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a b s t r a c t

Supervisory Control and Data Acquisition (SCADA) systems are computer-based control architectures
specifically engineered for the operation of industrial machinery via hardware and software models.
These systems are used to project, monitor, and automate the state of the operational network through
the utilization of ethernet links, which enable two-way communications. However, as a result of
their constant connectivity to the internet and the lack of security frameworks within their internal
architecture, they are susceptible to cyber-attacks. In light of this, we have proposed an intrusion
detection algorithm, intending to alleviate this security bottleneck. The proposed algorithm, the
Genetically Seeded Flora (GSF) feature optimization algorithm, is integrated with Transformer Neural
Network (TNN) and functions by detecting changes in operational patterns that may be indicative of an
intruder’s involvement. The proposed Genetically Seeded Flora Transformer Neural Network (GSFTNN)
algorithm stands in stark contrast to the signature-based method employed by traditional intrusion
detection systems. To evaluate the performance of the proposed algorithm, extensive experiments
are conducted using the WUSTL-IIOT-2018 ICS SCADA cyber security dataset. The results of these
experiments indicate that the proposed algorithm outperforms traditional algorithms such as Residual
Neural Networks (ResNet), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM)
in terms of accuracy and efficiency.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Industry 4.0, also known as the Fourth Industrial Revolut-
ion (Smith & Fressoli, 2021), began in the early 2000s (Mon-
talban, Iradier, & Member, 2020) as a result of advancements
in internet communication and the development of automated
software and frameworks (Hoffmann Souza, da Costa, de Oliveira
Ramos, & da Rosa Righi, 2021). This has made it possible to
control the manufacturing process using simple computer pro-
grams and microcontrollers, leading to increased customization
of products (Chen & Chang, 2020; Rousopoulou et al., 2022).
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Research is ongoing to develop self-decision-making control sys-
tems for manufacturing processes and to enable remote moni-
toring and control of these processes (Hassan Malik, Alam, Ku-
usik, & Moullec, 2020; Jasperneite, Sauter, & Wollschlaeger, 2020;
Sarker, 2022). SCADA systems are mainly used to control and
monitor (Kumar & S, 2020), components of vital infrastructures
(Kirubakaran, 2020), such as smart grids, pipelines, transporta-
tion, telecommunication, and manufacturing plants (Lee & Hong,
2020). The SCADA systems can also act as a status projector
for monitoring the operation of the Industrial Control Systems
(ICS). It can be integrated with a Programmable Logic Controller
(PLC) and other control technologies like Proportional Integral
Derivative (PID) controllers (V, 2020). SCADA devices have a high
operational speed, enabling real-time data analysis.

The high integration of communication infrastructure in the
smart grid and the connections to the internet (Cherifi & Hamami,
2018; Yang, McLaughlin, Sezer, Yuan, & Huang, 2014) in the
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Fig. 1. The architectural overview of a SCADA system.

Table 1
Comparison between SCADA and IoT.
Parameters SCADA IoT
Communication
medium

Semi-wireless Wireless

Storage Local Cloud
System integration Limited integration to

the peripheral
Easily integrate with
the peripheral

Operational reliability High Low
Suitability Suitable for a big

production line
Suitable for minor
applications

Threat possibility Medium to high High

SCADA system have created a lacuna for cyber-attacks (Altunay,
Albayrak, Ozalp, & Cakmak, 2021; Singh, Ebrahem, & Govindarasu,
2019). A technology designed with the sole purpose of grant-
ing cyber protection for computers, computer networks, data
transmissions, and legitimate access is termed Cybersecurity. The
cyber-security systems are primarily a setup of computer (host)
security systems and network security systems. Each of these
has, at minimum, antivirus software, a firewall, and Intrusion
Detection System (IDS) (Singh, Garg, Kumar, & Saquib, 2015).

SCADA system security concerns are receiving more attention
as the frequency of security incidents against these crucial infras-
tructures is rising (Samdarshi, Sinha, & Tripathi, 2016). Though,
the presence of cyber threats in SCADA systems are comparatively
less compared to the Internet of Things (IoT) systems because the
SCADA networks are not connected to an open internet as the IoT
systems (see Fig. 1).

Yet, the SCADA systems are in the third top position in terms
of attaining frequent threat disturbances amongst the other appli-
cations. The cyber-attacks are targeted at the SCADA systems for
manipulating the operational control of the network. The hackers
may cause damage to the power system when they have control
over the switches, isolators, and relays under the command of the
SCADA systems (see Table 1).

These attacks’ repercussions may jeopardize the safety, avail-
ability, reputation, profitability, and reliability of the targeted
organizations (Liu & Wang, 2022). Traditional SCADA systems
were not created with a cyber-securing protocol, albeit at the
moment some models do have certain firewall security measures
activated. The SCADA systems are still a target for hackers (Altaha,
Lee, Aslam, & Hong, 2020) who exploit the firewall’s weaknesses.
To protect the communication infrastructure of the smart grid, it
is essential to develop a SCADA network intrusion detection solu-
tion that considers both operational requirements and particular
traffic characteristics of SCADA systems (see Table 2).

