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Machine Learning (ML) represents a pivotal technology for current and future information systems, and many domains
already leverage the capabilities of ML. However, deployment of ML in cybersecurity is still at an early stage, revealing a
signi!cant discrepancy between research and practice. Such a discrepancy has its root cause in the current state of the art,
which does not allow us to identify the role of ML in cybersecurity. The full potential of ML will never be unleashed unless
its pros and cons are understood by a broad audience.

This article is the !rst attempt to provide a holistic understanding of the role of ML in the entire cybersecurity domain—to
any potential reader with an interest in this topic. We highlight the advantages of ML with respect to human-driven detection
methods, as well as the additional tasks that can be addressed by ML in cybersecurity. Moreover, we elucidate various intrin-
sic problems a"ecting real ML deployments in cybersecurity. Finally, we present how various stakeholders can contribute
to future developments of ML in cybersecurity, which is essential for further progress in this !eld. Our contributions are
complemented with two real case studies describing industrial applications of ML as defense against cyber-threats.
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1 INTRODUCTION
With the rising complexity of modern information systems and the resulting ever increasing #ow of big data,
the bene!ts of Arti!cial Intelligence (AI) are now widely recognized. Speci!cally, Machine Learning (ML)
methods [85] are already deployed to solve diverse real world tasks—especially with the advent of deep learn-
ing [98]. Fascinating examples of practical achievements of ML are machine translation [168], travel and vacation
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recommendations [77], object detection and tracking [139], and even various applications in healthcare [57]. Fur-
thermore, ML is rightly considered to be a technology enabler, as it has shown great potential in the context of
telecommunication systems [114] or autonomous driving [8].

Nevertheless, modern society is increasingly relying on Information Technology (IT) systems—including
autonomous ones—which are also actively leveraged by malicious entities. Digital threats are, in fact, continu-
ously evolving [90], and according to Gartner attackers will have su$cient capabilities to harm or kill humans
by 2025 [3]. To prevent such incidents and mitigate the plethora of risks that can target current and future IT
systems, defensive mechanisms require the capability to quickly adapt to the (i) mutating environments and
(ii) dynamic threat landscape.

Coping with such a twofold requirement via static and human-de!ned methods is clearly unfeasible, and
deployment of ML in cybersecurity is inescapable. Not surprisingly, abundant work addressed integration of ML
in cybersecurity, as evidenced by recent survey papers (e.g., References [23, 36, 71]) and technical reports (e.g.,
References [35, 106]). Despite impressive results in research settings, however, the development and integration
of ML in production environments is progressing at a slow pace. A recent survey [93] shows that although over
90% of companies already use some AI/ML in their defensive tools, we observe that most of these solutions still
leverage “unsupervised” methods (e.g., References [2, 97]) and mostly for “anomaly detection.” Such observation
demonstrates a drastic discrepancy between research and practice, especially in comparison with other domains
where ML has already become an indispensable asset.

The peculiarity of the security domain is that all operational decisions—made by the top management—are
about the tradeo" between losses and losses [83]. In simple terms, the rationale is “paying x to avoid paying
y " x .” Investment in security should be justi!ed by the prevention of substantially higher but ultimately
unpredictable losses from security incidents. Hence, decision makers must have a clear understanding of the
(i) bene!ts, (ii) problems, and (iii) challenges of a cybersecurity solution before endorsing their adoption in prac-
tice. However, the current state of the art of ML for cybersecurity fails to deliver such understanding. Taken
individually, research papers—commonly claiming to outperform previous work—often lead to contradictory re-
sults. For instance, Reference [166] shows that deep learning methods outperform “traditional” ML methods, but
the opposite is claimed in Reference [134] in the exact same setting. Furthermore, existing literature surveys re-
lated to ML in cybersecurity do not provide a holistic coverage suitable for operational decisions. Some of them
are too technical and hence tailored for ML experts (e.g., Reference [180]), others focus only on research e"orts
neglecting real-world implications (e.g., Reference [23]) or have a limited scope (e.g., only deep learning [36]).
As a result, the role of ML in cybersecurity is portrayed in a highly fragmented way, thus hindering deployment
of ML in practice—despite its great potential for cybersecurity.

We attempt to rectify this problem. Speci!cally, this article is the !rst e"ort to provide a comprehensive anal-
ysis of the role of ML in cybersecurity. We distill scienti!c knowledge and industrial experience related to de-
ployment of ML within the entire domain of cybersecurity. One of our goals is to make the current state of the
art understandable to any reader, irrespective of their prior expertise in cybersecurity or ML. We also take this
opportunity to clarify many misconceptions related to ML in the context of cybersecurity. We highlight the bene-
!ts of using ML in cybersecurity by listing all the tasks where it outperforms or provides novel capabilities with
respect to traditional security mechanisms. We also elucidate the intrinsic problems of ML in the cybersecurity
context. Such an analysis reveals the challenges that require the joint contribution of all relevant stakeholders
to improve the quality of ML-driven security mechanisms.

Let us explain how we achieve our objective and outline the structure of our article, which comprises several
self-contained sections. We begin (Section 2) by introducing the key concepts of the ML paradigm in a notation-
free form. We also de!ne the intended audience of this article and outline the di"erences of our work from
previous literature surveys and reports.

Then, in Section 3, we present the most emblematic application of ML in security: cyberthreat detection. We
distinguish between three broad areas: network intrusion detection, malware detection, and phishing detection,
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which is common in related literature [23, 163]. The goal of this section is to highlight the added value of ML
with respect to traditional detection mechanisms.

Next, in Section 4, we elucidate the cybersecurity tasks orthogonal to threat detection that can exploit the
capabilities of ML to analyze unstructured data. In contrast to detection problems that require (costly) labels, raw
data are abundant in cybersecurity and can also be exploited via ML. For instance, alerts can be !ltered to remove
annoying false alarms or compressed into more manageable reports. Furthermore, information from diverse
sources can be cross-correlated to anticipate novel attacks or to identify the weak-spots of a given organization.
The goal of this section is to illustrate that there exist many (and vastly unexplored) additional areas in which
ML can be deployed to enhance the security of modern systems.

We continue (Section 5) by emphasizing the intrinsic problems of cybersecurity applications of ML. Some
of these problems (e.g., concept drift, adversarial examples, con!dentiality) are fundamental and arise from the
contrasting assumptions of cybersecurity and ML. Further problems are speci!c to either in-house development
(e.g., hidden maintenance costs) or commercial products (e.g., limited scope and transparency). The goal of this
section is highlighting that ML is not perfect and real deployments involve many tradeo"s, which must be known
(to decision makers), mitigated (by ML engineers), and addressed (in future work).

As our main constructive contribution, we outline the impending challenges of ML in cybersecurity in
Section 6. Solving these challenges will strongly facilitate the operational deployment of ML in cybersecurity.
However, it requires the joint e"ort of (i) regulatory bodies, (ii) corporate executives, (iii) ML engineers and
practitioners, and (iv) the scienti!c community. Our takeaway is that rectifying the current immaturity of ML
in cybersecurity requires a radical re-thinking of future technological developments. For instance, research
e"orts should focus on more pragmatic results instead of merely “outperforming the state of the art.” However,
such e"orts necessitate an increased availability of real data whose disclosure requires authorization by senior
management, as well as potentially new regulations that enable public release of such data.

To establish a connection between research and practice, we discuss two real industrial applications of ML in
cybersecurity in Section 7. We note that commercial security products are typically provided as “black boxes”
with little technical details about the actual implementation of ML. This section sheds light into the operational
tradeo"s and “tricks of the trade” needed to meet the practical needs of the customers. These case studies are
provided with the contribution of Montimage and S2Grupo.1

This article is a result of collaboration among researchers, industry practitioners, and policy-makers. Our !nd-
ings re#ect the insights from both recent technical reports and scienti!c literature. To the best of our knowledge,
no previous work combines such a broad scope with our heterogeneous intended audience.

Contribution. Our main goal is to foster the deployment of ML in cybersecurity by bridging the gap between
research and practice. Speci!cally, our article makes the following contributions:
• it provides an overview of the bene!ts and problems of ML in the entire cybersecurity domain;
• it considers the twofold perspective of the research and industrial community;
• it identi!es many misconceptions that are becoming common in this !eld;
• it highlights how (i) regulatory bodies, (ii) corporate executives, (iii) engineers, and (iv) the research com-

munity can contribute to future developments of ML in cybersecurity.
• it elucidates two real deployments of ML products.

Furthermore, this article is meant to be understandable by any reader, irrespective of their technical expertise.

2 BACKGROUND AND MOTIVATION
To set up the stage for our article, we !rst introduce the main concepts of Machine Learning in a simpli!ed way,
accessible to any reader (Section 2.1). Our goal is to present the established terminology as well as the common

1The names of all authors, companies and vendors were anonymised during the reviewing process.
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Fig. 1. Machine Learning development. A"er collecting some training data and analyzing such data via an ML algorithm, an
ML model is obtained. Such an ML model must be tested via some validation data. If the performance of such an assessment
is appreciable, then the ML model can be deployed in production.

classes of existing ML methods. We then de!ne the scope and target audience of this article (Section 2.2) and
highlight the di"erences of our e"ort with respect to previous work (Section 2.3).

2.1 So" Introduction to Machine Learning
The goal of ML is to develop machines2 that automatically learn to make decisions. The learning is done through
a training phase: By instructing a computing device to analyze some “existing” (training) data via a given ML
algorithm, a ML model is developed. Such a model incorporates all the knowledge learned during the training
phase and implements a function to make decisions on “future” data. Before a ML model can be deployed in an
operational environment, its performance must be assessed. To this end, some “validation” data are processed
by the ML model and its predictions are either analyzed by humans or compared with some known ground
truth. We can hence de!ne a ML method as “the process for developing a ML model by using ML algorithms on
some training data.” An exemplary work#ow of the training and validation phases is schematically depicted in
Figure 1.

A crucial factor in the development of ML models is the notion of labels, which represent the target value
for a prediction function on a given sample (e.g., benign or malicious). Depending on the availability of labels,
ML methods can be classi!ed into supervised and unsupervised. Supervised methods explicitly require labelled
training data. In some cases, such labels occur naturally3; otherwise, acquiring labels involves dedicated manual
veri!cation. However, unsupervised methods either do not require labels or involve limited supervision. For
instance, in reinforcement learning the ML model is built through a feedback mechanism4 that is completely
automated.

An orthogonal classi!cation of ML methods is between shallow and deep learning. Deep learning refers to
ML methods based on neural networks, which typically require more computational power and larger training
datasets compared to shallow ML methods—requirements that could only be met in the recent years [98]. Let us
point out the !rst misconception: Deep learning is not not necessarily better than shallow ML. Indeed, when the
data to analyze have a small number of features, shallow ML can attain similar performance as deep learning [23],
but the latter still requires more resources and the results are more di$cult to interpret (e.g., Reference [14]).
In contrast, the advantages of deep learning lie in its ability to deal with data with high complexity, such as
images, unstructured text, or when temporal dependencies must be taken into account. In all such cases, shallow
ML simply cannot be used. Deep learning methods can be supervised or unsupervised and can also leverage
reinforcement learning—e.g., the popular generative adversarial networks [17].

2The notion of a “machine” refers to a software component that can be deployed on any computing device, even in the cloud.
3In time-series forecasting [44], the learning is done by analyzing the past history of a given phenomenon, which is used to make the future
predictions. Such history can be seen as the training data, where each element is associated to its timestamp and its known value (i.e., the
label).
4Such a mechanism only requires de!ning the “actions” that can be taken by the ML model and the “reward” that should be provided to the
ML model depending on the e"ects of its actions on the “environment.”
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Fig. 2. Typical machine learning algorithms. An algorithm can be “deep” if it relies on neural networks; otherwise, it is “shal-
low.” Algorithms requiring labelled data are used for “supervised” tasks; otherwise, they can be used also in “unsupervised”
tasks.

