
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

ICSFuzz: Manipulating I/Os and Repurposing
Binary Code to Enable Instrumented Fuzzing in

ICS Control Applications
Dimitrios Tychalas, NYU Tandon School of Engineering; Hadjer Benkraouda

and Michail Maniatakos, New York University Abu Dhabi
https://www.usenix.org/conference/usenixsecurity21/presentation/tychalas

ICSFuzz: Manipulating I/Os and Repurposing Binary Code
to Enable Instrumented Fuzzing in ICS Control Applications

Dimitrios Tychalas1, Hadjer Benkraouda2 and Michail Maniatakos2

1NYU Tandon School of Engineering, Brooklyn, NY, USA
2New York University Abu Dhabi, Abu Dhabi, UAE

Abstract
Industrial Control Systems (ICS) have seen a rapid prolif-
eration in the last decade amplified by the advent of the 4th
Industrial Revolution. At the same time, several notable cyber-
security incidents in industrial environments have underlined
the lack of depth in security evaluation of industrial devices
such as Programmable Logic Controllers (PLC). Modern
PLCs are based on widely used microprocessors and deploy
commodity operating systems (e.g., ARM on Linux). Thus,
threats from the information technology domain can be read-
ily ported to industrial environments. PLC application bi-
naries in particular have never been considered as regular
programs able to introduce traditional security threats, such
as buffer overflows. In this work, we investigate the feasibil-
ity of exploiting PLC binaries as well as their surrounding
PLC-specific environment. We examine binaries produced
by all available IEC 61131-3 control system programming
languages for compilation-based differences and introduced
vulnerabilities. Driven by this analysis, we develop a fuzzing
framework to perform security evaluation of the PLC binaries
along with the host functions they interact with. Fuzzing such
non-executable binaries is non-trivial, as they operate with
real-time constraints and receive their inputs from peripher-
als. To prove the correctness of our fuzzing tool, we use a
database of in-house developed binaries in addition to func-
tional control applications collected from online repositories.
We showcase the efficacy of our technique by demonstrating
uncovered vulnerabilities in both control application binaries
and their runtime system. Furthermore, we demonstrate an
exploitation methodology for an in-house as well as a regular
control binary, based on the uncovered vulnerabilities.

1 Introduction

Industrial Control Systems are an integral part of modern
society, witnessing a rapid expansion in the era of Industry
4.0 [31]. Computerized control systems are solely responsible
for moderating a wide range of industrial sectors, including

critical infrastructures such as power grids, oil and gas indus-
tries, transportation and water treatment facilities. Possible
suspension of their operation may cause severe complications
which translate to significant loss of revenue, environmental
disasters or even human casualties [22, 47].

Since safety and security are tightly correlated in ICS en-
vironments, the recent cyberattacks that targeted industrial
settings have showcased tangible threats to contemporary in-
dustrial environments. The most prominent of these incidents,
Stuxnet [30], drew widespread attention when discovered,
as the first potential case of cyberwarfare. In the following
years more incidents including the 2015/2016 cyberattacks
on the Ukrainian power grid [33, 62] and the 2017 attack
on petrochemical facilities in Saudi Arabia [42] have helped
piece together a pattern of industrial exploitation through cy-
bersecurity, not a simple observation of isolated incidents.
From a financial standpoint, cyberattacks average an esti-
mated $350,000 in damages per attack, reaching $500,000 for
larger companies [40]. Consequently, the ICS cybersecurity
market is rapidly expanding, from a moderate market size of
$1.5 billion in 2018 to a projected $7 billion by 2024 [49].

A primary contributor to this increase in ICS cybersecu-
rity incidents is the ongoing merge of traditional Operational
Technology (OT) with modern Information Technology (IT).
Opting for cost reduction, increased flexibility and adaptabil-
ity of ICS devices, manufacturers turn to established software
solutions contrary to the traditional in-house firmware devel-
opment model. As a result, general-purpose user and system
software deployment in ICS has experienced rapid expansion,
with solutions such as Embedded Linux and Nucleus OS be-
coming a popular alternative to aged monolithic firmware
designs [21]. This integration does not come without conse-
quences though, since traditional threats to IT systems leak
over to ICS environments [54]. Such threats have been re-
ported at an increasing rate during the past years [16] expos-
ing this pattern to the ICS community and at the same time
attracting attention to an alarming situation.