Motivated by the above facts, the following are regarded as
the encapsulation of the primary contributions of this paper:

• We investigate the application of deep learning techniques
in detecting cyber threats in both industrial and general
settings with a specific focus on SCADA systems used in the
smart grid. We explore the potential of these techniques
in identifying and mitigating cyber-attacks in various en-
vironments, highlighting their effectiveness and limitations.
We also investigate the possible integration of deep learning
techniques with existing security systems to enhance their
performance and overall security.

• We propose an algorithm for detecting cyber intrusions by
analyzing changes in operational patterns that are related to
intrusion activity. To achieve this, we utilize a GSFTNN algo-
rithm that is custom-made for the specific task of intrusion
detection. The algorithm is designed to identify anoma-
lies in the operational patterns and flag them as potential
intrusions.

• We perform extensive simulations using the WUSTL-IIOT-
2018 ICS SCADA cyber security dataset to evaluate the ef-
fectiveness of deep learning techniques in detecting cyber-
attacks in SCADA systems. The simulation process consists
of two stages: binary classification and multiclass classifica-
tion. In the binary classification stage, the data is classified
as normal and attacks. In the multiclass detection stage, the
data is further classified into three categories: exploiting
attacks, aggressive attacks, and normal traffic. The results of
the simulation are used to analyze the effectiveness of the
deep learning techniques and to pinpoint possible areas for
development.

The remainder of the paper is structured as follows; related stud-
ies are presented in Section 2. The methodology is in Section 3
where we give the data description as well as the types of attacks
and the summary of the attacks therein. In Section 4, experi-
mental analysis is presented and finally, the paper’s conclusion
is presented in Section 5.

2. Related studies

In the area of SCADA security, older papers have investigated
the use of machine learning techniques to enhance security. For
example, the authors of Maglaras and Jiang (2014) proposed
a machine learning-based approach for detecting anomalies in
SCADA systems and compares the performance of several differ-
ent algorithms, including neural networks, support vector ma-
chines, and decision trees. The authors proposed a novel method
for detecting intrusions in the SCADA system, which can identify
abnormal activity even if an attacker attempts to conceal it in the
control layer of the system. To assess the effectiveness of the al-
gorithms, supervised machine learning models were examined to
categorize normal and abnormal behaviors in an ICS. The authors

322



S.Y. Diaba et al. Neural Networks 165 (2023) 321–332

Table 2
Some types of attacks involved in the SCADA system.
Attack types Reflection Initiation
Denial of Service Enforcing maximum traffic to the network to block the actual

communication
Poor authentication platform

Ransomware attacks Malfunction and operational block of PLCs Vulnerable hardware
Malicious node attacks Execution of unauthorized operation Web interface with an outdated operating system
Phishing attacks Control over the SCADA system Absence of network isolation and weak authentication
Worm attacks Blocks access/operation No network isolation
Honeypot attacks Reframe the device function Weak servers and vulnerable policies on security

used several machine learning models in examining the models,
and they performed well at spotting abnormalities, particularly
stealthy attacks. According to the findings, random forest out-
performs other classifier algorithms (Mokhtari, Abbaspour, Yen,
& Sargolzaei, 2021).

In Lopez Perez, Adamsky, Soua, and Engel (2018) a machine
learning approach for intrusion detection in SCADA systems was
accessed on a real-world dataset. The authors find that the ran-
dom forest detects intrusion effectively. Older papers demon-
strate that machine learning has been a topic of interest in the
area of SCADA security for at least a decade and that the use of
machine learning for enhancing SCADA security is not a new idea.
The authors of Teixeira et al. (2018) looked at cyber-attacks that
use AI-based techniques and found some mitigation techniques
that can be used to stop such attacks. Also, they examined current
trends in AI-based cyber-attacks and were able to identify the
methodologies and strategies currently used in executing AI-
based cyber-attacks as well as what future scenarios will likely
be conceivable to control such attacks.

Several studies have investigated the use of artificial neural
networks (ANN), convolutional neural networks (CNN), and RNN
to detect and prevent cyber-attacks in SCADA systems. These
methods have been demonstrated to be successful in detecting
and preventing a wide range of cyber-attacks, including malware,
phishing, and distributed denial-of-service attacks (Al Husaini,
Habaebi, Hameed, Islam, & Gunawan, 2020; Balla, Habaebi, Is-
lam, & Mubarak, 2022; Khan, Zhang, Alazab, & Kumar, 2019). A
CNN (P, Hong, Gao, Yao, & Zhang, 2020; Wu, Hong, & Chanussot,
2022) defining the significant temporal patterns of SCADA com-
munication and pinpointing time windows that are vulnerable
to network attacks rather than hand-crafted characteristics for
specific network packets or flows was proposed. The authors
provided a re-training method to manage instances of network
attacks that have never been detected before. The study utilized
actual SCADA traffic datasets and the results demonstrate that the
deep-learning-based technique that has been proposed is suitable
for SCADA systems’ network intrusion detection, attaining high
detection accuracy and offering the capacity to address newly
emerging threats (Altaha et al., 2020; Yang, Cheng, & Chuah,
2019).