Table 1. Typical ML Performance Metrics

Metric Description Formula
Accuracy

(Acc)
It denotes the percentage of correct predictions among all predictions.

It is misleading in the presence of imbalanced distributions (common in cybersecurity). Acc = T P+T N
T P+T N+F P+F N

Detection Rate
(DR)

It measures the capacity of identifying attacks, but it does not consider false alarms.
It is also known as Recall, or True Positive Rate. DR = T P

T P+F N

FP Rate
(FPR)

It represents the percentage of incorrect “positive” predictions.
Useful for measuring the amount of false alarms. FPR = F P

F P+T N

Precision
(Prec)

It denotes the percentage of correct predictions among all “positive” samples.
High values implies low false positives, but nothing can be said about false negatives. Prec = T P

T P+F P

F1-score
(F1)

It combines Precision and Detection Rate into a single metric.
Useful for “overviews,” but it is di$cult to interpret. F1 = T P

T P+0.5(F N+F P )

Cyber-threat detection represents a binary classi!cation problem: Samples are positive (malicious) or negative
(benign). Accuracy is useful for cybersecurity tasks where such a distinction is not possible. Acronyms: True
Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN).

We provide an overview of some of the most popular ML algorithms in the above-mentioned categories in
Figure 2. For a more comprehensive description, we refer the reader to Reference [23].

Finally, let us brie#y address the performance assessment of ML models. The most common quality measure
is the accuracy metric, which represents the percentage of correct predictions made by the ML model. However,
accuracy can be misleading in the presence of imbalanced data distributions, which is typical in cyber-threat de-
tection, because malicious activities tend to be rare events and are (hopefully) overshadowed by benign samples.
In such a context, it is common to di"erentiate between “positives” (i.e., malicious activities) and “negatives” (i.e.,
benign activities). The performance can then be measured by taking into account the correct (i.e., True Positives
and True Negatives) and incorrect (i.e., False Positives and False Negatives) predictions generated by a given ML
model. A complete list of the most common performance metrics is in Table 1. Note that performance assess-
ment pertains to ML models and not methods. Depending on the speci!c setting—e.g., the training data, the ML
algorithm, its parameters—a ML method may yield many ML models, each having a di"erent performance.
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2.2 Scope and Target Audience
The scope of our article is bridging the gap between scienti!c research and operational practice of ML in cyber-
security. We do so by unifying in a single document the bene!ts, problems, and future challenges of ML in the
entire cybersecurity domain. Our article is meant to be understandable by any reader that is interested in ML
and its relationship with cybersecurity.

Speci!cally, we address the following three classes of target readers:
• Decision makers (e.g., Corporate Executives, Chief Information Security O"cers) who need to understand the

state of the art. This article should allow more sound decisions on the adoption of ML and its integration
into existing systems to enhance the productivity of security operation centers.
• Security professionals (e.g., security consultants and administrators, digital forensics experts) who should

understand the operational issues a"ecting ML applications in cybersecurity. Such understanding is crucial
for a reliable operation of such instruments in practice, as well as for transparent marketing and assessment
of commercial ML solutions.
• Researchers and Engineers who are interested in devising novel ML solutions for cybersecurity, improving

existing ML systems, or mitigating some of their limitations. The open issues and challenges presented in
this article should guide future developments of ML for cybersecurity.

The takeaways of this article leverage the contribution and take into account the standpoints of all the above-
mentioned classes of readers. For example, experienced engineers may be aware of the shortcomings of ML, but
they may not know how such issues are received by decision makers. At the same time, security professionals
may know how ML is used, but they can bene!t from understanding the most signi!cant future developments
in this !eld.

2.3 Related Work
With the advent and increasing popularity of ML, abundant works proposed ML solutions for diverse cyberse-
curity tasks, resulting in hundreds of research papers. Such abundance inspired many literature surveys that
aggregate or summarize the state of the art. However, most of such studies may provide a detailed analysis but
on a single application, such as cyber risk assessment [137] or IoT security [45]. Others may focus on a spe-
ci!c cyber detection problem, e.g., malware [13, 71, 160], spam [70, 89], or intrusion detection [46, 102]. Some
papers do not explicitly focus on ML (e.g., Reference [82]), whereas others do not focus on cybersecurity (e.g.,
References [81, 127]). Finally, many works only consider speci!c ML paradigms, such as generative adversarial
networks (e.g., Reference [180]), adversarial ML (e.g., References [24, 108]), reinforcement learning [121], or deep
learning [36]—the latter of which is not necessarily the best “universal” ML solution for cybersecurity. Such a
!nding was shown in the well-known work by Apruzzese et al. [23], which has a more limited scope than our
article, because they (i) focus on the separation between shallow and deep learning, (ii) do not delve into cy-
bersecurity tasks beyond threat detection, and (iii) only consider scienti!c works. Indeed, ML has undergone
signi!cant advances in cybersecurity since the publication of Reference [23]—as we will show in our study.

All these papers, while being useful for interested and experienced researchers, cannot be appreciated simulta-
neously by security specialists, executives, and stakeholders—which are included in our target audience. Indeed,
the excessive depth or limited scope of prior work does not allow us to grasp the true role (current and future)
played by ML in the entire cybersecurity domain. At the same time, technical reports (e.g., References [35, 106])
may be easier to understand by security personnel but are not useful for researchers due to lack of comprehensive
guidelines and do not provide much insight on real ML deployments.

We aim to close the gap between research and practice of ML in cybersecurity with a single document. To this
end, we shape this article so that it is understandable—and usable—by any reader, regardless of their technical
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Fig. 3. Pros and cons of supervised and unsupervised ML for cyber threat detection.

competence in ML. With respect to past works, this article represents a “meta-review” of the state of the art5 that
provides a (i) comprehensive overview and (ii) practical recommendations and research directions (iii) within the
entire cybersecurity sphere. Moreover, we (iv) clear many misconceptions that are becoming prevalent in this
domain. Finally, we (v) address all potential stakeholders—which include but are not limited to researchers. To
the best of our knowledge, no existing paper uni!es all of the above in a single contribution.

3 MACHINE LEARNING FOR THREAT DETECTION
The security lifecycle spans over three processes: prevention, detection, and reaction [171]. The complete pre-
vention of any cyber threat is recognized as an impossible task, whereas the reaction phase assumes that the
damage has already taken place. Hence, most security mechanisms (including ML-based ones) focus on threat
detection. For instance, it is not possible to prevent the creation of a phishing webpage; however, such a threat
can be defused by detecting that a given webpage is compromised and alerting the users before they fall victim
to a phishing “hook.”

The detection of cyber threats can leverage two distinct approaches: misuse based and anomaly based. The
former, also referred to as signature or rule based, require de!ning speci!c “patterns” that correspond to a given
threat—under the assumption that future threats will exhibit the same patterns. The latter require de!ning a
notion of “normality” and aim to detect events deviating from such normality—under the assumption that such
deviations correspond to security incidents. These two detection approaches are complementary: Misuse-based
approaches are very precise but can only detect known threats; anomaly-based approaches tend to generate
more false alarms but have a better chance against novel attacks.

Before the advent of ML, detection mechanisms required manual de!nition of all the necessary elements for
a given approach (either misuse and anomaly based). Aside from being a time consuming and error prone task,
such e"orts could not cope with the increasing growth of modern environments. Hence, with the progress of
data analytics techniques, detection systems began to leverage data-driven solutions, such as ML. These solutions
not only required less manual e"ort but, in some cases, even outperformed traditional handwritten detection
schemes [46]. In the context of ML, such increased performance is due to the intrinsic ability of ML to learn
“weak” signals—unnoticed by human operators—in the analyzed data and use such signals to enhance their
detection.

The distinguishing characteristic of ML applications for cyber threat detection (schematically depicted in
Figure 3) is whether supervised or unsupervised ML methods can be deployed. The former can be used as com-
plete detection systems but require labelled data created via some human supervision. The latter do not have a
human in the loop but can only perform ancillary tasks.6 Depending on the data type to analyze, labels may be
easier to acquire: For instance, any layman can distinguish a legitimate webpage from a phishing one [99], but
distinguishing benign from malicious network tra$c is harder [63].

5We observe that our article includes almost 200 referenced works. However, most of such works are cited only once, i.e., in the section
devoted to the speci!c problem addressed by the referenced article.
6For instance, anomaly detection can be done in an unsupervised fashion, but not all anomalies correspond to security incidents.
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Fig. 4. Typical deployment of a ML-NIDS. The border router forwards all the outgoing/incoming network tra#ic to a NIDS,
which further analyzes such data via a ML model.

It is common to associate ML methods with anomaly detection (even recent papers su"er from such confusion,
e.g., Reference [34]). This is a misconception, because ML can be used also for misuse-based approaches [91].
Speci!cally, by analyzing large amounts of data, ML methods can learn the patterns di"erentiating benign events
from malicious ones so as to automatically de!ne the “signatures” for misuse-based approaches. At the same time,
ML can be used for anomaly detection by automatically identifying the “normal” activities that correspond to
regular behaviors within a given environment.

Let us elucidate some successful applications of ML aimed at the detection of illicit activities that may occur
in a modern enterprise. Without loss of generality, we organize this section by distinguishing three broad cyber
detection areas: network intrusion detection (Section 3.1), malware detection (Section 3.2), and phishing detection
(Section 3.3). There are hundreds of works proposing ML for these tasks, and analyzing all such proposals is
outside our scope. Hence, we focus on some interesting and recent applications of ML, emphasizing their practical
results. Our case studies in Section 7 will consider two exemplary applications of ML for cyberthreat detection.

3.1 Machine Learning in Network Intrusion Detection
One of the cybersecurity areas of main interest to modern enterprises is that of Intrusion Detection, which is
accomplished by means of Intrusion Detection Systems (IDS). An IDS can belong to either of two categories:
a Network Intrusion Detection System (NIDS) analyzes activities at the network level, whereas a Host In-
trusion Detection System (HIDS) analyzes activities at the individual host level. In this section, we consider
NIDS, because HIDS mostly focus on detecting (local) malware that we discuss in Section 3.2.

Since the early 2010s, many ML solutions have been proposed to improve the e"ectiveness of NIDS, both in sci-
enti!c literature [11, 23, 36, 46], and in patents (e.g., References [131, 140]). A NIDS can be deployed anywhere in
a network environment and can exploit ML to detect threats against diverse targets, such as cloud, IoT, endpoint
devices [93], and even automotive controllers [104]. We report in Figure 4 the typical deployment of a NIDS that
leverages the support of ML, which can analyze data of di"erent types, e.g., full packet-captures (PCAP), net-
work #ows7 (NetFlows), Simple Network Management Protocol (SMNP), or even Domain Name System
(DNS) records. Speci!cally, with the increasing growth of modern networks, NetFlow analyses are preferred due
to many advantages over traditional PCAP, such as reduced privacy concerns, less space required for storage,
and faster processing times [176].

7Net#ow: https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-net#ow/.
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ML methods based on unsupervised learning are particularly appreciated, because acquiring labelled data for an
entire network is di$cult [63]. Among these approaches, we highlight the results obtained by clustering methods.
For example, in Reference [26] the authors aim to detect attacks by clustering NetFlows with similar temporal
behavior and, subsequently, !nding the clusters containing hosts that raised alarms from a commercial NIDS
based on manual signatures. The results showed a remarkable increase in detection performance8 with respect
to the commercial signature-based NIDS, which only detected three malicious hosts, whereas the integration of
ML allowed us to detect 12.