ICS perform functions on physical processes through Pro-
grammable Logic Controllers (PLC), dedicated computing

USENIX Association 30th USENIX Security Symposium 2847

platforms whose main purpose revolves around receiving, pro-
cessing and transmitting arithmetic and logic values pertinent
to the process itself, such as temperature, pressure etc. The
process engineer develops this control logic in an assortment
of specialized programming languages, standardized under
IEC 61131-3 [51], which in turn is compiled into the control
application binary 1 that performs the control function. The
binaries themselves have been the target of numerous research
efforts, initially targeting the correct function of the binary
through verification techniques [14, 15, 41] and evolving into
security evaluation the last few years [19, 38, 50].

All efforts though focus on the logic process, detecting
whether it performs correctly or if it introduces threats to the
host industrial setting through modification or exploitation.
These binaries, however, are merely a collection of assem-
bly instructions subject to programming or compile-induced
errors [6, 12, 59]. To the best of our knowledge, security eval-
uation of control applications as typical applications and the
potential effect on their host system remains an open problem.
Since the host in many cases can be a general-purpose OS, the
exploitation of a locally executed binary can lead to system
compromise, with situations varying from denial of service
to full system seizure.

PLC application building tools have traditionally been re-
stricted to each manufacturer, with industry leaders such as
Allen-Bradley and Siemens providing full-stack development
frameworks for their specific products with the exception of
Codesys which is compatible with multiple platforms for var-
ious vendors. These tools are typically closed-source with
limited documentation which inherently increases the diffi-
culty in evaluating their function from the security research
community. This includes the control application compilation
process, which is a similarly unknown factor, where research
and practice have showcased tangible threats induced to pro-
grams during compile-time [34, 36].

Similarly, the PLC application binaries themselves are built
in unique formats based on the vendor. As such, dynamic
analysis of these binaries must be performed in a case-by-
case basis, without the possibility of a universal approach or
automation. Symbolic execution has been proposed as a po-
tent evaluation methodology [23], however due to the unique
binary format researchers followed an indirect way to en-
able such an analysis by translating bytecode to a high-level
general-purpose program language. Fuzzing is equally insuf-
ficient in handling control applications, with no published or
recorded use cases in academic literature or practice: Control
binaries follow a specialized execution process handled by
their runtime environment and their input delivery is bound
by real-time constraints.

In this paper we showcase a novel approach for security
evaluation of PLC control applications through fuzzing. Our
approach is initiated by a manual research step for a compre-

1The terms control application, control binary and PLC binary will be
used interchangeably throughout the paper.

hensive assessment of the various IEC 61131-3 languages and
the effect their unique features and compilation techniques
impose on the produced binaries. Driven by this assessment,
we develop a fuzzing framework for discovering potential vul-
nerabilities in PLC applications and their host software. Our
work is a first effort on assessing a unique class of binaries
with a contemporary evaluation method such as fuzzing.

In summary, our contributions are as follows:
• We analyze the composition of control applications

based on all available IEC 61131-3 languages, highlight-
ing the unique characteristics and intricacies introduced
by different languages and compiling tools.

• We develop a fuzzing framework for PLC applications
to uncover existing binary vulnerabilities that would lead
to crash or exploitation.

• We extend our fuzzing framework to include system
functions that belong to the host software of the PLC
application.

• We develop and consolidate a collection of vulnerable
PLC binaries which can be used by future researchers in
industrial control systems security.

• We demonstrate the usefulness of our methodology by
uncovering vulnerabilities in both synthetic and regu-
lar control binaries and we demonstrate exploitation
methodologies to compromise the host system and/or
the industrial process.

2 Preliminaries

2.1 Problem Formulation

The principal questions we answer are:
• Given that PLC binaries are compiled from high-level PLC

programming languages using proprietary compilers, can
security vulnerabilities be introduced?

• PLC binaries are loaded by proprietary runtimes executing
as a process of the PLC operating system. Given that these
runtimes are compiled from regular C/C++ source code,
how vulnerable are they?

• Given that the PLC binaries execute bounded by real-time
constraints and with heavy use of GPIO, can fuzzing be
leveraged for uncovering potential vulnerabilities?
Since PLCs are increasingly evolving to common general-

purpose computing systems, the existence of a traditional
vulnerability, e.g. a stack derived buffer overflow in an oth-
erwise correctly functioning code sequence, introduces ad-
ditional threats that could lead to system compromise or ter-
mination of operation. These situations are added on top of
possible operations derived and network induced threats that
have been a popular topic of ICS security research in the past
few years [17, 50, 57].