The use of deep learning for enhancing the security of SCADA
systems has been a growing area of research in recent years. Stud-
ies that focus on deep learning, suggest that this area of research
has advanced significantly (Gao et al., 2023; Wu, Hong, & Chanus-
sot, 2023), and that deep learning is a promising direction (Yang
& Chen, 2019) for enhancing the security of SCADA systems. With
the increasing use of technology in critical infrastructures, such as
medical devices, power plants, and water treatment facilities (Lee
& Hong, 2020; Pliatsios, Sarigiannidis, Lagkas, & Sarigiannidis,
2020), the need for robust and secure SCADA systems is more
pressing than ever. Cyber-attacks on SCADA systems can result
in significant harm, including disruption of essential services, loss
of sensitive information, and physical damage to equipment. To
address these concerns, many researchers have turned to deep
learning as a promising solution for enhancing the security of
SCADA systems (Avola, Cinque, Fagioli, & Foresti, 2022).

The research in Wang, Harrou, Bouyeddou, Senouci, and Sun
(2022) presented a stacked deep learning-driven method for de-
tecting cyber-attacks. The relevant aspects of the suspicious be-
haviors were thoroughly learned by the proposed stacked deep
learning model, which then distinguishes them from normal ac-
tions. As a result, the stacked deep learning-based intrusion de-
tection approach performs better than some cutting-edge shallow
methods, such as the standalone deep learning models, naive
Bayes, random forests, nearest neighbor, oneR, AdaBoost, and
support vector machine. The research in Jmila and Houda (2022)
focuses more on shallow classifiers, which are still often em-
ployed in machine learning-based IDS because of their maturity
and ease of usage. The authors tested the resistance to vari-
ous adversarial approaches often utilized in the state-of-the-art
of AdaBoost, bagging, decision tree, gradient boosting, logistic
regression, random forest, support vector classifier, and even a
deep learning network. A Gaussian data augmentation defensive
method was implemented and its impact on increasing classifier
robustness was assessed. The findings demonstrate that not all
classifiers are affected equally by attacks, that a classifier’s ro-
bustness relies on the attack, and that depending on the network
intrusion detection scenario, a trade-off between performance
and robustness must be considered.

It is worth noting that while deep learning has shown great
promise in enhancing SCADA security, there are still many chal-
lenges to overcome. For example, deep learning models can be
vulnerable to adversarial attacks (Jmila & Houda, 2022; Ozdag,
2018) and the quality of training data can significantly impact
the performance of these models. Nevertheless, the research in
this area suggests that deep learning is a promising direction for
enhancing the security of SCADA systems. It has the potential
to enhance the security of SCADA systems in a variety of ways,
including detecting and preventing cyber-attacks, mitigating sys-
tem failures, protecting sensitive information, and enhancing the
security of communication networks. However, as with any new
technology, there are still many challenges to overcome, such as
improving the robustness of deep learning models, addressing
the issue of data scarcity, and developing secure deep learning
systems that are resistant to adversarial attacks.

3. Methodology

Addressing cyber intrusion in SCADA is the main motive of the
proposed algorithm and it is implemented in this paper with a
deep learning-based approach. The algorithm is a hybrid of GSF
and TNN and it is compared to ResNet, RNN, and LSTM models for
identifying the best-performing algorithm in detecting intrusions
in SCADA systems. Washington University St. Louis-Industrial IoT-
2018 (WUSTL-IIOT-2018) dataset for ICS SCADA cybersecurity
used in Ahakonye, Nwakanma, Lee, and Kim (2023) is the dataset
used in this study to examine the efficiency and accuracy of the
above-mentioned algorithms.

3.1. Data

The WUSTL-IIOT-2018 ICS SCADA is a collection of network
traffic data captured from a real-world ICS that was intentionally
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Fig. 2. The summary of attacks available in the dataset.

subjected to cyber-attacks. The dataset was created to evaluate
intrusion IDS in cyber–physical systems. It was collected from
a water treatment testbed in the United States, a representative
example of a real-world industrial control system. To generate the
intrusion data, the testbed is connected to a network monitoring
system accompanied by a scan tool, and its features are summa-
rized to form a dataset. The following are the attacks available in
the dataset along with their data generation procedure.

3.1.1. Port scanner attack
The port scanner attacks are included in the SCADA system for

observing its active ports in the operation and control process.
To generate such attacks, certain targeted nodes are generated at
different frequencies of time using the Nmap tool. At the same
time, the Transmission Control Protocol (TCP) connection is also
partially disabled for allowing the attack to generate the data
attributes in the testbed.

3.1.2. Address scanner attack
The address scan attacks are generated to observe the Modbus

server address. This allows the attacker to reach the connected
hardware devices of the SCADA system for implementing the
malfunctioning algorithm. In general, the SCADA systems are
engaged with only one Modbus address and it gives an open path
to the intruder for generating different types of attacks when it
is tracked.