Unsupervised methods can also be used to support the (manual) generation of rules for misuse-based NIDS.
In CyberProbe [117], the authors cluster honeypot tra$c and create speci!c rules for each cluster: Such rules
allowed us to detect over 75% attacks that were not included in any security feed. Some papers also exploit unsu-
pervised approaches to counter lateral movement9: The approach in Reference [43] can successfully detect such
instances (over 90% recall) with low FP (10%). Finally, NIDS can also bene!t from deep unsupervised algorithms.
As an example, in Kitsune [113] the authors use deep learning to analyze PCAP data and improve the detection
rate from below 1% to over 95% while maintaining a low FP rate (below 0.1%). The advantages of unsupervised
ML methods make them suitable for commercial products: As an example, the method in Reference [105] is
used by Aizoon10 to support botnet detection via DNS analyses, achieving less than 0.1% FP rate. Our detailed
case study in Section 7.1 presents the deployment of unsupervised ML used by Montimage to detect anomalous
activities in a modern network.

However, approaches based on supervised learning, due to their reliance on good quality labels, are more
expensive to deploy but can also provide excellent results. For instance, Exposure [40] leverages labelled DNS
records to detect domains involved in malicious activities and achieves less than 10% false alarm rate. A notable
e"ort against botnets is Reference [155], where the authors collect and label some NetFlows, and then use such
labelled data to develop a ML botnet detector achieving over 95% precision. Moreover, the work in Reference [19]
proposes the usage of probability labels (instead of binary labels) to detect botnet NetFlows that may evade
traditional ML-NIDS and reach over 97% precision. Remarkable successes also include deep learning methods,
such as the approach in Reference [84], which achieves almost 95% detection rate. In particular, we highlight those
solutions that combine deep learning with temporal analyses: A twofold perspective allows us to detect additional
malicious patterns that can improve detection performance. For instance, in Reference [56] the F1-score improves
from 0.90 to 0.95 when also temporal dependencies are considered. We will present a real deployment of a similar
solution in Section 7.2, describing how S2Grupo protects Industrial Control Systems (ICS), showcasing the
pros (and cons) of ML with respect to older techniques based on heuristics.

Let us conclude with a remark: The superiority of deep learning for NIDS is not yet proven. For instance, the
authors of References [134] and [166] both evaluate shallow and deep ML methods on the same dataset (the
CICIDS17 [147]): While Reference [166] claims that deep learning outperforms traditional ML, the authors of
Reference [134] achieve the opposite result. Speci!cally, Reference [166] shows a “deep” neural network achiev-
ing an F1-score of 0.96 and a “shallow” decision tree achieving an F1-score of 0.95, whereas Reference [134] shows
a “deep” neural network also achieving an F1-score of 0.96, but their “shallow” decision tree reaches an F1-score
of 0.99. Our stance on this subject is that, under the assumption that deep learning is superior, the marginal
improvement does not justify its adoption due to its additional complexity and computational requirements.

3.2 Machine Learning in Malware Detection
The !ght against malware is one of the most emblematic challenges of cybersecurity. Because malware a"ects
a speci!c device, its detection is performed by analyzing data at the host level, i.e., through HIDS. Indeed,

8A similar approach has been successfully integrated even in a commercial product, which we cannot name due to NDA.
9Lateral Movement: https://www.lastline.com/blog/lateral-movement-what-it-is-and-how-to-block-it/.
10https://www.aizoongroup.com/.
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Fig. 5. Malware detection via ML. In static analyses, the properties of a given file are extracted and analyzed by a ML model.
In dynamic analyses, the file is executed and the entire behavior is monitored and then analyzed by a ML model.

antiviruses can be considered as a subset of HIDS [94]. A given malware variant is tailored for a given operating
system (OS). The popularity of Windows OS made it the most common malware target for more than two
decades. However, attackers are now turning their attention to mobile devices running, e.g., Android OS.11

Malware detection can use two types of analyses: static or dynamic. The former aim to detect malware without
running any code by simply analyzing a given !le. The latter focus on analyzing the behavior of a piece of
software during its execution, usually by deploying it in a controlled environment and monitoring its activities.
Both static and dynamic analyses, schematically depicted in Figure 5, can bene!t from ML.

Static Analysis. These analyses are simple, particularly e"ective against known pieces of malware, and can
be enhanced via ML in many ways. For instance, clustering is useful to identify properties of similar pieces of
malware. A similar method is proposed in Reference [80], with the goal of !nding a common treatment against
all elements in each cluster, and reaches up to 90% precision. In contrast, the authors of Reference [100] leverage
clustering to improve the detection of Android malware, and exceed 95% detection rate. Static analyses can
be further improved when labelled data are available. An early example is the detection of malicious Portable
Document Format (PDF) !les in Reference [153]: Here, the authors use ML to analyze the structural properties
of PDF !les, extracting features that yield pro!cient detection results (over 99% detection rate with less than
0.001% FP rate). Recently, a di"erent approach leverages deep learning to transform executables into images,
which are then used to perform the detection: The authors of Reference [87] achieve over 99% accuracy in
identifying Windows malware.

Despite these successes, all static malware detection approaches are prone to evasion. This can be easily
achieved by modifying the malware executable, which can be implemented without changing its underlying
malicious logic. To aggravate the problem, advanced malware variants (e.g., polymorphic or metamorphic) auto-
matically modify their executables, defeating any static detection approach.

Dynamic Analysis. The combination of dynamic approaches with ML techniques yields e"ective countermea-
sures against polymorphic malware. Multiple ML solutions exploit clustering: grouping malware with similar
behavior allows us to focus only on those clusters that have not been seen before. For example, Reference [141]
proposes a dynamic approach combining clustering and anti-virus scanners to detect and sanitize entire groups
of malware variants, achieving almost perfect accuracy against Windows malware. More recently, the work in
Reference [15] focuses on Windows malware by leveraging a combination of graph and Natural Language Pro-
cessing (NLP) techniques applied to dynamic API calls and achieves 99.99% accuracy. Some papers even propose
deep learning, such as Reference [103], which uses deep neural networks to extract the most relevant dynamic
features to classify Android malware, achieving nearly 80% accuracy. Moreover, the authors of Reference [7]
apply deep learning to detect Windows ransomware and achieve 93% detection rate and 97% precision. An inter-
esting work is HeNet [52], which leverages ML for dynamic malware detection by analyzing hardware-speci!c

11https://www.gdatasoftware.com/news/2019/07/35228-mobile-malware-report-no-let-up-with-android-malware.
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Fig. 6. Phishing detection via ML. For websites, the ML model can analyze the URL, the HTML, or the visual representation
of a webpage. For emails, the ML model can analyze the body text, the headers, or the a$achment of the email.

(i.e., Intel CPU) data streams, achieving perfect accuracy on real benchmarks. Finally, it is possible to combine
static with dynamic analyses via ML: This is done in EC2 [49], which combines unsupervised with supervised
ML to detect novel android malware, achieving over 90% detection rate.

3.3 Machine Learning in Phishing Detection
Phishing represents one of the most common vectors for penetrating a target network and is still a rampant
threat in the cybersecurity landscape [90]. Early detection of phishing attempts is of paramount importance to
modern organizations and can greatly bene!t from ML. Speci!cally, we distinguish two di"erent applications
of ML to counter phishing attempts: detection of phishing websites, where the goal is identifying webpages that
are camou#aged to resemble a legitimate website, and detection of phishing emails, which either point to a
compromised website or induce a response that includes sensitive information. The main di"erence between
these two approaches is the type of analyzed data: For websites, it is common to use the Universal Resource
Locator (URL) of the webpage, its Hyper Text Media Language (HTML) code, or even its visual representa-
tion [159]; for emails, it is typical to analyze the text, the header, or the attachments of an email [9]. A schematic
representation of such applications is shown in Figure 6, which we now describe in more detail.

Phishing Webpage Detection. Phishing websites are mostly dealt with via blacklists. However, such lists quickly
become unreliable, because expert adversaries frequently move their phishing hooks from site to site: As shown
in Reference [159], over 90% of “squatting” phishing websites are not detected by popular blacklists. ML rep-
resents a viable alternative to manual and static blacklisting, and modern web-browsers already leverage its
potential [101].

Compared to malware or network intrusion detection, works proposing unsupervised ML against phishing
websites are less prevalent. An example is Reference [185], exploiting clustering to support the detection of
phishing websites and achieving over 95% accuracy. In contrast, supervised ML is abundant, because verifying
the legitimacy of a webpage is relatively simple, which facilitates labelling procedures and allows us to develop
complete ML detectors [55, 99, 159]. Some works use ML to analyse features extracted from a given URL. It
is interesting to note that while the authors of Reference [33] use up to 130 features to achieve 99% detection
rate, other works (e.g., Reference [144]) use fewer than 30 features and achieve similar results. Other proposals
leverage third-party information provided by reputable sources (e.g., DNS records), which can be derived from
the URL: An example is PhishMon [122], which achieves nearly 96% accuracy while maintaining a low 1% rate of
false positives. Some papers consider the twofold perspective provided by the analysis of both URL- and HTML-
based features, which is advantageous when the single URL is not enough to identify a webpage as phishing or
not. For example, the work in Reference [32] achieves 95% detection rate by combining these two data types. A
signi!cant work is Reference [55], which combines the inspection of the underlying HTML code of the webpage
with image processing techniques (based on deep learning) to identify compromised websites: The results show
over 95% detection rate at the cost of 1% false-positive rate. Finally, Reference [159] uses all of the above (images,
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Fig. 7. Additional tasks that can be addressed via ML in cybersecurity. All such tasks mostly involve dealing with raw and
unstructured data from heterogeneous sources and provide fertile ground for ML.

HTML and URL): For nearly 1,000 squatting phishing websites, manual blacklisting only detected 9%, whereas
ML detected 70% of such phishing attempts.

Phishing Email Detection. One of the earliest applications of ML for cybersecurity involves the detection of
unsolicited emails (also often referred to as “spam”). Recent advances in NLP can be leveraged by ML to analyze
the body of an email and identify malicious intent [39].

Only few proposals leverage unsupervised ML, such as Reference [61], which achieves over 95% detection rate.
However, as it is the case for phishing website detection, acquiring ground-truth labels for emails is a trivial task,
which facilitates the deployment of supervised ML used by email providers to enhance their automatic !lters [89].
For instance, Reference [9] analyzes the text of an email and reaches almost 99% accuracy with less than 0.01%
false-positive rate. The authors of Themis [67] exploit deep learning to analyze both the text and the header of
an email and exceed 99% accuracy. Finally, we mention the work in Reference [73], where the authors leverage
supervised ML to detect spear-phishing attacks by analyzing an email from di"erent perspectives and achieve
over 90% detection rate at the cost of 1% false positives. Attachments can also be analyzed by any malware
detection technique (Section 3.2).

As a small digression, we mention that the !ght against phishing (and spam) has recently moved to Online So-
cial Networks. This setting exhibits many similarities with the detection of phishing in emails, as it also involves
NLP techniques. As an example, the authors of Reference [172] use deep learning to detect malicious tweets and
obtain promising results with almost 95% detection rate but with a 5% false-positive rate. Similarly, MalTP [96]
speci!cally focuses on tweets luring victims to phishing websites, achieving over 95% detection rate and nearly
90% precision.

Takeaway. Using ML for cyberthreat detection has proven to be greatly successful (e.g., References [52, 113,
159]).

4 BEYOND DETECTION: ADDITIONAL ROLES OF MACHINE LEARNING IN CYBERSECURITY
Besides threat detection, there are many additional roles that ML can cover in cybersecurity. Indeed, modern
environments constantly generate massive amounts of data, which may come from heterogeneous sources—
including the very same ML models described in Section 3. Analyzing such data via (additional) ML can provide
insights that further improve the security of digital systems.

Without loss of generality, we classify all these complementary roles of ML in four tasks: alert manage-
ment (Section 4.1), raw-data analysis (Section 4.2), risk exposure assessment (Section 4.3), and cyber threat intel-
ligence (Section 4.4). We now describe each of these tasks, schematically summarized in Figure 7.