2848 30th USENIX Security Symposium USENIX Association

Figure 1: Codesys-based PLC software stack.

2.2 Threat Model
The assumed scenario is as follows: An industrial setting
where a PLC is controlling an operational function, receiving
inputs from sensors and ensuring correct operation through
actuators, and is a host to a program which is responsible
for mediating the application of control logic. The device is
network connected to provide access to engineers through a
Human Machine Interface (HMI). Sensors and actuators also
belong to the network of the industrial setting, communicating
directly with the device. In our threat model, the attacker can
deliver some form of input data to the target PLC. Examples
of input data delivery are as follows:
• Man-in-the-middle attack on network packages carrying

values delivered to the PLC binary from an HMI terminal.
The HMI side of the Codesys framework has the capability
to force values on any variable present in the PLC binary
in real time [24].

• Man-in-the-middle attack on the sensor that provides the
input. This type of attack has been explored in depth in
many ICS-related publications [57].

• Firmware trojan that can covertly enable data manipula-
tion [52, 53]. Firmware modification has been identified as
one of the principal exploitations in the 2014 attack on the
Ukrainian power grid [8].

• Evil maid scenario in which a malicious insider can manip-
ulate values on the PLC binary through an unsupervised
HMI terminal [1].

2.3 Codesys Runtime
Codesys is a multi-platform development environment for pro-
gramming control applications according to the international
industrial standard IEC 61131-3. We chose Codesys as our
initial target due to the popularity the platform has gained in
recent years as well as its multi-platform compatibility. Over
250 manufacturers from diverse industrial sectors include the

Thread name Function Interaction
Codesys3 Main process System
KBUS dbus System monitored comm. bus System
ModbusSlaveTCP Modbus TCP comm. Network
0ms_Watch_Threa Peripheral event polling System
WagoIpcMsgComm Inter-process comm. System
Schedule Runtime Scheduler System
OPCUAServer Machine to machine comm. Network
WagoAsyncRt High priority CAN comm. Network
WagoAsync Regular CAN comm. Network
KBUS_CYCLE_TASK Scan cycle ControlApp
PLC_Task Control Application ControlApp
VISU_TASK Visualization module User

Table 1: List of most active threads attached to the Codesys
runtime process, along with their function and the principal
entity they interact with.

Codesys platform to their ICS products. The Codesys device
directory [11] lists over 400 devices capable of supporting
the platform from leading manufacturers. Due to the lack
of readily accessible data regarding market shares of these
manufacturers, it is difficult to assert a definitive percentage
of Codesys devices currently deployed. From empirical data,
conversations with experts, and the Shodan search engine [37],
we can conservatively approximate a minimum 20% of PLC
worldwide utilizing Codesys, although the actual percentage
could be much higher.

The Codesys runtime framework2 is the back-end handler
of all functions pertinent to the control binary itself as well as
utilities for system and user interaction. Figure 1 illustrates
the system stack of a Codesys based PLC. The runtime itself
is a self-contained ELF binary which resides in the /usr/bin
folder and is being deployed through a wrapper process as
a part of the OS initialization, contained in the etc/init.d
boot scripts. Following its invocation from the wrapper pro-
cess, the runtime enters an initialization phase launching an
array of communication-related functions, such as network,
peripheral, and inter-process. All functions are instantiated
as threads, children of the main runtime process, spawned
through the clone() system call. One of the more interesting
functions, KBUS, is a lightweight inter-process communication
system used to relay data throughout the runtime threads and,
more importantly, handles the control application data from
GPIO ports to the application itself. A rudimentary scheduler
is also instantiated, mainly to facilitate the execution of the
control applications. It handles priority assignments, keeps
track of used mutexes between the control application-related
threads, handles exceptions generated by the control applica-
tion and resolves watchdog-related exceptions. Table 1 lists
a selection of the active threads under the Codesys runtime
along with their primary functionality.

The control application loading process begins during the
runtime initialization with a file-open system call to a hard-
coded folder location where the application binary resides.

2Codesys runtime framework will be mentioned simply as runtime for
the rest of the paper.