3.1.3. Device identification attack
The attackers are creating the device identification attack to

find out the specification and model numbers of the connected
devices to the SCADA network. It can be produced by tracking
the Modbus slave identification of the targeted SCADA system.
Thus, the vulnerable hardware devices must be verified regularly
in the SCADA systems. In some cases, device identification attacks
are avoided by having an additional authentication process.

3.1.4. Aggressive model device attack
In the aggressive mode of device identification attack, the

information of all the slave buses is collected along with the Mod-
bus slave identification. These kinds of attacks are employed in
the SCADA network to freeze all the connected hardware without
sending any malicious nodes. In real-time applications, each con-
nected hardware is implemented with a separate authentication
process. This improves the complexity of the security algorithm
and restricts the success rate of aggressive mode attacks.

Table 3
Sample of the employed dataset.
Sport Tpkt Tbyte Spkt Dpkt Sbyte Tgt
143 2 180 2 0 180 0
68 2 684 2 0 684 0
0 1 60 1 0 60 0
61845 20 127 10 10 644 0
61846 20 127 10 10 644 0
44287 6 372 4 2 248 1
48456 20 128 12 8 776 1
48458 20 139 12 8 782 1
44460 20 128 12 8 776 1
61850 12 780 6 6 396 0
61849 12 780 6 6 396 0
61848 18 1152 10 8 644 0

3.1.5. Exploit attack
In exploit attacks, information about the operational state

of PLC coils is obtained to understand how the SCADA system
is currently functioning. This allows attackers to replicate the
manufacturing process and produce identical products. A system
for generating and using inspection records was used to observe
the movements of normal and malicious nodes in a testbed model
during the dataset generation process. The testbed model was
made to run continuously for 25 h to monitor the changes in the
network. Fig. 2 presents the summary of attacks available in the
dataset utilized.

Table 3 includes several features that describe various aspects
of network communications. One of these features is the source
port (sport), which represents the number of unique source ports.
Another feature is the total packets (TotPkt), which represent
the total number of packets involved in the communications.
Additionally, the total bytes (TotBytes) feature indicates the to-
tal number of bytes transferred. Two other features included in
Table 3 are the source packets (SrcPkts) and destination packets
(DstPkts). These features represent the number of packets trans-
mitted from the source and the number of packets received at
the destination, respectively. Finally, the Source bytes (SrcBytes)
feature indicates the number of bytes transferred from the source
to the destination during communications. Together, these fea-
tures provide a comprehensive picture of the different aspects
of network communications that can be used to analyze and
understand network traffic patterns (see Fig. 3).

3.2. Preprocessing

The total number of traffic data available in the dataset is
7 037983 counts. In that 427206 instances are attack-oriented
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Fig. 3. The design display of the proposed model.

Table 4
Summary of the dataset.
Data type Timetable
Number of variables 6
Number of rows 7037983
Number of variables with missing 0
Number of variables with duplicate 6
Timestamp is regularly spaced True
Timestamp has missing False
Timestamp has duplicates False
Timestamp sorted True

and the remaining 6610777 belong to the normal traffic cate-
gory. In the proposed algorithm, a dataset split ratio of 70:30
is employed after cross-validation of five folds is implemented
in the phase 1 simulations, the proposed algorithm is utilized
to identify the normal and attack traffics, and in phase 2, the
proposed algorithm was experimented to categorize the traffics
as normal traffic, exploiting attacks and aggressive mode attack.

The workflow followed in the proposed algorithm does not
have any pre-processing step as the data available in the dataset
are already pre-processed using the data cleaning and labeling
process. However, the raw data values collected from the network
monitoring tools may have some missing and error data due to
sudden fluctuations in its operation. Therefore, a data cleaning
(data cleaner app in MATLAB 2022b) process was used to ma-
nipulate the missing values in the dataset. The data cleaner app
in MATLAB 2022b is an interactive tool for locating messed-up
column-oriented data, cleaning numerous variables of data at
once, and improving the cleaning process. A total of 7 037983
samples and 6 variables dataset was loaded into the data cleaner
app. We set the data cleaner app to use only standard indicators
to detect missing values such as not a number (NaN), not a
time (NaT), and cell of character vectors. The remove missing
method is used to remove the data rows with missing entries.
The outliers are another type of error usually present in the
data with an unusual entry. To handle it, we used the fill outlier
cleaning method with linear interpolation as the filling method.
The method of detection is the moving mean and the threshold
was set at 3. Tables 4 and 5 explore the data summary after
processing.