We highlight an enticing characteristic shared by most ML applications described in this section: They do not
require extensive and human-guided labelling procedures and hence belong to the unsupervised ML category. The
potential of using raw data almost “as-is” makes all the ML methods discussed in this section readily applicable
in many real scenarios.
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4.1 Alert Management
It is well known that developing the “perfect” detection system is not possible (with or without ML). Hence, to
prevent the automated execution of actions based on wrong predictions, the output of detection systems usually
comes in the form of alerts. Depending on such alerts (e.g., their relevance, the involved hosts, or their number)
a more appropriate response can be taken. However, modern environments generate thousands of alerts every
hour (as shown in, e.g., References [26, 175]), making manual triaging an impossible task. To address this problem,
ML can be used for !ltering, prioritization, a or even fusion of alerts into more general events.
• Alert Filtering. By de!nition, an alert is not necessarily malicious, and a signi!cant percentage of alerts

correspond to false alarms. Because being noti!ed by many irrelevant alerts is impractical and annoying,
ML can help in !ltering redundant alerts, e.g., because they are related to the same underlying problem.
An example is Reference [157], which is speci!cally tailored for false alarms generated by ML-NIDS: Its
e"ectiveness on real botnet tra$c is a remarkable reduction of 75% of the time spent on triaging of false
alerts, outperforming non-ML mechanisms by 45%.
• Alert Prioritization. If security administrators face too many alerts, then prioritization techniques can be

applied to identify the most critical alarms. ML is bene!cial, as it can automatically “learn” the most rele-
vant ranking criteria with limited supervision. For instance, the very recent work in Reference [164] shows
that ML correctly ranks the most sensitive alerts at the top position in 95% of the cases.
• Alert Fusion. The most intuitive way to manage large amounts of alerts is to aggregate similar alerts and

then to !nd correlations between these groups to identify causal relationships relevant for security tasks.
For instance, ASSERT [125] leverages clustering to identify which are the preferred protocols and network
ports targeted by malicious activities. Their results highlight that modern attacks are increasingly relying
on the Remote Desktop Protocol, as it enables lateral movement activities through pivoting [28].

All of the techniques above can be combined together. In this context, we mention the alert management solution
in Reference [110] exploiting deep learning to condense and prioritize alerts: The resulting platform was tested
and found usable by real security analysts.

4.2 Raw-data Analysis
The cybersecurity domain must deal with heterogeneous systems, each generating raw data of di"erent nature
(e.g., logs, reports, alerts). Such a setting represents a fertile ground for ML, whose capabilities could be leveraged
to maximize the opportunities provided by such raw data. We can di"erentiate two areas of application of ML in
this context: the support of operational decisions via log data analyses and the use of (unlabelled) data to optimize
labelling e"orts and foster deployment of supervised ML.

Operational Decisions. The abundance of log data in modern information systems makes ML promising in the
context of operational security. The importance of log data analysis became evident after several high-pro!le
security incidents that involved stealthy ex!ltration of con!dential data.12 Beehive [178] was one of the !rst
(unsupervised) ML systems focused on knowledge extraction from heterogeneous log data (generated by proxy,
Dynamic Host Control Protocol (DHCP), or Virtual Private Network (VPN) servers). The goal was com-
bining all these logs in an anomaly detection fashion: Data points not associated with “typical” log patterns
represented “incidents” that required manual intervention. Beehive was evaluated on two weeks of log data at
the EMC Corporation and detected almost 800 incidents, 65% of which related to true security incidents (mali-
cious activities or policy violations). In comparison, non-ML methods performed much worse, as they were only
capable of detecting 8 correct incidents (with a recall of just 1%). Despite being unsupervised ML, Beehive still
required manual feature engineering: The most relevant pieces of information from every log source had to be

12An example is the well-known RSA incident: https://www.theregister.co.uk/2011/04/04/rsa_hack_howdunnit/.
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determined via expert knowledge. Such a problem was overcome with the advent of deep learning. A prominent
example is DeepLog [64], which analyzes heterogeneous log data (e.g., Hadoop, or OpenStack logs) with a similar
objective as Beehive. DeepLog achieves impressive results in a lab environment, with close to 100% detection
rate after training on only 1% of the available data.

Labelling Optimization. Many threat detection techniques (Section 3) rely on supervised ML, which may re-
quire huge amounts of labelled data. Such a requirement prevents their applicability in real scenarios, because
manual labelling can be prohibitive—especially in Network Intrusion Detection. In contrast, unlabelled data are
common in cybersecurity, and many e"orts proposed semi-supervised learning methods to increase the “return”
of small sets of labelled data and hence enable deployment of fully supervised ML methods [29]. For instance,
the botnet detector in Reference [184] reaches an F1-score of 0.83 with only 2,400 labels; in contrast, the detector
in Reference [21] reaches and F1-score of 0.95 on the same network scenario but requires millions of labelled
samples. A parallel line of research leverages the so-called active learning paradigm. The idea is to use a ML
model (trained on a small labelled dataset) to “suggest” which samples should be labelled in a (large) unlabelled
dataset to maximize its “learning rate.” As an example, Reference [183] shows that it is possible to save signi!cant
labelling e"ort (from 30% up to 90%) by providing the ground truth of only a restricted amount of samples. An
intriguing property of active learning is that it can be used even for already-deployed ML models by following
the so-called lifelong learning principle: For instance, Tesseract [130] can boost its performance from 57% to 70%
after being retrained on 700 samples “actively labelled” by a human expert.

4.3 Risk Exposure Assessment
Although the complete prevention of any cyber attack is an unreachable objective, a system can be signi!cantly
strengthened by focusing on its weak spots and anticipating the most likely threats. In this context, ML can help
for several tasks, such as penetration testing or estimation of compromise indicators.

Penetration Testing. By automatically “attacking” existing security systems, ML can be a great asset for vulnera-
bility assessment. For instance, Reference [74] apply reinforcement learning to synthetically craft attacks against
traditional NIDS: The ML approach found the same amount of vulnerabilities in half the time of manual inspec-
tion and achieved a speedup of 90% with respect to a random attack procedures. More recently, Reference [21]
adopted a deep reinforcement learning approach to automatically evade, and then harden, an ML-based botnet
detector. Similarly, Reference [161] assessed the vulnerabilities of databases to SQL-injection attacks crafted
via ML. There are even proposals of dedicated ML-assisted platforms for performing all such assessments [50].
According to a recent survey [111], the potential of ML for penetration testing is still vastly unexplored.

Estimation of Compromise Indicators. It is possible to use ML to estimate the most likely compromised hosts in
a given system. The authors of Reference [177] study a corporate environment, using ML to analyze information
from heterogeneous sources, such as the behavior of each individual host and of the entire network—as reported
by end-point protection devices (McAfee) or even personal information on the speci!c user of each host. The
!ndings revealed that visits to “business” websites represented the most common indicator of a compromised
host (almost 30%), with second place for “travel” websites (nearly 15%)—this is intriguing, considering that such
activities were performed during working hours. A potential opportunity is combining ML with honeypots (with
a di"erent scope than in Reference [117]): Such a strategy is exploited in Reference [72] to identify which hosts
are more likely to be infected by botnet malware. Finally, Facebook exploits ML to identify fake accounts by
correlating di"erent sources [173], allowing us to reduce such annoyance by nearly 30%.

4.4 Threat Intelligence
The main task of threat intelligence is to collect and analyze information for anticipating novel attacks. This is
clearly a powerful instrument for keeping defenses up-to-date in a proactive approach [39]. However, we observe
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that a crucial aspect in the protection of enterprises revolves around the value of the items being considered:
Hence, ML methods for cyber threat intelligence should be con!gured so as to prioritize the protection of the
most business-critical infrastructures. Failure to take this into account may limit the usefulness of ML.

Nevertheless, applications of ML for threat intelligence can leverage either internal or external data sources
(or both).

Internal Sources. Foreseeing future attack strategies via ML can be done with exclusive reliance on internal
corporate data. For instance, Reference [158] leverages ML to arti!cially create alerts corresponding to past
cyberattacks and then use such alerts to study an attacker’s behaviour—potentially by using additional ML so-
lutions. As an example, SAGE [116] exploits ML to compress over 300k individual alerts in less than 100 “attack
graphs” representing the speci!c steps of an entire o"ensive strategy. Another possibility is to use deep learning
to “disassemble” some code executables, allowing us to identify some potentially malicious patterns that can
reappear in future malware: For instance, EKLAVIA [54] achieves a remarkable 80% accuracy in such a task. Fi-
nally, internal and external data sources can be mixed: The authors of Reference [88] exploit historical malware
information (provided by Symantec) to foresee how future malware could a"ect a corporation, and their ML
solution provided up to 4 times as many correct predictions as non-ML baselines.

External Sources. It is possible to use ML for the so-called open source intelligence. For example, the authors of
Reference [146] focus on security incidents mentioned on Twitter. Their ML approach identi!ed many malicious
activities occurring in 2016, such as the Mirai botnet (October 2016) or the data breach at AdultFriendFinder
(November 2016), where over 400 million accounts were exposed. Similarly, the deep learning method in Refer-
ence [165] analyzed tweets to study the development of ransomware attacks. It is also possible to use information
from security feeds, such as the Common Vulnerability Score (CVS) stored on well-known databases.13 For in-
stance, in Reference [51] the authors use ML to predict the CVS with almost 1 week earlier than traditional cyber-
security feeds. Prediction of the CVS with ML can also be done via darkweb data as shown in Reference [12]. The
authors use ML to crawl underground forums and correlate meaningful information with vulnerability descrip-
tions. By validating the results via third-party signatures (e.g., Symantec), the proposed ML method successfully
predicted the exploitability for about 40% of recorded vulnerabilities compared to about 10% of common feeds.
Automated analyses via ML of underground forums (in di"erent languages) aimed at uncovering “cyber-criminal
markets” are also performed in Reference [135], allowing us to infer the prices of malicious exploits. Finally, we
even mention the existence of patents that leverage ML to predict cyberattacks in modern environments [126].

Takeaway. There are many tasks complementary to threat detection that can be covered by ML. The main
challenge lies in obtaining relevant information from unlabelled (e.g., References [29, 125]) or unstructured
data coming from heterogeneous sources (e.g., References [12, 64, 173]). Such a challenge, however, also rep-
resents an intriguing opportunity.

5 INTRINSIC PROBLEMS OF MACHINE LEARNING IN CYBERSECURITY
As shown in Sections 3 and 4, ML can cover a plethora of roles in cybersecurity. Yet, in this speci!c domain,
unleashing the full bene!ts of ML in practice is di$cult. This di$culty stems from the underlying con#ict between
(a) the intrinsic characteristics of the cybersecurity domain and (b) the fundamental assumptions of ML.

Understanding such a con#ict is crucial for a comprehensive assessment of all the tradeo"s pertaining to ML-
based cybersecurity solutions. Therefore, we now discuss the intrinsic problems of ML in cybersecurity, for which
we provide an overview in Figure 8. Speci!cally, we begin by presenting the problems a"ecting any ML solution
for cybersecurity (Section 5.1); then, we elucidate the problems of ML solutions developed in-house (Section 5.3);

13An example is the CVE database, storing vulnerabilities as well as their exploitance likelihood: https://cve.mitre.org/.
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Fig. 8. Problems of ML in cybersecurity. Some are specific to either in-house solutions or to commercial-o#-the-shelf (COTS)
ML products. Others are shared by both of these categories.

and we conclude with the problems related to the adoption of commercial-o"-the-shelf (COTS) ML products
(Section 5.3).

We stress that all problems herein described are intrinsic: They can be mitigated to some degree, but the current
state of the art does not allow us to completely resolve them.