USENIX Association 30th USENIX Security Symposium 2849

The runtime then begins copying the control application code
and data in memory. Following the complete memory load-
ing of application file, execution is initiated, handled by a
customized set of functions based on the pthread API. The
control binary code is pushed to the stack of a newly instan-
tiated thread, forcing execution privileges to be enabled on
stack segments across all the main process threads. This ac-
tion can be a primary enabler for arbitrary code execution, a
notion which we explore more in depth in Section 5. Along
with the control application loading/execution, the runtime
spawns two more utility threads pertinent to the application
itself, the KBUS_CYCLE which acts as a mediator between the
application and KBUS, and VISU which offers visualization
of the control process based on information embedded to its
source code.

2.4 Control Application Binaries
Although control binaries share some general similarities with
conventional binary file formats, such as ELF and PE, they
are ultimately different. Control binaries, like conventional
computer program binaries, are composed of a header, a main
program, a data section, and linked libraries both statically
and dynamically. The main difference between these binary
file formats is that control binaries are not independently
executable. As mentioned before, this is the biggest challenge
in our security analysis.

In [28] the authors offer a concise view of the Codesys
compiled control application binary format through reverse
engineering.

Here we only describe the sections of the binary file that
might have security implications. The file starts with a header
section containing critical information for the run-time to en-
able its execution. Most importantly it contains the program’s
entry point, stack size and the last dynamic library identifier.
The header is followed by a subroutine that sets constant vari-
ables and initializes functions used within the global variable
section within the IDE. Another important section of the bi-
nary is the debugger handler subroutine that enables dynamic
debugging from the IDE.

Control binaries also contain calls to Functions or Function
Blocks (F/FB) from libraries and user-defined F/FB. Both of
these are statically linked and are included in the binary file in
the format of two consecutive subroutines. The first contains
the instructions that represent the functionality of the F/FB
and the second initializes its local memory. Next, the main
function of the PLC (PLC_PRG) is encapsulated in the next
subroutine. This subroutine is the most interesting compo-
nent, since it includes the control logic. Dynamically linked
functions within the control binaries are resolved through a
symbol table that is located after the last code subroutine. The
symbol table contains two bytes of data that are used by the
run-time to calculate the jump offset required for calling the
corresponding function.

3 Control Application Analysis

The field of security analysis of PLC control applications has
started with the assumption that these binaries are susceptible
to attacks, but have not closely investigated as to how. In
this section, we aim to establish whether PLC programming
languages are secure in terms of memory operations.

3.1 PLC programming languages
Control applications for PLC can be developed in different
languages, both graphical and textual. These are high-level
domain-specific programming languages for developing con-
trol application software. Historically, many PLC companies
utilized proprietary programming languages. In recent years
however, and in an effort to standardize the programming lan-
guages used by PLC vendors, the International Electrotech-
nical Commission (IEC) has established the IEC 61131-3
standard. This standard outlines the software architecture and
programming of PLC by defining programming languages,
data types and variable attribution [51]. We exclude Instruc-
tion List (IL), since it is an inactive language, and Sequential
Function Charts (SFC) language given it is composed of calls
to other PLC programming languages and therefore does not
have intrinsic characteristics:
• Ladder Diagram (LD): (Graphical) This language resem-

bles electric circuits and replaces hardwired relay control
systems. Since LDs deal with fundamental components (i.e.
contacts and coils), representing large contemporary sys-
tems and maintaining visual comprehensiveness becomes
hard. LD also lacks native support for arithmetic operations
and data structures such as arrays and pointers.

• Function Block Diagram (FBD): (Graphical) FBD is also
based on a wiring diagram that links Function Blocks (FB).
FBs are programming constructs used by PLC program-
ming languages in the same way functions are used in
conventional programming languages.

• Structured Text (ST): (Text-based) This language is the
closest to high-level computer programming languages and
is based on Pascal. It uses conditional statements, loops
and similar data structures such as pointers and arrays.

Figure 2 visualizes the differences between the three lan-
guages implementing the same logic.

3.2 Comparing programming languages
Comparing languages aims to investigate the necessity for
independent analysis of each language. In addition, we have
to understand the sources of similarities between the various
PLC languages in order to investigate language-based security
and the security mechanisms enabled by them.