3.2.1. Feature optimization
The feature optimization process is employed in this work

to handle the abnormalities in the available dataset. In some
cases, the feature attributes may remain almost the same on
different attack data. Hence it worsens the misclassification and

reduces the precision level of the classifier system. A GSF feature
optimization algorithm is utilized in the proposed algorithm to
avoid such limitations. GSF is an upgraded version of an artificial
flora optimization technique that selects the connecting point
relevancy based on the seed-growing property of the respective
points. The GSF model is equipped with a genetic algorithm for
estimating the best seed-growing points. The genetic algorithm
estimates the location by analyzing the propagation distance
among the points along with the plant weights. The propagation
distance dy of the seeds is predicted using the equation written
in (Cheng, Wu, & Wang, 2018; Selvarajan, Shaik, Ameerjohn, &
Kannan, 2020).

dy = dy1 (ω ↑ j1) + dy2 (ω ↑ j2) (1)

where j1 and j2 stand for searching coefficients. The uniform
random numbers between 0 and 1 are generated by rand and
denoted by ω . The grandparent’s propagation distance and the
parent’s propagation distance are denoted by dy1 and dy2 respec-
tively. The two main steps of the flora optimization technique
are the spreading and selection behavior. Thus, the position of
the plant is determined using the matrix Pi,y, the dimension is
denoted by i and y represents the total number of plants in the
flora. The equation for the spreading process can be written as

Pi,y = ω ↑ d (2 ↓ d) (2)

where d is for the maximum limit area. Since the weight value
may be determined by the standard deviation of the propagation
distance between the parent plant and offspring plant when
updating the plant position, we can express the equation as

ε =

)[N
i=1

]
Pi,y ↓ P ↔

i,y
⌊2

N
(3)

The present position of the offspring plant is estimated as

P ↔
i,y→j = Di,y→j + Pi,y (4)

where, the position of the original plant is denoted by Pi,y, j is
the maximum number of seeds that a single plant can produce,
Di,y→j is for the random estimation of Gaussian distribution value
with zero mean and j variance. The final best estimation of the
offspring plant is estimated by the probability of survival given
as

P =

⌋⌋⌋⌋⌋⌋⌋⌋

⌈⌉⌉{F
}
P ↔
i,y→j

⟨

Fmax

⌋⌋⌋⌋⌋⌋⌋⌋
→ Qy→j↓1

x (5)
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Table 5
Data summary after preprocessing.

Missing count Minimum Maximum Mean Median Mode Standard deviation
Time 0 00:00:00 69:46:38 34:53:19 53.09 00:00:00 20000
Sport 0 0 42238 0.00003589 35458 354 0.00621
TotPkt 0 1 96057 9.4518 2 2 66196
TotBytes 0 60 98180744 0.0003317 124 124 4.156e↓5
SrcPkts 0 1 96057 8.0302 2 2
DstPkts 0 0 4881 1.6534 0 0 35.7538
SrcBytes 0 60 6942046 915.1435 124 124 4.81e↓4

The selective probability is represented by Qx and the value
of Qx must fall within the range of 0 and 1. According to the
authors of Cheng et al. (2018), having a higher value of Qx is
desirable for problems that can easily get into a local optimal
solution. P ↔

i,y→j represents the fitness of the jth solution. Fmax

represents the flora’s maximum fitness. The best characteristics
among the overall attributes are chosen from this phase and sent
to the classification step. In doing so, the classifier automates the
rule-generation process to predict the class label. This improves
classification accuracy.

3.3. Classifier

Classifiers are like algorithmic filters used to segregate the
given data samples into their respective classes based on the
instructions learned from their training samples. The learning
process of a classifier model can be refined by implementing a
customized preprocessing or feature selection model. The neural
network algorithm assigns the testing sample into a particular
class based on their similarity score calculated from the compari-
son. The proposed algorithm explores the following classifiers on
the SCADA cyber-attack dataset to find the most suitable model
for the real-time application. Classifiers are used to classify data
samples into different classes based on the instructions learned
from the training samples. Many different types of classifiers can
be used for various applications. Some common types include:

Decision Trees: These classifiers use a tree-like structure to make
decisions. Each internal node represents a feature of the input
data, and each leaf node represents a class label. The algorithm
starts at the root node and follows the branches based on the
feature values of the input data until a leaf node is reached, which
determines the class label of the input.

Naive Bayes: This is a probabilistic classifier that makes class
predictions based on the probability of each class given the input
features. The ‘‘naïve’’ part of the name refers to the assumption
that the features are independent of each other, which is not
always true in real-world data.

Neural Networks: These classifiers use a network of artificial
neurons to make class predictions. The neurons are organized into
layers, with the input layer receiving the input features, one or
more hidden layers processing the information, and the output
layer producing the class predictions. The network learns to make
accurate predictions by adjusting the weights of the connections
between the neurons.

Random Forest: This ensemble technique combines different
decision trees to make class predictions. Each tree is trained using
a different random subset of the input data, and the consensus of
all the trees is used to get the final prediction.

Support Vector Machine: This is a type of linear classifier that
finds the best boundary (or hyperplane) to separate the input data
into different classes. The algorithm is based on finding the line
that maximizes the margin, which is the distance between the
boundary and the closest points from each class.

In the case of SCADA cyber-attack dataset, it is crucial to
find the most suitable model that can quickly and accurately
identify cyber-attacks in real-time. The proposed algorithm may
compare the performance of these different classifiers on the
dataset and select the one that achieves the highest accuracy or
lowest false-positive rate.