5.1 General Problems of ML in Cybersecurity
Machine Learning follows the independent, identically distributed random variables (iid) principle [65].
Such a principle states that the data analyzed during the development of the ML model will be similar to the
“future” data that the ML model will analyze after its deployment. If the iid assumption is not met, then the
deployed ML model will exhibit a di"erent performance than the expected one (measured during development).
Such an iid principle impairs ML deployment in cybersecurity, because it interferes with three characteristics
of this domain: the concept drift, the adversarial setting, and the data con!dentiality. Let us elaborate on each of
them.

Concept Drift. Modern systems are continuously evolving: new devices, services, and even users are added
(or removed) every day. All such mutations contrast the iid assumption, preventing the reliable application of
ML in the long term, because the training data quickly become obsolete. This problem is often referred to as
concept drift, and while it can a"ect any application of ML, some domains are less touched by it. For instance, in
computer vision “a cat will always be a cat,” allowing us to use a ML model trained on the same data for decades—
e.g., the ImageNet dataset (collected in 2011) is still used today [139]. This is not the case in cybersecurity and
especially for threat detection: The environment constantly changes, and the adversaries also adapt. A schematic
representation of the concept drift is shown in Figure 9.

For example, a new vulnerability may be discovered, meaning that some samples previously considered as
benign should be treated as malicious14; a new segment may be attached to a network, with a considerably
di"erent behavior than the other segments, hence generating a lot of (false) anomalies; !nally, attackers can
devise novel strategies that cannot be detected by existing mechanisms (e.g., zero-day exploits). As a matter of
fact, many research e"orts highlighted the signi!cant performance degradation of ML detectors in the presence
of concept drift [18, 86]. The only practical remedy to concept drift is through constant update of ML systems
with new data (labelled if supervised ML is used) that re#ects the current trends.

Adversarial Setting. The cybersecurity domain implicitly assumes the presence of adversaries. Although most
attacks are “stationary” (which explains why signature-based methods are still widely employed), motivated
adversaries constantly re!ne and change their o"ensive strategies. Aside from the risk of zero-day attacks,

14For instance, hundreds of apps in well-known marketplaces were recently found to be malicious [92].
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Fig. 9. Machine leaning in the presence of concept dri". The ML model expects that the data will not deviate from the one
seen during its training. In cybersecurity, however, the environment evolves, and adversaries also become more powerful.

Fig. 10. Typical adversarial a$ack against a deployed ML model. By inserting tiny perturbations in the input data, it is
possible to fool a ML model and induce an incorrect prediction.

deployment of ML also exposes to the threat of adversarial samples [154], which speci!cally target ML systems.
Such a threat, schematically depicted in Figure 10, involves applying tiny “perturbations” to some input data
with the goal of compromising the predictions of a ML model. Even imperceptible modi!cations can a"ect
pro!cient cybersecurity ML detectors. For instance, Reference [25] evaded 20 ML botnet detectors by appending
a few bytes of junk data to some network communications; whereas References [133] and [154] showed a
similar e"ect against ML malware detectors. Even commercial products are a"ected, such as Google Chrome’s
phishing detector [101]. There exist a wide array of strategies to carry out attacks based on adversarial samples,
which can a"ect either the pre- or post-deployment phase of a ML model [24, 154]. Despite the proposal of many
countermeasures against adversarial samples, (e.g., References [19, 76]), no universal solution has been found
so-far, and some mechanisms can even decrease the baseline performance (as shown in References [21, 59]).
The best defense, according to Biggio and Roli [39], is a proactive approach: The adversary must be anticipated
and evaluated (and, possibly, countered) before ML deployment.

To further stress the importance of such a threat, let us clear two misconceptions:
• it is common to refer to adversarial samples as “illegitimate.” Such a notation is wrong from a security stand-

point: Any sample (adversarial or not) analyzed by a ML model is considered as legitimate (i.e., trusted) by
the underlying system that forwarded such a sample to the ML model. What is illegitimate is the attack, i.e.,
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the application of a perturbation that is speci!cally crafted to thwart a ML model—but not the adversarial
sample.15

• in related literature, it is common to search for the “minimal” perturbation that allows a sample to thwart
a target ML model. However, real attackers are not subject to such constraint.16

The latter observation is crucial for demystifying the e"ectiveness of the so-called certi!ed defenses [138], which
only work if the perturbation is minimal or restricted within a very small boundary.

Con!dentiality. The cybersecurity domain is characterized by its sensitivity to data-privacy, representing a
strong barrier for long-term reliance on ML. Let us provide a few examples. The increasing usage of encryption
can make some ML systems simply unusable. For instance, a ML-NIDS that inspects the payload of HTTP tra$c
will not work if the tra$c is encrypted via HTTPS—and HTTPS is increasingly replacing the insecure HTTP
protocol worldwide. Such a problem can also a"ect other use-cases of ML, such as phishing email detectors:
If the emails are encrypted (e.g., via PGP), then it is impossible to analyze their contents with ML. Another
problematic scenario can involve the analysis of con!dential data: The constant changes in data regulation (e.g.,
the GDPR [167]) make it di$cult to identify data that can be reliably used in the long term. For instance, consider
the approach in Reference [177] (cf. Section 4.3), which leverages (among others) user information to estimate
the infection risk. Such an approach could not be applied today without the explicit consent of all the users
of a company. Moreover, both of these issues (con!dential and encrypted data) also impair labelling procedures,
because it is not possible to (manually) verify the ground truth of a sample if such a sample cannot be “seen” by a
human expert. Finally, it is understandable that enterprises do not want to publicly disclose their data, generating
an overall shortage of publicly available datasets that can be used to evaluate ML systems [147]. Although this
latter problem primarily a"ects research, it also implicitly a"ects practice, because showing a ML system that
works in di"erent settings can foster its adoption in real scenarios. We discuss potential solutions to the limited
data availability in Section 6.2.

5.2 Problems with in-house development of ML Systems
Despite the problems presented in Section 5.1, an organization may be willing to create a completely in-house
ML solution. In this case, the organization can fully control the scope, data, and overall suitability of the resulting
ML model. However, such an advantage comes at a price: The ML model must be !rst developed and must also
be maintained. Both of these procedures are challenging in cybersecurity.

Initial Development. Developing the initial ML model requires three steps: (i) selecting an ML algorithm,
(ii) !nding the right data, and (iii) !ne-tuning the performance. In some domains, these steps are almost straight-
forward. For instance, in computer vision it is established that deep learning algorithms outperform others;
moreover, suitable data (potentially labelled) are easier to acquire—either because they are publicly available
(e.g., ImageNet [139]) or because they can be cheaply produced (e.g., the popular captchas [47]). Unfortunately,
none of these advantages apply to cybersecurity. For instance, some research works show that deep learning is
worse (e.g., References [21, 134]) while others claim the opposite (e.g., References [123, 166]). Similarly, there
is confusion with respect to which features should be taken into account (cf. Section 3.3 where Reference [33]
use 130 features and Reference [144] use 30, achieving similar performance). Finding the right data is also in-
herently more challenging in cybersecurity. Such a challenge includes acquiring data of high quality and in the
right amount. Labelling requires expert knowledge, and according to Reference [112] a company cannot a"ord

15To provide a concrete example, let us consider [22]: It is legitimate to increase the size of network communications, but it is illegitimate
to do so with the intent of thwarting a ML model. However, a ML model considers all analyzed samples as trusted, because the ML model is
oblivious of the intent of the data generation process.
16For instance, in Reference [22] adding 1 KB of data is more e"ective than adding only 1B. Hence, a real attacker is more likely to add 1 KB
than just 1 B.
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to label more than 80 malware samples per day. For reference, the initial deployment of Tesseract [130] required
50,000 labelled samples. Unlabelled data may be easier to acquire, but as shown in Section 4 it can come from
heterogeneous sources and be in di"erent formats, requiring a detailed preprocessing pipeline to collect, store,
and forward such data to the ML model. Furthermore, the iid assumption (cf. Section 5.1) prevents a reliable use
of data originating from di"erent environments [149], hence even the (few) publicly available data can have ques-
tionable e"ectiveness. Finally, a common misconception is thinking that the performance of a ML model is linearly
dependant on the size of its training data17: In some cases, smaller datasets can yield to superior ML models—we
will show this in our case studies (Section 7.1). Nevertheless, any given dataset must also be balanced: In real
environments, a malicious event is a rare occurrence and a given dataset should re#ect such distribution [170].

To aggravate all of the above, it is not possible to determine a priori which combination (algorithm, fea-
tures, dataset, balancing) yields the best performance after deployment. Hence, empirical and time-consuming
evaluations—by training and testing multiple ML models—are always a necessity. As a result, !nding the most
optimal tuning for real deployments may require a huge amount of manual e"ort by trial-and-error.

Constant Maintenance. To mitigate the disruptive e"ects of concept drift (Section 5.1), it is fundamental to
continuously update a given ML solution with data re#ecting the current trends. Such procedures are costly
but can be alleviated via lifelong learning solutions (cf. Section 4.2). However, a common misconception is that
“update” procedures simply entail !nding (and, if necessary, labelling) new data. This is an underestimation,
because such procedures also necessitate (i) deciding what to do with “old” data and (ii) !nding the “sweet spot”
that yields the adequate performance. Indeed, maintaining old data can be detrimental in some cases (e.g., if
some “benign” samples are discovered to be “malicious”), but completely removing it can also adversely a"ect
the performance (e.g., some “old” phenomena can reappear in the future). Nonetheless, even small changes in the
training data can decrease the performance of an ML system (e.g., this is the fundamental principle of poisoning
attacks [24]). These issues require additional manual labour through trial-and-error.

A potential mitigation for all such tuning operations (both pre- and post-deployment) may come in the de-
velopment of techniques focused on explaining the decisions of ML systems (e.g., Reference [107]), which are
currently di$cult to interpret—especially for deep learning [14]. This is an intriguing direction of research, which
has very recently also touched the area of adversarial ML (e.g., References [16, 60])

5.3 Problems of Commercial-o#-the-Shelf ML Products
Developing an in-house ML model may be prohibitive (e.g., in terms of computational or human resources), and
COTS solutions represent a viable alternative. In this case, all the operations presented in Section 5.2 must be
performed by the product vendor. However, we point out two drawbacks of such COTS solutions, aggravated in
cybersecurity scenarios. Speci!cally, such solutions implicitly have a limited scope, and they may (inadvertently)
su"er from lack of transparency.

Limited Scope. Relying on third-party solutions limits any end-user to their intended scope, meaning that some
tasks simply cannot be accomplished with products currently on the market. For instance, any commercial ML
model cannot be trained on the exact data used by an organization—at least initially. The organization can allow
the vendor to collect their data and use such data to re!ne the ML model; however, this may not be possible due
to con!dentiality reasons (Section 5.1). Therefore, some commercial solutions can be used only if the deployment
environment (of the organization) resembles the pre-deployment environment (of the vendor) used to generate
the data for the corresponding ML model. For example, phishing websites are malicious “everywhere,” meaning
that it is possible to transfer [179] ML phishing detectors. However, such a transfer cannot be easily done for
other cybersecurity tasks, such as NIDS [27]. This is because every network is unique [149], and a malicious

17According to the founder of Deep Learning, Andrew Ng, this is also becoming true for Deep Neural Networks [152].
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behavior in one network can be benign in a di"erent network. Due to such an issue, most COTS products leverage
(unsupervised) ML and mostly for anomaly detection (e.g., References [2, 97]).

Lack of Transparency. COTS solutions come as a “black box,” and the decision to deploy such solutions de-
pends on their advertised performance. This fact leads to many issues, all sharing a common culprit: the cost of
misclassi!cations in cybersecurity. In some domains, incorrect predictions do not have severe consequences: For
instance, a recommender ML system (e.g., the one in AirBnb [77]) that makes an incorrect recommendation is
not a cause of concern. In contrast, in cybersecurity a single FN can be the di"erence between a compromised
and a secure system. At the same time, both employees and security analysts are annoyed by false alarms, which
can even be exploited by attackers to conceal more severe threats [53]. By considering the performance met-
rics reported in Table 1 (cf. Section 2.1), we remark that each metric focuses on a single aspect, and even good
scores can be meaningless if not contextualized.18 Nonetheless, even if a COTS ML solution is fully transparent
(i.e., all metrics are reported and contextualized), the performance will always refer to the environment of the
vendor, which is likely to di"er from the real deployment setting. Finally, we mention that—to the best of our
knowledge—no COTS ML solution (including those not pertaining to security tasks) reports its robustness to
potential adversarial attacks, which is a severe de!ciency in cybersecurity scenarios.