We start by looking at the binary files produced by each
language. Initial automated analysis using diffing tools (e.g.
vbindiff) showed that different languages produced diverse

2850 30th USENIX Security Symposium USENIX Association

LD ST FBD

Figure 2: PLC programs written in different PLC programming languages implementing a 2-input OR Gate.

binary files. Further investigation uncovered that the main
source of disparity is the fact that the compiler inserts a vari-
able number of No-operation instructions (NOPs) for different
PLC languages. It is interesting to note that there were dif-
ferent variations of NOPs, and most of them did not use the
reserved opcode for NOPs, but were rather composed of typ-
ical instructions performing redundant tasks (e.g. mov r0,

r0). NOP addition is typically used in embedded systems
to introduce intentional delays for timing purposes such as
memory load/store in order to avoid potential problems aris-
ing from non-deterministic memory access. PLC binaries are
optimized for reliability and not for performance.

The evaluation of different languages on both Codesys ver-
sions establishes that the languages produce similar machine
code, hinting that Codesys produces an intermediate represen-
tation before generating the final machine code. Therefore,
for the rest of the paper, we focus on one language when
performing binary code analysis on compiled PLC control
applications. We specifically select ST because it provides
extra data structures and functions to the user, such as pointers
and loops.

3.3 Potentially vulnerable functions in PLC
applications

In this subsection, we compare vulnerable functions from
C/C++ to those found in PLC programming environments [10]
to establish whether PLC languages are memory secure. In
standard programming languages, memory hazards stem from
the ability to directly access memory from the program. PLC
programs also allow memory manipulation through pointers.
Table 2 shows the list of functions analyzed in our experi-
ments. String operations listed in the second column of Table
2 in standard programming languages like C++ are well known
for potential security vulnerabilities.

Our analysis includes an array of functions includ-
ing SysStrCpy (SysLibStr library), Concat (Standard
library), as well as SysMemCpy, SysMemMove, SysMemSet,
and SysMemCmp, all part of the Codesys SysLibMem library.

Our analysis concluded that a subset of the tested functions
retain their inherent vulnerabilities and led to crash instances.

C/C++ Codesys 2.x and 3.x
Function

Name
Function

Name
Bounds
Check Crash

String
Operations

strcpy() SysStrCpy() 7 7
strcat() Concat() 3 7

Memory
Operations

memcpy() SysMemCpy() 7 3
memset() SysMemSet() 7 3
memmove() SysMemMove() 7 3
memcmp() SysMemCmp() 7 7

Table 2: Potentially vulnerable functions in conventional and
PLC programming languages.

This observation guided us in our development of synthetic
PLC binaries in Section 5. The cause behind the crashes
is variable based on the function. For example, SysMemCpy
and SysMemMove do not compare the sizes of source and
destination buffers and are therefore vulnerable to potential
crash leading buffer overflows.

4 Fuzzing Industrial Control Systems

In this section we present the technical details of our method-
ology for performing security evaluation of control applica-
tions by fuzz testing. Fuzz testing, or simply fuzzing, is an
automated program testing methodology, initially utilized as
a brute force binary testing technique in the early 90’s [4].
This primary approach involved repeatedly feeding random
data to the target binary observing its behavior through the
host system. Fuzzing has largely evolved during the last thirty
years, becoming a popular method for software-based vulner-
ability discovery, becoming "smarter" and more efficient with
techniques such as binary instrumentation and input mutation.

Our developed framework creates instances that will carry
out automated testing and evaluation of Codesys-compiled
control applications through fuzzing. We have deployed sym-
bolic execution to analyze the binary and perform instrumen-
tation to facilitate code coverage extraction during fuzzing.
We have also targeted runtime-hosted functions that interact
with the binary and added them to our fuzzing framework.