3.4. Transformer neural network

The TNN algorithm was proposed in the year 2017 to over-
come the limitation of computational complexity in many neural
network algorithms. It is achieved by utilizing the Graphic Pro-
cessing Unit (GPU) sources effectively by processing the input
data simultaneously. Therefore, the time required for the training
process is also limited in the TNN. TNNs are structured with
a multi-headed attention layer for learning the input data that
allows processing the data in a parallel process. However, in the
traditional RNN, the values are considered in sequential order.
The TNN is very efficient in natural language processing problems
and data mining problems, the architecture is shown in Fig. 4. The
encoder and decoder are the two major blocks involved in the
TNN architecture and it has a positional encoding block right in
front of the encoder block. The role of the positional embedding
block is to determine the value of the inputs denoted by (x) at
different attributes’ places.

In the proposed algorithm the features are counted from
‘F1 . . . F5’. The value of x at F1may not have the same weight at
F3. The values on certain features may remain the same even if
the output classes are different. The positional encoding model
addresses such issues and assigns the weights of x into a unique
parameter while storing it in the neurons of the TNN. The encoder
consists of multi-head attention and a feed-forward block, where
the multi-head attention (Selvarajan et al., 2020) has a pair of
sub-layers. The input parameters are learned by the multi-head
attention block in terms of queries, keys, and range format. The
collected parameters are operated with a learnable linear trans-
formation for n times. A constant value is applied in this block as
a tuning parameter for operating it to the product of the query
with all keys. The output values from the blocks are observed
from a SoftMax function from the value of its corresponding
weight. The attention outputs are linearly gathered to form a final
output where a normalization step is added. Hence the residual
connection of the input data is estimated.

Qini = xWQ
inp (6)

Kinp = xWK
inp (7)

Vinp = xWV
inp (8)

where, x represents the input, and W represents the customized
constant value of the input. The query, keys, and value parameters
of the input are represented by Q, K, and V respectively.

headinp = ϑ
]
Qinp → Kinp → Vinp

⌊
(9)

ϑ
]
Qinp → Kinp → Vinp

⌊
= softmax

⟩
Qinp → KT

inp↗
d

/
Vinp (10)
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Fig. 4. The architecture of the TNN.

norm = x + headinp (11)

head2inp = norm
]
x + headinp

⌊
(12)

The output attributes obtained from the multi-head attention
blocks are moved to a feed-forward network (FFN) for observing
an improved output. The normalization process is also included
in the output of FFNs and the value of FFN is analyzed as follows

FFN = ϖ (ϱ)W1 + b1 (13)

xout = norm(head2inp + FFN) (14)

where ϖ represents the rectified linear product and ϱ is for the
gated recurrent block.

3.5. Recurrent neural network

The RNN models were developed to regularize the data move-
ment inside the neural network. In the traditional neural network
models, the input parameters were allowed to move from one
neuron to another neuron without considering anything. As a
result, some neurons are unaware of the status of other attributes
taken from the input. The RNN regularizes this by making all the
attributes follow a sequence movement inside the neural net-
works. The involvement of the hidden layer makes the neurons

store the hidden information regarding the previous attributes,
so a small amount of data storage is allocated to each neuron. In
some cases, the RNN models are implemented with more than
one hidden layer block. There the weight and bias of each hidden
will get change from each other to store the different feature
information from the given input. Hence the layers included
between the input and output layers are independent and do not
consider the formation of other hidden layers. The independence
of hidden layer weights and biases is making the RNN more
complex than their previous models. In some applications, the
weights and biases are regularized with the same value, improv-
ing computational efficiency. The current state of the neurons is
analyzed by

Curs = f (Curs↓1, Inps) (15)

where Curs represents the present state and Inps denotes the
input state. The activation function of the current state is applied
as Eq. (15) and the output is predicted by Eq. (16).

Curs = tanh
]
WrecCurs↓1 + WinpInps

⌊
(16)

Outs = tanh (WoutCurs) (17)
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Fig. 5. The architecture of a residual learning.

3.6. Long short-term memory

The LSTM network (Karim, Fazle, Majumdar, & Darabi, 2019)
was developed to address the vanishing and exploding gradients
problems found in RNN. The LSTM networks were trained to
erase the irrelevant information stored in the neuron from the
given input. It is achieved by implementing the network with a
customized activation function called gates. The internal cell state
of the neurons is having the useful information extracted from the
training data which is required for the upcoming operation. The
LSTM network reads the state of the input gate, modulation gate,
forget gate, and output gate by calculating it with element-wise
multiple vectors of the given input. Then the neurons will erase
the information of the forget gate and combine the information
of the input and modulation gate to form output as

Curs =
]
Ginp → Gmod

inp
⌊
+ (Gfor → Curs↓1) (18)

where Ginp takes gate input, Gmod
inp stands for gate-modulated input

and it is Gfor for forget gate

3.7. Residual network

ResNet models were proposed to observe more complex fea-
tures from the given input attributes with a greater number
of hidden layers. Each layer in the ResNet is allowed to take
some specific feature from the given input. The main idea behind
ResNet is to allow the network to learn residual functions, rather
than learning the full mapping from input to output. In a residual
network, each layer has a shortcut connection that bypasses one
or more layers and directly connects the input of the current layer
to the output. This allows the network to learn the residual, or
the difference between the input and the output of the layer,
which is easier to optimize than the full mapping. The residual
functions are then added to the output of the corresponding
layer, allowing the network to effectively learn the full mapping.
ResNet has shown impressive results on a wide range of com-
puter vision tasks, including image classification, object detection,
and semantic segmentation. Its architecture has inspired many
subsequent neural network models and has become a benchmark
for deep learning research (He, Zhang, Ren, & Sun, 2016a, 2016b).
However, in some cases, the ResNet was giving poor accuracy by
having some unwanted features in its operations. It is addressed
by the recent year ResNets by adding dropout and regularization
blocks. The architectural view of the ResNet is shown in Fig. 5
with its operational outcome.