Takeaway. In cybersecurity, ML can provide great bene!ts but also presents many risks due to the intrinsic
adversarial setting and the dynamic ecosystem. Such risks must be taken into account today and should be
addressed by future works.

6 THE FUTURE OF MACHINE LEARNING IN CYBERSECURITY
We have elucidated the bene!ts (Sections 3 and 4) as well as the problems (Section 5) of ML for cybersecurity.
There are potentially in!nite ways to advance the state of the art, such as increasing existing performance
(e.g., Reference [62]), mitigating known issues (e.g., the poor explainability [16, 145]), as well as development
of novel applications of ML in cybersecurity (e.g., the integration of quantum computing [75]).

As a constructive step forward, this section highlights which future developments can completely revamp the
state of the art of ML in cybersecurity. Although every improvement is appreciated, we believe that the existing
gap between research and practice can only be closed by the joint contribution of four players: regulatory bodies,
corporate executives, engineers, as well as the research community. Speci!cally, we identify four future challenges
that—if properly addressed—can revolutionize ML in cybersecurity. We now elucidate these challenges (schemat-
ically shown in Figure 11), explaining their root causes and our recommended course of action for each of the
four “players” indicated above.

6.1 Certification (Sovereign Entities)
The 2020 EU White Paper on Arti!cial Intelligence [1]—also followed by a 2021 US DHS report [4]—indicates
trustworthiness as one of the key requirements for future ML applications. Especially, emphasis is put on “high-
risk” scenarios, where deployment of ML should conform with pertinent legal requirements. Cybersecurity ap-
plications naturally qualify as high risk, and hence procedures that certify the performance and robustness of ML
systems should be developed and enforced by regulatory bodies. Let us elaborate.

18As an example, consider a detector evaluated on a dataset containing 9,990 benign samples and 10 malicious samples: Accuracy of 99.99%
can be obtained by only detecting 1 malicious sample (of 10), despite its inability to detect 90% of the attacks. Another example is an FPR
of 1%: It may appear low, but if the environment generates 300k alarms (as in Reference [116]), then the FPR corresponds to 3,000 false
alarms. Note that also the inverse is true: An increment of just 1% in the TPR can be either an almost negligible or an extremely signi!cant
performance boost.
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Fig. 11. Future challenges of machine learning in cybersecurity. Addressing all such challenges requires the cooperation of
four players: regulatory bodies, corporate executives, engineers, and researchers.

Performance Certi!cation. Comprehensive testing represents the only instrument for performance veri!cation
of a ML system. However, despite hundreds of works, there is a lack of standardized evaluation protocols. This
is a problem especially for COTS products, as performance assessments may be carried out in biased environ-
ments or may consider unfair comparisons that in#ate the results to favor a given ML solution. Meaningful
assessments must consider the realistic distribution of data and take into account the (likely) temporal shift.
Traditional cross-validation techniques, typical for ML in the computer vision domain, should be used only for
tuning: Speci!cally, the performance should be validated via statistical tests. Establishing standardized evalu-
ation protocols would foster pragmatic and fair comparisons, promoting overall ML deployment in practice.
Nevertheless, the full details of such operations (e.g., the data used, the evaluation methodology, and the !nal
results) should be transparent to the customers of COTS ML systems.

Robustness Certi!cation. The increased interest toward ML led to (scienti!c) investigations of its robustness in
adversarial scenarios, bringing to light the vulnerability to adversarial examples (Section 5.1). Yet no universal
solution has been found so far, with some defenses being broken in the time span between their appearance as a
preprint and their publication as a peer-reviewed article.19 The !rst step to solve this problem is to acknowledge
that no ML solution is #awless. Indeed, to quote a recent survey on the cybersecurity perspective of European
stakeholders [69]: “security of ML and adversarial attacks was not mentioned as one of the key challenges by the
interviewees,” which epitomizes that such a threat is not perceived by the end-users of ML solutions. To address
these issues, assessments of adversarial robustness must become mandatory in evaluations of any ML-based
solution for cybersecurity. The most likely security risks, and their potential consequences, should be known
before real ML deployments. Moreover, all the details of such assessments should be transparently provided.

Recommendation: To ensure better transparency and reliability, regulatory bodies must enforce the devel-
opment and adoption of standardized procedures that certify the performance and robustness of ML systems.

6.2 Data Availability (Executives and Legislation Authorities)
The e"ectiveness of any ML solution depends on the data used to train the corresponding ML model. However,
among the toughest challenges faced by ML in cybersecurity is !nding appropriate data. Despite the recent
interest in ML led to the release of more open datasets (e.g., References [10, 31, 142]), such datasets exhibit
limitations [163]. For instance, inaccurate labels, fast obsolescence, small and synthetic environments (e.g., Ref-
erence [115]), or even #awed generation process—as shown in Reference [66]. All these problems can only be
mitigated to some degree (e.g., Reference [37]) and cannot be solved by the scienti!c community. The lack of
adequate data (i.e., real and labelled) makes evaluations of ML conducted in research environments to be of
questionable value, preventing sound assessments of ML capabilities, and ultimately hindering its deployment.
Addressing the shortage of data is possible, but it requires the joint intervention of industrial stakeholders and

19For instance, defensive distillation was proposed in 2016 [128] and broken few months later [48].
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regulation authorities: The former should promote data sharing, and the latter should devise more actionable
data regulation policies.

Data Sharing. A solution to the lack of adequate data is the promotion of data-sharing practices. In cybersecu-
rity, some portions of data can be easily shared: For instance, Sophos has recently released over 20M (labelled)
malware samples [78]; similarly, the recent CrimeBB dataset [129] contains 1 million accounts crawled from
darkweb forums for 10 years. In contrast, other pieces of data (especially benign data) are more con!dential and
hence their disclosure requires explicit permission from corporate executives. Acquiring such permission is a tough
barrier, especially due to privacy and secrecy issues. However, we observe that sensitive information can be
anonymized (e.g., Reference [136]), and recent advances in federated learning overcame such problems [57].

There indeed exist some success stories of data-sharing platforms focused on security information, such as
the EU-OF2CEN project [151]. Similar platforms represent a great opportunity for some companies, as they
open the doors to a new market entirely dedicated to ML datasets, potentially with (updated) ground truth
(e.g., Reference [150]). From this perspective, a promising initiative is STIX CyBox [143]: Its goal is creating
a threat intelligence platform shared by multiple parties, facilitating the entire process of incident detection
and response. Nonetheless, such platforms must (i) contain unbiased data—otherwise, there a the risk of
manipulating future developments [109]—and (ii) comply with the existing regulation, hence requiring the
involvement of the respective authorities.

Actionable Data Regulations. The strategical importance of data gave birth to multiple regulations that “pro-
tect” data owners and limit abuse of sensitive information. Despite ensuring more privacy rights, such regula-
tions introduced additional constraints on data gathering and processing, resulting in yet another barrier to ML
developments—both for research and practice. Speci!cally, the (already costly) data-labelling procedures are cru-
cially a$ected by such regulations (Section 5.1). Even if action is taken by executives to disclose their corporate
data, existing regulation policies are di$cult to interpret and likely to change in the future [124]: For instance, in-
formation that can be shared “today” may not be shareable “tomorrow,” hindering long-term projects. However,
we observe that some GDPR compliant data-sharing platforms exist (e.g., Reference [79]). Hence, the regulatory
authorities should promote such e"orts even in the cybersecurity context, for instance by providing actionable
policies that ensure the compliance of (open) data in the long term.

Recommendation: To address the shortage of adequate data, companies should be more willing to share data
originating in their environments (e.g., Reference [151]), whereas regulation authorities should promote such
disclosure by de!ning proper policies and incentives [124].

6.3 Usable Security Research (Scientific Community)
The combination of ML and cybersecurity is a fertile opportunity for research, and recently inspired many re-
lated papers. Such a trend, however, is a double-edged sword. On the good side, the rising scienti!c interest
demonstrates the high potential of ML for cybersecurity. On the bad side, such abundance can be detrimental for
real ML deployments, as it may raise more questions rather than provide answers. Speci!cally, we identify two
problems of existing research: the lack of pragmatic results and the limited consideration of realistic scenarios.

Pragmatic Results. One of the primary goals of research is to “outperform the state of the art.” In the context
of ML, such a goal requires us to propose a novel ML method and then show that this method achieves a better
performance than prior works—an objective that can be achieved without providing any “true” contribution
to the state of the art. For example, by slightly changing the training data it is possible to achieve a superior
performance; similarly, an existing solution may be sub-optimally reproduced (by using, e.g., a di"erent dataset,
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or di"erent tuning parameters). Note that all such “#aws” can be unconsciously introduced by researchers.20 This
phenomenon, also referred to as benchmark lottery [58], results in an overall confusion on what really works best
and impairs real ML deployments. Among the main culprits of such a phenomenon is the poor reproducibility of
researches, as very few works disclose the entire information required to replicate their experiments. Therefore,
novel researches cannot properly reproduce previous works, and the peer-review process cannot assess whether
the experimental protocol is correct and unbiased. At the same time, however, we point out that most scienti!c
venues do not allow (or require) inclusion of any supplementary and technical resource. Hence, even researchers
must face a di$cult decision about what low-level information should be included in the actual submission—
which is subject to page limitations.

Recommendation: The peer-review process should facilitate and enforce the inclusion of the material for
replicating ML experiments. At the same time, such a material should be evaluated to ensure its correctness—
potentially by a separate set of reviewers with more technical expertise.

Realistic Security Scenarios. As a direct consequence of the benchmark lottery phenomenon, many research
papers simply focus on providing “better numbers” than past work, overlooking the assumptions made by such
past work. In the context of cybersecurity, this is a problem, because realistic circumstances must be considered,
and any result that stems from unrealistic scenarios is of questionable value. For instance, there is a super!cial
treatment of training data: Only few papers (e.g., References [18, 130]) consider the concept drift, which is in-
trinsic in cybersecurity; moreover, many recent papers (e.g., Reference [156]) still use outdated datasets, such as
the NSL-KDD, which is over 20 years old and does not re#ect any current environment. The result is that all
papers propose ML methods that achieve near-perfect performance—but what is the practical impact of all such
research? We acknowledge that public (labelled) data are di$cult to acquire, but over the past few years several
datasets have been openly released (e.g., References [115, 147]). The impression is that the cybersecurity setting is
turning into a yet-another research playground where new ML methods are evaluated on some “security-related”
data, but realistic security considerations are only made in the introduction to provide some justi!cation for a
given publication venue. Speci!cally, there is a lack of realistic threat models. Such lack is epitomized in the
emerging !eld of adversarial ML (Section 5.1), where most attacks against security systems assume extremely
powerful opponents. For instance, the authors of Reference [20] show that the majority of attacks against ML-
NIDS require adversaries with direct access to the ML-NIDS itself, which is an assumption that violates the basic
security principles. Similarly, Reference [133] show that adversarial attacks have a di"erent e"ectiveness when
the opponent cannot manipulate the data-processing pipeline (which is usually not accessible). Hence, it is not
surprising that the industrial stakeholders are either confused or do not care about adversarial examples—as
evidenced by two recent surveys [69, 95] and the detailed case study in Reference [42].

Recommendation: Future researches on ML applications for cybersecurity should have a closer connection
with the real world. The assumed threat model should be realistic, the dataset should resemble recent trends,
and the concept drift should be taken into account.