USENIX Association 30th USENIX Security Symposium 2851

4.1 Fuzzing Control Applications

Control applications as analyzed in previous sections lack bi-
nary standardization specifics and follow a different execution
mechanism than typical executable files. These factors intro-
duce an array of complications in fuzzing attempts especially
in automating the process:
• Execution cannot be directly controlled through typical

system calls such as execve.
• Execution failure does not produce feedback information

for further analysis.
• Input cannot be relayed to the control application through

conventional means, e.g. a file or the stdio.
• Input delivery cannot be easily synchronized due to the

scan cycle execution format of the control binaries.
• Instrumentation cannot be conventionally applied to the

binaries given the lack of such an option in the closed-
source compilation tools.
Fuzzing setup can be broken down to two major compo-

nents: Execution control and input generation. The first part
handles the execution, communicating with the system to
initiate executions and receiving regular/unexpected execu-
tion termination signals. The second part moderates the input
data which will be fed to the binary and cause execution flow
deviations which can lead to unexpected/unrecoverable states.
Execution Control: Control binaries are broadly catego-
rized into two classes, concerning their execution process:
Synchronous or asynchronous. Synchronous control binaries
follow the scan cycle model in which a binary periodically
checks a predetermined memory-mapped address for input
updates, performs operations based on the received values
and writes to a relevant output address. Asynchronous con-
trol binaries can receive external signals for input updates or
termination, being able to be executed only once.

Synchronous (fixed cycle) programs are the most straight-
forward when it comes to execution but offer little flexibility
in controlling them. This limits the maximum potential for
fuzzing, since controlled execution is a primary contributor to
efficiency. Thus, for these binary types, our approach is tightly
controlling input delivery to take advantage of every avail-
able execution cycle in a specified time frame. Asynchronous
programs offer direct execution control by manipulating the
input signal which initiates and/or terminates their operation.
By manipulating this signal we can jumpstart an execution
instance and monitor the corresponding termination signal so
the next execution can be initiated, which allows for a more
traditional fuzzing process. However, asynchronous programs
are specialized cases for PLC programs making up a frac-
tion of available binaries, limiting the applicability of this
approach.

The primary objective of any fuzzing instance is the detec-
tion of an unexpected termination of the binary execution. In
a typical OS, system signals such as SIGSEGV, relay an asyn-
chronous exit from a program execution due to a particular

fault which is followed by the call of an exception handling
function. In our case, the execution termination of the control
process is silent as far as the system is concerned, where the
scheduler thread is handling the termination of the control
process. The sole information visible to the host system is
a series of futex system calls which suspend the connected
threads VISU and KBUS_CYCLE by essentially leading them
to a deadlock. However, the control application thread ter-
mination can be monitored from the parent process or an
immediate ancestor. The Codesys runtime initialization is
handled by a simple wrapper script that launches the runtime
by simply invoking it. We have modified the script so the run-
time launch is being handled by forking the wrapper process.
This ensures that the runtime, and by extension the control
process, process ID’s (pid’s) are in the same family as the
wrapper. Then we utilize wait() to suspend the wrapper until
it receives a termination signal from a child process with a
chosen pid leading to the termination and reinitialization of
the runtime process.
Input Control: Input control comes up as the most critical
part of the fuzzing process since execution control is limited.
Inputs are typically physical signals, analog or digital, which
are received by a specialized peripheral, the I/O module. This
device connects to the physical process, e.g. the rotation of a
steel mill, and transforms the physical signals to usable infor-
mation delivered to the PLC through a "GPIO" labeled Linux
device which communicates with the the runtime process via
the KBUS subsystem. KBUS then forwards the input data to
the control application each scan cycle. In summary, input
delivery follows this flow:
1. An I/O module receives a signal from a sensor and relays

it to the PLC through GPIO.
2. GPIO receive and store the input data in their memory-

mapped space.
3. KBUS opens the GPIO device file and performs a read

system call, moving the input data to its own memory space,
within the runtime process.

4. KBUS_CYCLE_TASK, the thread spawned alongside the con-
trol process, delivers the input data to the control process
memory space through a write system call. This event is
repeatable with a period based on the scan cycle length of
the control application.
Fig. 3 illustrates the flow of input data from the I/O module

to the control application.
The GPIO device, however, is not a simple generic I/O

device available to most embedded devices, rather a custom
device file responsible for handling the sensor input. Through
reverse-engineering and debugging we have approximated
its functionality, which mimics a GPIO as far as input data
handling. Its interaction with the system however, is not the
same as a typical GPIO: Custom system calls are being uti-
lized to relay data instead of typical read/writes. This hinders
a possible attempt for replicating its function through tech-
niques such as emulation. In addition, data can be delivered

2852 30th USENIX Security Symposium USENIX Association

Figure 3: Data flow from sensors to the control application.

to the device bit-by-bit, depending on the I/O module, which
must be manually reconstructed, a procedure which is highly
unreliable. KBUS is a more appealing choice for input inter-
action, since the input has already been received and stored
as a numeric value. The address space of KBUS can be ex-
tracted through memory-mapping information available at
/proc/maps in Linux-enabled devices. KBUS is also instanti-
ated as a device in the Linux file system, accessible at the /dev
folder, being offered as a communication channel throughout
the system.