4. Experimental analysis and discussion

The experimental work is performed in two phases, binary
classification, and multiclass classification. In binary classification,
the given information is segregated as normal and attacks. In
multiclass detection, the data are classified as exploiting attacks,
aggressive attacks, and normal traffic. The performances of the

Table 6
The hyperparameter setting.
Parameter Total
Validation scheme Cross-validation
Cross-validation folds 5 folds
Epoch 1000
Activation functions Softmax, ReLu
Maximum number of split 100
Split criterion Gini’s diversity index

Fig. 6. Phase 1 performance analysis on the verified algorithms.

GSFTNN, RNN, LSTM, and ResNet models are verified with their
accuracy, precision, recall, detection rate, and f1 score in both
phases (see Tables 6 and 7).

Tables 8 and 9 are representing the performances of the veri-
fied algorithms in phase 1 and phase 2 respectively.

The results presented in Fig. 6 demonstrate that the proposed
GSFTNN model achieves a high accuracy of 98.54%, indicating its
ability to correctly classify a significant majority of the cases.
In comparison, the RNN model achieves an accuracy of 94.22%,
while the LSTM and ResNet models exhibit accuracy rates of
95.98% and 97.7%, respectively. The proposed GSFTNN model also
shows an average precision of 98.7% across all normal and attack
categories, outperforming the RNN (93.64%), LSTM (96.3%), and
ResNet (98.1%) models. The recall values were 98.42% (Proposed
GSFTNN), 93.73% (RNN), 95.78% (LSTM), and 97.54% (ResNet). The
F1 score provides a well-rounded evaluation of system perfor-
mance. In the case of the proposed GSFTNN model, the F1 score
is reported as 98.61%, with the RNN, LSTM, and ResNet achieving
scores of 94.38%, 96.17%, and 97.89%, respectively.

The result depicted in Fig. 7 indicates the proposed GSFTNN
model attained an accuracy of 99.12%, outperforming the compar-
ative models, which attained accuracies of 96.4% (RNN), 97.25%
(LSTM), and 98.1% (ResNet), respectively. Additionally, the pro-
posed model attained an average precision of 99.26%, while the
precision values for RNN, LSTM, and ResNet were 96.82%, 97.57%,
and 98.33%, respectively. The recall values were 98.85% (Proposed
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Table 7
Data split up into phases.
Phase 1 – (2 Class) Phase 2 – (3 Class)
Classes Training Testing Classes Training Testing
Normal traffic 3 966466 2644311 Normal traffic 3 966466 2644311
Attacks 256324 170882 Exploiting attacks 47769 31845

Aggressive mode attacks 208222 138814

Table 8
Performance of the verified algorithms on the phase 1 dataset.
Algorithms Accuracy Precision Recall F1 score
GSFTNN 98.54 98.7 98.42 98.61
RNN 94.22 93.64 93.73 94.38
LSTM 95.98 96.3 95.78 96.17
ResNet 97.7 98.1 97.54 97.89

Table 9
Performance of the verified algorithms on the phase 2 dataset.
Algorithms Accuracy Precision Recall F1 score
GSFTNN 99.12 99.26 98.85 99.2
RNN 96.4 96.82 93.73 96.5
LSTM 97.25 97.57 96.97 97.41
ResNet 98.1 98.33 97.74 98.26

Fig. 7. Phase 2 performance analysis on the verified algorithms.

GSFTNN), 93.73% (RNN), 96.97% (LSTM), and 97.74% (ResNet).
Finally, the GSFTNN model achieved an F1 score of 99.2%, while
the RNN, LSTM, and ResNet models scored 96.5%, 97.41%, and
98.26%, respectively.

Fig. 8 indicates the accuracy comparison between the phase
1 and the phase 2 analyses. The phase 2 accuracies are compar-
atively high in all the algorithms because the attack classes in
phase 2 contain only 2 attacks but in phase 1 the data attack
model count is 5. The two major attack classes are considered
in phase 2, whereas in phase 1 the minor classes with fewer
sample counts were considered for the analysis. It indicates that
all the classifiers are performing well when their sample counts
are high for the training process. The phase 1 accuracy can also
be improved if the remaining 3 data sample counts are averaged
using some data augmentation process.

The performance of the proposed GSFTNN model shows better
accuracy on both phase operations. This is achieved because of its
multi-head attention block. At the same time, the performance
of its previous model RNN shows a lesser accuracy rate when
compared to all the other models due to its sequential operation
process. Also, the performances of the LSTM show a slighter

Fig. 8. Comparative analysis of accuracies at both phases.

