035

[118] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami. 2016. Practical black-
box attacks against deep learning systems using adversarial examples. CoRR abs/1602.02697 (2016).

[119] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. 2015. The limitations
of deep learning in adversarial settings. CoRR abs/1511.07528 (2015).

[120] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python.
J. Mach. Learn. Res. 12 (2011), 2825–2830.

[121] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro. 2019. TESSERACT: Eliminating ex-
perimental bias in malware classi!cation across space and time. In 28th USENIX Security Symposium (USENIX Security’19). USENIX
Association, Santa Clara, CA, 729–746. Retrieved from https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury

[122] Ryan Permeh. 2017. True AI/ML vs. Glori!ed Signature-based Solutions. Retrieved from https://threatvector.cylance.com/en_us/home/
true-ai-ml-vs-glori!ed-signature-based-solutions.html

[123] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. 2018. Privacy-preserving deep learning via additively homomorphic encryp-
tion. IEEE Trans. Inf. Forens. Secur. 13, 5 (2018), 1333–1345.

[124] Alec Radford. 2018. Improving Language Understanding by Generative Pre-Training.
[125] Edward Ra#, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and Charles Nicholas. 2017. Malware Detection by Eating

a Whole EXE. Retrieved from https://arxiv.org/abs/1710.09435
[126] Maithra Raghu, Chiyuan Zhang, Jon M. Kleinberg, and Samy Bengio. 2019. Transfusion: Understanding transfer learning with appli-

cations to medical imaging. CoRR abs/1902.07208 (2019).
[127] Shahbaz Rezaei and Xin Liu. 2019. A target-agnostic attack on deep models: Exploiting security vulnerabilities of transfer learning.

CoRR abs/1904.04334 (2019).
[128] A. Rocha, W. J. Scheirer, C. W. Forstall, T. Cavalcante, A. Theophilo, B. Shen, A. R. B. Carvalho, and E. Stamatatos. 2017. Authorship

attribution for social media forensics. IEEE Trans. Inf. Forens. Secur. 12, 1 (2017), 5–33.
[129] Yuji Roh, Geon Heo, and Steven Whang. 2019. A survey on data collection for machine learning: A big data—AI integration perspective.

IEEE Trans. Knowl. Data Eng. PP (10 2019), 1–1. DOI:https://doi.org/10.1109/TKDE.2019.2946162
[130] Yuji Roh, Geon Heo, and Steven Euijong Whang. 2021. A survey on data collection for machine learning: A big data—AI integration

perspective. IEEE Trans. Knowl. Data Eng. 33, 4 (2021), 1328–1347. DOI:https://doi.org/10.1109/TKDE.2019.2946162
[131] Mahsa Salehi and Lida Rashidi. 2018. A survey on anomaly detection in evolving data: With application to forest !re risk prediction.

ACM SIGKDD Explor. Newslett. 20, 1 (2018), 13–23.
[132] Joshua Saxe. 2020. Sophos AI YaraML Rules Repository. Retrieved from https://github.com/sophos-ai/yaraml_rules
[133] Joshua Saxe and Hillary Sanders. 2018. Malware Data Science: Attack Detection and Attribution. No Starch Press, San Francisco, CA.
[134] Sebastian Schelter, Felix Bießmann, Tim Januschowski, David Salinas, Stephan Seufert, and Gyuri Szarvas. 2018. On challenges in

machine learning model management. IEEE Data Eng. Bull. 41 (2018), 5–15.

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.

https://doi.org/10.1186/s40537-014-0007-7
https://www.netresec.com/?page=PcapFiles
https://www.camlis.org/andre-nguyen-2022
https://doi.org/10.1145/3533378
https://doi.org/10.1109/EuroSP.2018.00035
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://threatvector.cylance.com/en_us/home/true-ai-ml-vs-glorified-signature-based-solutions.html
https://arxiv.org/abs/1710.09435
https://doi.org/10.1109/TKDE.2019.2946162
https://doi.org/10.1109/TKDE.2019.2946162
https://github.com/sophos-ai/yaraml_rules


9:32 • F. Ceschin et al.

[135] Bernhard Schölkopf, Robert Williamson, Alex Smola, John Shawe-Taylor, and John Platt. 1999. Support vector method for novelty
detection. In 12th International Conference on Neural Information Processing Systems (NIPS’99). MIT Press, Cambridge, MA, 582–588.

[136] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AVclass: A Tool for Massive Malware Labeling. Springer
International Publishing, Cham, 230–253. DOI:https://doi.org/10.1007/978-3-319-45719-2_11

[137] Amazon Web Services. 2020. Amazon Machine Learning Key Concepts. Retrieved from https://docs.aws.amazon.com/machine-
learning/latest/dg/amazon-machine-learning-key-concepts.html

[138] Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David W. Jacobs, and Tom Goldstein. 2019. Adversarially
robust transfer learning. CoRR abs/1905.08232 (2019).

[139] Junming Shao, Zahra Ahmadi, and Stefan Kramer. 2014. Prototype-based learning on concept-drifting data streams. In 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14). Association for Computing Machinery, New
York, NY, 412–421. DOI:https://doi.org/10.1145/2623330.2623609

[140] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. 2012. Toward developing a systematic approach to generate bench-
mark datasets for intrusion detection. Comput. Secur. 31, 3 (2012), 357–374.