The expected peripheral-received inputs are useful to build
an initial test case corpus for fuzzing. Depending on the scan
cycle length, a variable number of inputs are acquired within a
specified time frame. By monitoring KBUS for system calls, we
can determine the length of the scan cycle with high precision.
Based on this we can tailor a collection rate for any target
control application.

Since execution cannot be directly controlled or at least
initiated, input relaying must also follow an indirect method-
ology. Manipulating the actual input of an already executing
control process is the only means of input control for fuzzing.
As analyzed in a previous section, the KBUS_CYCLE thread
implements the scan cycle, and repeatedly copies data to the
control process. This is facilitated by an ioctl system call
with the _IOC_WRITE macro, which copies the GPIO-received
data to the process data space. When intercepted, the write
ioctl includes all necessary information for the copied data,
including the destination address. The address follows a vir-
tualization scheme applied to the process and, by extension,
to its hosted threads. With the target virtual address and the
process-specific mapping information we can directly write
on the control process input data section.

This process, however, cannot be easily synchronized.
While the scan cycle duration is known to the programmer and
can be approximated by the tester, the exact timing of input
arrival to the peripheral is unknown. Thus, the values we force
in the designated I/O address space will be overwritten as soon
as the regular input arrives. The runtime process hosting the
control application does not follow regular communication

with the host system through system calls: Instead, the run-
time itself is implementing a subset of system-like functions,
handled at the process level. The runtime process handles that
by being launched at an elevated privilege level, requiring root
access. Without information on the communication between
the host system and the runtime process, simply manipulating
the input values is ineffective.

Synchronization depends on an input-related signal which
can be intercepted before the input is relayed to the control
application. Given its role in input delivery, KBUS can be
leveraged to get the necessary signal. The write ioctl we
used in the previous paragraph was considered for triggering
our input delivery, however during testing we understood that
the time difference between the write command and data
utilization by the control process was too short, resulting in
our forced values coming after the input was accessed by
the process. However, when traced for system interaction,
KBUS is also periodically invoking a read ioctl system call
with the IOREAD macro and the 8-bit selector pointing to
a specific GPIO port. This can be translated to a string of
data copied from the GPIO port to a select local address
which will in turn be relayed to the control process itself.
This system call is leveraged as a trigger by monitoring the
sequence of system calls through a lightweight tracing utility,
such as the audit subsystem. Making use of audit allows a
user to gather information for a system call during its entry,
resolution, or exit, thus offering high response to a potential
system call-based condition such as our ioctl trigger. This
prompt notification of the input data transfer system call in
addition to a functional delay before the next scan cycle is
initiated, allows us to successfully overwrite the original input
with our chosen data.
Instrumentation: In addition to the main fuzzing function-
ality we need a feedback mechanism to provide us with
execution-related information so we can estimate the effi-
ciency of our methodology. Code instrumentation has been
routinely used in contemporary fuzzing tools, added as a mod-
ification to regular compilers. In the case of control applica-
tions however, with no access to the compilation tools there
is no straightforward way to instrument the compiled code.
Symbolic execution though, which has been utilized as a facil-
itator to instrumentation for fuzzing [63], has been explored
as a solution for control application analysis [28]. We can
leverage knowledge and techniques for symbolic execution
of control applications to gain program structure information
so we can introduce instrumentation on the compiled binary.

We have utilized angr [46] for handling this part of our
methodology leveraging its ability to partially execute spe-
cific portions of the program without necessarily being aware
of the system state. As discussed in prior sections though, the
control binaries are not built with a well-defined header sec-
tion which, in typical files such as elf, includes information
on file type, target architecture, and entry point. One prerequi-
site to perform static analysis through angr is to determine the

USENIX Association 30th USENIX Security Symposium 2853

Figure 4: Excerpt from disassembled control application high-
lighting the NOP instruction substitution.

target platform of the chosen binary, in terms of architecture
and endianness. To achieve that, we built on previous work on
firmware reverse engineering and file format analysis [13,60].