6.4 Orchestration of Machine Learning (Engineers)
ML is not meant to fully replace existing systems or human experts. Rather, it should provide an additional “per-
spective” that can be used to identify otherwise overlooked phenomena. However, ML methods exhibit huge
variance (e.g., di"erent performance [134, 162] or adversarial robustness [25]), and a single ML solution cannot

20A recent paper describing the pitfalls of ML in cybersecurity is Reference [30].
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protect against all threats that can target modern organizations.21 Addressing all such issues is possible by orches-
trating diverse ML solutions. Indeed, any ML model (irrespective of its goal) ultimately represents just a single
component of a cybersecurity system—which can be a “hybrid” system that leverages also non-ML techniques.
However, such orchestration requires the expertise of ML engineers, who must coordinate di"erent outputs to
extract actionable information. Speci!cally, ML (and non-ML) models can be combined either in an ensemble or
in a pipeline architecture, depending on the !nal goal of the system.

Ensemble architecture. One of the most pro!cient ways to combine di"erent ML models is the so-called ensem-
ble [38]. The idea is leveraging many simpli!ed learners with a common goal: Each ML model of the ensemble
analyzes the same data but by focusing on a speci!c problem. For instance, it is possible to create ML-NIDS using
ensembles of ML models, in which each model has the same goal (i.e., intrusion detection) but focuses on a spe-
ci!c threat (e.g., botnet or Denial of Service (DoS) attacks [113]). Despite the proven performance bene!ts of
such architectures, a tough challenge faced by engineers is the lack of standardized feature sets that can be used
to devise all such systems. Each model of the ensemble must ultimately analyze the same data, and, depending
on the features provided as input, the performance can greatly di"er (as shown in Reference [41]). Our industrial
case studies in Section 7 consider a similar architecture.

Pipeline architecture. When the system envisions ML models having systematically di$erent inputs and out-
puts, they must be organized in a pipeline architecture. For example, it is possible to create an ensemble of ML
models for threat detection (Section 3) and then use their outputs for threat intelligence (Section 4). Similar sys-
tems already exist, either as COTS products (e.g., SIEM22 or SOARS23) or as scienti!c proposals: For instance,
ARCUS [175] is a security-focused orchestration platform that could bene!t from the integration of many of the
ML solutions discussed in this article. However, such architectures are challenging to implement by engineers:
Each individual component is a$ected by all the issues presented in Section 5, therefore multiplying their impact.

Recommendation: Orchestrating complex systems that use (combinations of) ML and non-ML solutions is
bene!cial for cybersecurity. Hence, ML engineers and practitioners should clearly highlight how to combine
all such components to maximize their practical e"ectiveness.

7 CASE STUDIES: INDUSTRIAL APPLICATIONS OF ML FOR CYBERSECURITY
As a !nal contribution of this article, we present two case studies that showcase real and successful industrial
applications of ML in cybersecurity. Many commercial products are advertised as leveraging ML. Yet most of
these products are provided as black boxes, preventing any understanding of how ML is actually applied in
practice. Speci!cally, our case studies involve the two following scenarios:
• using ML for detecting Cache Poisoning Attacks against Named Data Networks. The approach is integrated

in a NIDS developed by Montimage (Section 7.1);
• combining sequential deep learning with non-ML methods for protecting Industrial Control Systems. The

approach is integrated in a cybersecurity device developed by S2Grupo (Section 7.2).
Both of these solutions use ML for anomaly detection with limited supervision. Our goal is to provide a high-level
overview on such “black box” ML systems by elucidating their internal functionalities.24

21The most exemplary use-case are zero-day attacks, which can easily evade supervised ML methods: Zero-day samples cannot—by
de!nition—be included in the training data. Anomaly detection through unsupervised ML is more feasible but at the cost of many false
positives.
22System Information and Event Managers: https://www.forcepoint.com/cyber-edu/siem.
23Security Orchestration Automation and Response Systems: https://www.rapid7.com/solutions/security-orchestration-and-automation/.
24The commercial nature of such systems—which are built on the end-users data—makes some low-level details to be protected by NDA, but
explicit requests can be made by contacting the respective vendors.
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7.1 Detection of Cache Poisoning A$acks in Named Data Networks
Information Centric Networking (ICN) is a revolutionary paradigm in the context of communications: While
most of the Internet follows a host-to-host perspective, ICN adopts a host-to-content vision [6]. The ICN archi-
tecture is more suitable for massive content di"usion (e.g., video streaming), representing the major use cases
of modern networks. Despite providing multiple bene!ts in terms of bandwidth e$ciency and scalability, ICN
can fall victim to DoS attacks and, in particular, to poisoning attacks [5, 174]. In this case study, we analyze a
real ML detection system that protects against such attacks targeting ICN architectures. The speci!c techniques
are integrated into the Montimage Monitoring Tool,25 which is a module of the IDS framework developed by
Montimage [118, 169].

Scenario and Challenges. This case study focuses on the well-known ICN approach of Named Data Network-
ing (NDN) [181]. This NDN approach leverages a pull-based mechanism using two kinds of packets: Interest (a
request for a content) and Data (the response with the content). When a given user wants to retrieve some
content, the user (i) speci!es the desired content’s name (e.g., “/data/video.mp4”) in an Interest, (ii) sends such
Interest through the NDN network, and (iii) receives the corresponding Data—which can be provided either by
the content producer or by any intermediate NDN node storing a copy of such Data. The practical implementation
of NDN exposes to the risk of new security attacks, such as the Content Poisoning Attack (CPA) [174]. In CPA,
a malicious producer (content creator) colludes with a malicious consumer (a user requesting content) to force
any NDN node on their path to insert malicious content in their content storage (CS), hence causing poisoning
attacks. This results in nodes answering some requests with such malicious content: For example, a victim may
ask for a speci!c webpage and instead be redirected to a malicious phishing website. CPA are a dangerous threat
to NDN, as shown in Reference [119]: Analyses on real system highlighted that identifying CPA is impossible
via static and human-based approaches. This is due to the intrinsic characteristics of NDN, as each node in the
network topology reacts di"erently. Moreover, NDN are also susceptible to Interest Flooding Attacks (IFA),
which represent a variant of DoS in which the NDN is “#ooded” with interest requests [148] for existing or even
non-existing content that can disrupt the distribution of content. Although IFA are easier to identify than CPA,
countering both IFA and CPA is challenging and requires the usage of more dynamic analytical techniques—such
as ML.

Montimage ML-Solution. The ML-solution developed by Montimage leverages ensembles of ML models orga-
nized in a Bayesian Network Classi!er (BNC) [120]. The intuition is that detection of CPA is only possible by
monitoring the behaviour of each node in a NDN network—and, speci!cally, by analyzing and cross-correlating
the evolution of di"erent metrics for each node.

Such a goal is achieved by means of speci!c probes deployed on each node and monitoring its complete
activity. In particular, each probe collect metrics related to the Data plane of NDN: CS, Pending Interest Table
(PIT), Faces. The latter, in particular, are an abstraction of a communication channel that NDN uses for packet
forwarding. Such abstraction represents data coming from diverse “faces,” i.e., overlay tunnels over TCP and
UDP, delivery of NDN network layer packets (e.g., Interest, Data packets), inter-node communication channels
that send packets to other nodes, and intra-node communication channels that send packets to another process
on the same node.

The information captured by these probes is then analyzed by ensembles of micro-anomaly-detectors, each
focusing on deviations from the normal behaviour of a single metric captured by each probe. It is true that
CPA can impact many metrics and in di"erent ways, raising hundreds of (likely) false alarms by each micro-
detector. However, correlating all the alarms with a BNC allows us to (i) increase the detection performance while
(ii) mitigating the high rate of false alarms generated by individual micro-detectors.

25https://montimage.com/products/MMT_DPI.html.
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Fig. 12. Architecture of the Bayesian network classifier adopted by Montimage to detect CPA in NDN. Each node represents
a micro detector that focuses on a single metric. The Anomaly node correlates the output of all other NDN nodes.

A schematic representation of the considered BNC is provided in Figure 12: the “anomaly” node (denoted
in red) represents the anomalies that can occur in the entire NDN, whereas the remaining nodes represent the
individual micro-detectors. Hence, each node focuses on a single metric, speci!cally Faces, CS, or PIT (denoted in
green, purple, and blue in Figure 12). The (directed) edges in the BNC represent the causal relationships between
the Anomaly node and a metric (or pairs of metrics). An edge connects the “causing” node to the “a"ected” node.
The causal relationships are deduced based on the processing of each packet arriving to the NDN node.

Evaluation and Results. It is necessary to conduct a preliminary assessment of the learning e$cency of the BNC
before its deployment. This is because NDN generate a lot of tra$c, and even though the BNC can “condense” the
raised alarms it is still important that such alarms—and, speci!cally, false alarms—are within acceptable levels.
To this purpose, Montimage !rst collects huge amounts of real data from the probes and then uses such data
(assumed to be benign) to train (and test) a BNC. Speci!cally, multiple BNC are assessed, each considering a
di"erent training size: The goal is !nding the optimal size that minimizes the rate of false alarms. The results of
such an assessment are reported in Figure 13, showing the misclassi!cation error (as measured via !vefold cross-
validation) as a function of the training size. We observe that an optimal value is achieved when the training set
contains ∼280 samples.26 For higher values, the error increases due to over!tting (this phenomenon con!rms the
misconception outlined in Section 5.2). Thus, for the considered deployment scenario, Montimage uses training
sets of 280 samples—corresponding to 23 minutes of real reportings.

Fig. 13. Preliminary assessment of the BNC to identify the optimal size of the training dataset.

26We observe that such samples represent alarms corresponding to multiple signals, and not to raw events.
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Table 2. CPA Detection Performance for Two Di#erent Routing
Strategies and Increasing A$ack Payload

Routing
Strategy

Attack payload
(# Interest/s) 5 10 20 50

Bestroute % TP 95.0% 95.3% 97.0% 98.3%
% FP 1.0% 1.0% 1.0% 1.0%

Multicast % TP 63.3% 72.8% 79.3% 96.3%
% FP 1.0% 1.0% 1.0% 1.0%

To evaluate the performance in production settings, Montimage reproduces the NDN topology in Refer-
ence [182] and creates two distinct environments, each adopting a speci!c NDN routing strategy: bestroute or
multicast. Then, each environment is monitored for 10 minutes, and the attack is simulated in the last 5 minutes.
Speci!cally, multiple CPA are launched, each considering increasing payloads, denoting the number of requests
for content (i.e., Interests) per second; in our case, we consider payloads of 5, 10, 20, and 50 Interests per sec-
ond. In comparison, legitimate clients produce 10 Interests per second (on average): Hence, the malicious tra$c
ranges from half to !ve times the legitimate tra$c. The tra$c generated during such simulations is collected
and used to assess the quality of the BNC: The goal is to verify whether the BNC is capable of identifying the
CPA, which occurs in the last 5 minutes.

To provide a twofold perspective of the performance (see Section 5.3), Montimage measures the True-
Positive Rate (TPR) and False Positive Rate (FPR) (–cf. Table 1 in Section 2.1). The results of such evaluation,
performed on a testing set of 240 samples, are reported in Table 2. We observe that the TPR increases for greater
payloads, because the CPA become more conspicuous. Nonetheless, it is appreciable that even CPA with low
payload can be e"ectively detected. Finally, the low FPR is crucial for real deployments as they are annoying
to human operators. All such results are due to the advantages provided by the BNC, because BNC use a
probabilistic approach that allows us to take into account the underlying random nature of the observed metrics.
Such a property makes BNC tailored for multi-variate anomaly detection in real environments. In contrast, other
ML algorithms present signi!cant drawbacks: For instance, “deep” neural networks are excessively di$cult to
develop in such settings (also due to their poor explainability), whereas other “shallow” algorithms, such as
SVM, simply do not allow us to e$ciently represent and correlate all the metrics a"ected by CPA.