[141] Eddie Shoesmith, George E. P. Box, and Norman R. Draper. 1987. Empirical model-building and response surfaces. Statistician 37 (1987),
82.

[142] Sajjad Kamali Siahroudi, Poorya Zare Moodi, and Hamid Beigy. 2018. Detection of evolving concepts in non-stationary data streams:
A multiple kernel learning approach. Expert Syst. Applic. 91 (2018), 187–197. DOI:https://doi.org/10.1016/j.eswa.2017.08.033

[143] Anshuman Singh, Andrew Walenstein, and Arun Lakhotia. 2012. Tracking concept drift in malware families. In 5th ACM Workshop
on Security and Arti!cial Intelligence (AISec’12). Association for Computing Machinery, New York, NY.

[144] Apache Spark. 2020. Spark Streaming. Retrieved from https://spark.apache.org/streaming/
[145] J. Michael Steele. 2006. Models: Masterpieces and Lame Excuses. Retrieved from http://www-stat.wharton.upenn.edu/~steele/Rants/

ModelsMandLE.html
[146] R. Sun, M. Botacin, N. Sapountzis, X. Yuan, M. Bishop, D. E. Porter, X. Li, A. Gregio, and D. Oliveira. 2020. A praise for defensive

programming: Leveraging uncertainty for e#ective malware mitigation. IEEE Trans. Depend. Sec. Comput. (2020), 1–1.
[147] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,

and Andrew Rabinovich. 2014. Going deeper with convolutions. CoRR abs/1409.4842 (2014).
[148] Rahim Taheri, Reza Javidan, Mohammad Shojafar, Zahra Pooranian, Ali Miri, and Mauro Conti. 2019. On Defending Against Label

Flipping Attacks on Malware Detection Systems. arXiv:1908.04473 [cs.LG].
[149] Vasilis G. Tasiopoulos and Sokratis K. Katsikas. 2014. Bypassing antivirus detection with encryption. In 18th Panhellenic Conference

on Informatics (PCI’14). Association for Computing Machinery, New York, NY, 1–2. DOI:https://doi.org/10.1145/2645791.2645857
[150] Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms,

Methods, and Techniques. IGI Global, 242–264.
[151] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. 2019. A close look at a daily dataset of malware samples. ACM Trans.

Priv. Secur. 22, 1, Article 6 (Jan. 2019), 30 pages. DOI:https://doi.org/10.1145/3291061
[152] Todd Underwood. 2019. All of Our ML Ideas Are Bad (and We Should Feel Bad). USENIX Association, Dublin.
[153] VirusShare. 2019. VirusShare on Twitter. Retrieved from https://twitter.com/VXShare/status/1095411986949652480
[154] VirusTotal. 2020. VirusTotal: Free Online Virus, Malware and URL Scanner. Retrieved from https://www.virustotal.com/
[155] Kiri Wagsta#. 2012. Machine learning that matters. CoRR abs/1206.4656 (2012).
[156] Shenghui Wang, Stefan Schlobach, and Michel Klein. 2011. Concept drift and how to identify it. Web Semant.: Sci., Serv. Agents World

Wide Web 9, 3 (2011), 247–265. DOI:https://doi.org/10.1016/j.websem.2011.05.003
[157] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu. 2019. DroidEvolver: Self-evolving Android malware detection system. In IEEE European

Symposium on Security and Privacy (EuroSP’19).
[158] Poorya ZareMoodi, Hamid Beigy, and Sajjad Kamali Siahroudi. 2015. Novel class detection in data streams using local patterns and

neighborhood graph. Neurocomputing 158 (2015), 234–245. DOI:https://doi.org/10.1016/j.neucom.2015.01.037
[159] Poorya ZareMoodi, Sajjad Kamali Siahroudi, and Hamid Beigy. 2019. Concept-evolution detection in non-stationary data streams: A

fuzzy clustering approach. Knowl. Inf. Syst. 60 (09 2019). DOI:https://doi.org/10.1007/s10115-018-1266-y
[160] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and Gang Wang. 2020. Measuring and modeling the label

dynamics of online anti-malware engines. In 29th USENIX Security Symposium (USENIX Security’20). USENIX Association, 2361–2378.
Retrieved from https://www.usenix.org/conference/usenixsecurity20/presentation/zhu

[161] I. &liobaité. 2010. Change with delayed labeling: When is it detectable? In IEEE International Conference on Data Mining Workshops.
843–850.

Received 30 November 2022; revised 4 June 2023; accepted 24 August 2023

Digital Threats: Research and Practice, Vol. 5, No. 1, Article 9. Publication date: March 2024.

https://doi.org/10.1007/978-3-319-45719-2_11
https://docs.aws.amazon.com/machine-learning/latest/dg/amazon-machine-learning-key-concepts.html
https://doi.org/10.1145/2623330.2623609
https://doi.org/10.1016/j.eswa.2017.08.033
https://spark.apache.org/streaming/
http://www-stat.wharton.upenn.edu/~steele/Rants/ModelsMandLE.html
http://arxiv.org/abs/1908.04473
https://doi.org/10.1145/2645791.2645857
https://doi.org/10.1145/3291061
https://twitter.com/VXShare/status/1095411986949652480
https://www.virustotal.com/
https://doi.org/10.1016/j.websem.2011.05.003
https://doi.org/10.1016/j.neucom.2015.01.037
https://doi.org/10.1007/s10115-018-1266-y
https://www.usenix.org/conference/usenixsecurity20/presentation/zhu