Fig. 9. Comparative analysis of training time with both phases.

improvement in its experiment by eradicating unwanted infor-
mation from its neurons. The ResNet models are very efficient in
general but their nature of having more layer count makes the
model suffer from getting the optimum features for the analytic
process. The training time attainments of the verified algorithms
are shown in Fig. 9 where the performances of GSFTNN indicate a
betterment due to the nature of the simultaneous operation. All
the algorithms are showing a betterment in the phase 2 model
where the sample counts are comparatively minimum than the
phase 1 operation.

Zooming on to measure the effectiveness of the proposed
algorithm, further comparative analysis of the four (4) deep learn-
ing algorithms was conducted. Figs. 10 and 11 illustrate the
confusion matrix and the receiver operating characteristic (ROC),
respectively.

A confusion matrix is a table that is used to evaluate the
performance of a classifier by comparing the predicted classes
with the true classes. It is a useful tool for understanding the
strengths and weaknesses of a classifier, and it can be used
to identify areas for improvement. The matrix is made up of
four quadrants that represent the number of true positives, false
positives, true negatives, and false negatives. These values can
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Fig. 10. (a) Confusion matrix of the GSFTNN; (b) Confusion matrix of the ResNet; (c) Confusion matrix of the LSTM; (d) Confusion matrix of the RNN.

Fig. 11. (a) ROC of the GSFTNN; (b) ROC of the ResNet; (c) ROC of the LSTM; (d) ROC of the RNN.

Table 10
Comparison of existing algorithms.
Reference Year Dataset Algorithm Accuracy Recall F1 score Precision
Altaha et al. (2020) 2020 Generated dataset

Generated dataset
Generated dataset
Generated dataset
Generated dataset

CNN
FNN
GRU
LSTM
RNN

98.1
98.8
98.1
98.0
98.0

Chen, Dewi, Huang, and Caraka (2020) 2020 Bank marketing dataset
Bank marketing dataset
Bank marketing dataset

RF+SVM
RF+KNN
RF+RF

89.0
88.6
90.99

91.37
90.8
91.22

97.91
96.91
98.10

Khoei, Aissou, Hu, and Kaabouch (2021) 2021 CICDDoS-2019
CICDDoS-2019
CICDDoS-2019
CICDDoS-2019

KNN
RF
Stacking
Naïve Bayes

94.6
94.0
96.0
87.0

94.4
94.0
97.3
77.1

Abdelkhalek and Govindarasu (2022) 2022 WUSTL-IIoT-2018 ANN 98.40 98.02 98.97 99.57
2023 WUSTL-IIoT-2018 GSFTNN 99.12 98.85 99.2 99.26

then be used to calculate various performance metrics such as
f1 score, recall, precision, and accuracy. A binary classifier sys-
tem’s performance as the discrimination threshold changes are
graphically depicted by a ROC curve. The genuine positive rate
(sensitivity) against the false positive rate (specificity) at various
threshold settings is plotted on the ROC curve. By comparing a
classifier algorithm’s performance to that of a random guessing
classifier, it is frequently possible to gauge how well it performs.
The area under curve (AUC) is a frequently used performance
statistic for classifiers. While a classifier that performs no better
than random guessing has an AUC of 0.5, a perfect classifier has
1. ROC curves are frequently used to compare the effectiveness
of various classifiers or the effectiveness of a single classifier in
various scenarios (see Table 10).

5. Conclusion

Cybersecurity in the smart grid has become critically impor-
tant on a multi-stakeholder scale and worldwide for academics

and entrepreneurs. The danger to smart grid cyber security is
significantly expanding in scope as energy systems gain pervasive
intelligence and communications capabilities throughout their
operational processes. Numerous SCADA networks have been the
target of significant cyber-attacks that badly damaged the opera-
tional control circuits and related components. In other instances,
a cyber-attacker creates a knockoff by imitating the distinctive
algorithmic flow embedded into the SCADA network. The internet
and wireless connectivity have made it possible for hackers to
quickly achieve their objectives in several industries. As a result,
we proposed a GSFTNN approach with a GSF feature selection
model to develop a trustworthy deep learning algorithm. Exten-
sive experiments were conducted using the WUSTL-IIOT-2018 ICS
SCADA cyber security dataset. The experimental results reveal
that the proposed GSFTNN algorithm surpasses RNN, LSTM, and
ResNet in both accuracy and training time. The proposed algo-
rithm’s adeptness in categorizing data and predicting outcomes
expeditiously serves as a testament to its robustness. The re-
sults provide empirical evidence that the GSFTNN algorithm is a
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more efficacious and efficient algorithm than the aforementioned
algorithms. Performance comparison of the proposed GSFTNN
model to its latest counterparts’ results as in Ahakonye et al.
(2023) will be investigated in the future. In addition, we will also
focus on the key factors such as spectral variability in SCADA
systems that could influence the model’s performance. We will
further improve the model’s generalization ability to unfamiliar
scenarios.
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