The major limitation of BNC is its intrinsic function as anomaly detector: Indeed, an anomaly is not necessarily
malicious. For instance, in a NDN setting, a sudden demand for a video from legitimate users could lead to a
temporary increase in tra$c, indicating an abnormal activity. To mitigate this problem, Montimage considers
four possible “states”: normal state, IFA attack state, CPA attack state, and number of users increase. Each state is
denoted by di"erent “anomalous” combinations taking into account a total of 18 metrics: A similar solution allows
us to maintain the FPR to acceptable levels (as shown in Table 2). We take this opportunity to make a crucial
remark for real ML deployments: One may believe that de!ning more “states” and/or increasing the amount
of considered metrics leads to better results. However, according to Montimage a similar approach can yield
pro!cient results only in a lab environment, because it induces over!tting, and the true deployment performance
may su"er excessive FPR.

Finally, an intriguing future development of such an ML solution involves the consideration of “stateful” anal-
yses that take into account the time-axis (as done, e.g., in Reference [56]) and allow to detect even anomalies
occurring in the temporal domain. The next case-study by S2Grupo will consider a similar application.

7.2 Combining ML with Non-ML Methods to Protect Industry 4.0 Environments
With the rapid growth of the Industry 4.0 paradigm, industrial environments are even more exposed to Ad-
vanced Persistent Threats (APT) [132]. Speci!cally, recent developments of ICS represent an attractive target
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for attackers [68]. In this case study, we share the experience in the design and operation of CAIAC,27 a non-
intrusive device that leverages sequential ML to protect ICS against APT and other cyber-threats.

Scenario and Challenges. This case study highlights the advantages of ML applications for anomaly detection
in time-series data. The intuition is that APT leverage zero-day vulnerabilities and hence cannot be detected via
misuse-based detection approaches—irrespective of being human or data driven. However, pointwise and static
anomaly detection approaches are not enough to detect advanced cyberattacks, and the additional perspective
provided by the temporal domain may facilitate the detection of re!ned o"ensive strategies [132].

In the speci!c ICS scenario, there are two crucial requirements that must be met by security systems. First, they
should operate in a non-intrusive way, avoiding additional overhead and ensuring the regular functionalities of
the ICS: This is a tough requirement, because ICS include hundreds of devices and while excessive false alarms
are annoying, slow reaction times may imply a fallout of the entire ICS. Second, they must take into account the
complexity and variability of the data in ICS, which is di$cult to manage to the intrinsic heterogeneity of ICS.
Such a requirement cannot be met just with traditional approaches for time-series anomaly detection based on
heuristics: To address this problem, S2Grupo leverages the capabilities of deep learning.

S2Grupo ML-Solution. The ML solution developed by S2Grupo, CAIAC, is an intriguing example of ML or-
chestration (Section 6.4): CAIAC not only leverages the bene!ts provided by “small” ML models (as done in
Section 7.1) but also exploits the potential of non-ML methods for time-series analyses. In particular, the idea
is to combine deep learning algorithms, epitomized by Long-Short Term Memory (LSTM) neural networks,
with statistical approaches for time-series forecasting, such as Seasonal Autoregressive Integrated Moving
Average (SARIMA). The result is an ensemble of ML and non-ML models, exploiting the bene!ts of both ap-
proaches and overcoming their limitations: Statistical models can be more manageable, but when the data have
high complexity deep learning is superior. Such a design choice is particularly suited for real ICS deployments
due to a threefold advantage with respect to “one-size-!ts-all” ML architectures. Speci!cally:
• individual ML models are easier to train, because they must deal only with a tiny portion of the data,

resulting in better performance and lower false alarms;
• it allows combining di"erent algorithms, each addressed to a speci!c problem and data type.
• it makes the resulting system more “future proof,” because each ML model can be individually updated,

removed, or replaced.
Furthermore, CAIAC is based on passive monitoring in near real time, hence preventing excessive information
overhead while still allowing timely responses.

Let us explain CAIAC in more detail. The intuition is to analyze the network tra$c of the considered ICS from
di"erent perspectives, each associated to a speci!c time series. This time series can di"er on the basis of two
criteria: the network metric (e.g., transmitted packets) and the granularity used to aggregate the corresponding
metric in time slots of !xed length. All such time series are used to devise multiple ML and non-ML models: The
performance of each model can be assessed individually by forwarding its detected anomalies to a higher-level
correlation layer (similarly to Reference [132]). The goal of this layer is determining the nature of such anomalies:
They can either be legitimate (i.e., a “normal” malfunctioning of a component that must be investigated) or
illegitimate (i.e., an attack is taking place). Such a procedure allows us to identify the most suitable models
that will be integrated in CAIAC, depending on the pros and cons of each model. Indeed, LSTM models may
yield a superior performance but require a training phase, whereas statistical models are easier to develop and
only require some tuning. Hence, such (non-ML) models are the preferred choice when they exhibit similar
performance to LSTM.

27https://s2grupo.es/en/research-development-innovation/industrial-cybersecurity/caiac.html.
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Fig. 14. Anomaly detection with (non-ML) SARIMA, using a sliding window of 30 minutes. The time series represents the
transmi$ed packets (y-axis) within 5-minute slots, over a period of 1 week (x-axis), corresponding to a total of 2K sam-
ples. Dark blue correspond to actual values, orange denotes the values predicted with SARIMA, and light blue denotes the
confidence interval of SARIMA’s predictions. Vertical gray lines correspond to the anomalies detected by SARIMA.

Evaluation and Results. To develop CAIAC, it is necessary to !rst assess the characteristics of the speci!c
ICS: Indeed, it is not possible to use models trained on di"erent environments (as explained in Section 5.3).
Hence, S2Grupo monitors and collects the network tra$c of the considered ICS and creates multiple time series,
each considering a given metric and granularity. Some metrics are commonly adopted in NIDS (e.g., transmitted
packets or bytes, in-/out-degree [132]); others are speci!c of ICS and require dedicated industrial dissectors that
extract the relevant information (e.g., protocol, parameters, command density). Finally, each metric is aggregated
in time slots of varying length, from 1 minute to 1 hour.

After this data collection phase, which in the considered setting typically amounts to about 10 GB of data per
day, S2Grupo performs the exploratory analysis focused on determining the most pro!cient (ML and non-ML)
algorithms for studying each time series. Let us elucidate the di"erences between two speci!c applications of
SARIMA and LSTM, starting from the non-ML algorithm.

Speci!cally, SARIMA analyzes a time series by adopting a sliding window approach: All data points within
a given time window are considered by SARIMA to predict a “future” value, which is provided alongside a
con!dence range. We provide an example of SARIMA in Figure 14, showing the time series of the transmitted
packets aggregated in time slots of 5 minutes, over a period of 1 week; the sliding window considered by SARIMA
is of 30 minutes. The actual values are reported in dark blue, whereas the values predicted via SARIMA are shown
in orange; the con!dence window of each predicted value is shown in light blue: therefore, actual values that fall
outside of this range are treated as anomalous. In particular, vertical gray lines denote the anomalies detected
by SARIMA.

From Figure 14, we observe that SARIMA accurately detects stationary deviations. However, SARIMA can
only detect non-stationary changes when they happen within its sliding window. Furthermore, non-stationary
(but legitimate) changes that occur after a long stationary interval are falsely detected as anomalies by SARIMA.
Despite some incorrect predictions, the considered application of SARIMA obtained a performance that was
deemed appropriate for the given task and integrated in CAIAC.

Let us showcase an application of deep learning via LSTM. Since LSTM do not provide a con!dence interval for
each prediction, S2Grupo developed a custom anomaly threshold that takes into account the deviation between
predicted and actual values, as well as the degree of accumulation of such deviation in the past history. An
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Fig. 15. Anomaly detection with a deep LSTM neural network. The time series represents the transmi$ed packets (y-axis)
within 1-minute slots, over the period of 1 week (x-axis), corresponding to a total of 10K samples. Actual values are shown
in blue, and the LSTM predictions are shown in orange. Vertical gray lines denote the anomalies detected by the LSTM.

example of such an LSTM application is given in Figure 15, showing the time series of the transmitted packets
(same as Figure 14) but with a time slot of 1 minute. The actual values are shown in blue, whereas the LSTM
predictions are in orange. Vertical grey lines denote the anomalies detected by the LSTM, i.e., when the actual
values falls outside the given anomalous threshold predicted with the LSTM.

From Figure 15, we can observe that, by reducing the time slot from 5 to 1 minute, the resulting time series is
less predictable, making statistical methods unfeasible and requiring the advanced capabilities of deep learning.
Indeed, the considered LSTM can detect anomalous values without being a"ected by non-stationary changes—
even after long stationary intervals. This example highlights the capabilities of (deep) ML to deal with data with
high dimensionality: The LSTM takes into account a long “past” history, allowing to better infer the “normal”
behaviour. In contrast, applying SARIMA on the same time series resulted in very poor results due to the intrinsic
variability of the sequence, which forced us to aggregate data in 5-minute time slots.

However, it is important to take into account that the LSTM require a training step, whereas SARIMA only
requires some parameter adjustment. In this use-case, the LSTM in Figure 15 was trained with data collected
over 3 weeks. Such a characteristic implies that a similar LSTM model requires at least 3 weeks of data collection,
since no previous network tra$c data were available to train the model—alongside the additional computational
resources to store such data and train the LSTM model (which were within acceptable levels). Hence, CAIAC
would initially make use of SARIMA and then replace it after enough data have been collected to develop a more
pro!cient LSTM model.

We can conclude that machine (and deep) learning are powerful instruments for protecting modern ICS, but
methods that do not leverage ML are equally important to compensate some of the limitations of ML. As such,
future developments should not exclusively focus on ML and overlook the bene!ts provided by other data-driven
methods.

8 CONCLUSION
This article elucidates the role of ML for Cybersecurity by providing a broad and high-level overview of the
bene!ts, problems, and future challenges of ML in this domain. Our article is oriented at the entire cybersecurity
sphere, and to make our contribution understandable by a broad audience, we limit technical terms to a minimum.
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Table 3. Summary of Security ML Misconceptions Discussed
in the Article

# M%&c()c*p,%() R*-.
1 Deep Learning vs Shallow Learning Section 2.1
2 Machine Learning and Anomaly Detection Section 3
3 Legitimacy of Adversarial Samples Section 5.1
4 Minimal Adversarial Perturbations Section 5.1
5 Size of training data Section 5.2
6 Updating ML models with new data Section 5.2

Moreover, we also clarify many misconceptions (summarized in Table 3) that are becoming common due to the
increasing abundance of works that link ML with cybersecurity applications.

After introducing the basic concepts of ML, we provide a concise summary of their applications to detect three
types of cyber threats: Malware, Phishing, and Network Intrusions. Then we elucidate some additional cyberse-
curity areas that can leverage the autonomous capabilities of ML, such as raw-data analysis, alert management,
cyber risk estimation, and threat intelligence. What follows is a description of the fundamental problems a"ect-
ing ML within the speci!c context of operational cybersecurity, which should be known to weigh the pros and
cons of the still-emerging ML solutions. Some of these problems stem from the intrinsic con#icts between the
fundamental principles of ML and the cybersecurity domain and can be addressed only by the joint e"ort of
di"erent worlds: regulatory and authoritative bodies, corporate executives and engineers, as well as the entire
scienti!c community. To this end, we highlight the future challenges of ML in cybersecurity, which we integrate
by comprehensive recommendations addressed at each of these separate worlds. Finally, we present two case
studies of successful—and operational—industrial deployments of ML to counter cyber threats.

This article will hopefully inspire meaningful developments of ML in the cybersecurity domain, laying the
foundations for an increased deployment of ML solutions to protect current and future systems.
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