The main objective of our instrumentation methodology
is to dissect the control binary and divide it into distinct seg-
ments in order to statically mark them for gaining execution-
time feedback from the binary. We leverage the methodology
introduced in [28] to produce a Control Flow Graph (CFG)
of the file’s functions along with the links between them, in-
cluding relevant information on the function or function block
code composition. More specifically, we perform an instruc-
tion count targeting NOPs, such as a mov $r0, $r0, logging
the number of instantiations for each function block.

As the static analysis part of our research illustrated, NOPs
are regularly added to the compiled code. However, since we
lack the original compilation tool, we cannot fully understand
their purpose. Nevertheless, in our experiments we observed
that different languages introduce a variable number of NOPs
for same architecture. NOPs have been a staple in older ar-
chitectures for limiting potential timing errors by providing
buffering for long instructions in simple pipelines. The variant
number of NOPs for different languages and the capability of
ARM 3 processors to remove a NOP from the pipeline before
execution, are suggesting that these instructions are placehold-
ers and not execution stallers or performance facilitators. To
that end we performed an analysis of NOP placement in the
code, relative to its immediate neighbor instructions. Delay
intense instructions, such as lw, mul and div, are common
choices when introducing pipeline stalls through compilation.
We developed an array of control applications of different
computation complexity, ranging from simple logical oper-
ations to heavy integral/differential calculations, to confirm
whether NOPs will be added for functional reasons, in order
to enhance execution reliability. Our results showcase that the
amount of NOPs introduced is a direct factor of application
size rather than operation complexity as initially assumed.
The operation-intense programs were larger and had propor-
tionally larger amount of NOPs compared to the simpler ones.
Indeed, peering closer to the machine code, NOPs were not
added in proximity to time-consuming instructions, such as

3ARMv6 and later architectures

NX
Bit

PIE/
ASLR

Stack
Gaurd RELRO RUNPATH RPATH Fortify

Source
Codesys

2.x 7 7 7 7 7 3 7

Codesys
3.x 3 7 7 7 7 7 7

Table 3: Summary of security mechanisms deployed by dif-
ferent versions of the Codesys runtime.

the ones mentioned above, rather close to simple move in-
structions often before a function call. This leads us to our
conclusion that NOPs are introduced in control application
mainly for memory alignment rather than hazard prevention.
Thus, we can repurpose NOPs for program profiling and in-
strumentation by statically replacing NOPs with relevant in-
structions. The low amount of available slots in the compiled
code does not offer much flexibility for instrumentation feed-
back. However, with access to the source code, redundant
variable assignments with distinct values, e.g. 0xDEADBEEF
can increase the number of available instrumentation slots
and provide more fine-grained feedback.

Typically instrumented binaries produce information
through some user-available output, such as stdout, in our
case however just one instruction slot must be able to re-
lay the necessary information. Since we are aware of the
memory layout of our process, we add STR instruction which
stores the current program counter to predetermined addresses
within the process. With the program counter information we
can determine which function or function block has been ac-
cessed and approximate a code coverage percentage during
our fuzzing sessions. Fig. 4 illustrates this substitution on an
excerpt from a control application.

4.2 Fuzzing the Runtime
The runtime, as discussed in Section 2, is a traditional ELF
binary that loads and executes the control application binary
by spawning it as one of its threads. Typically when a thread is
spawned through the clone() system call with the CLONE_VM
flag set, any memory-mapping performed with mmap() affects
both process and thread. This inter-dependency between the
two binaries, the runtime and the control application binary,
means that their security is intrinsically linked. It is, therefore,
important to analyze the security measures employed by both
the runtime binary and the control application itself in order
to decide whether we should include it in the fuzzing process.

We use checksec [48] to investigate security features avail-
able in Codesys 2.x and Codesys 3.x runtime binaries. Table
3 summarizes the results. All versions of Codesys runtime
implement minimal security mechanisms. As an improve-
ment, Codesys 3.x includes NX bit support protecting against
simple buffer overflow attacks, currently stemming from the
support subsystems such as the network stack (involved in
the CVE-2012-6068 and CVE-2012-6069 vulnerabilities).

The runtime is a complex application, working like a nested
firmware inside the host OS. It includes a vast number of util-

2854 30th USENIX Security Symposium USENIX Association

ity functions to interact with its environment, perform mainte-
nance, and handle and communicate with the control applica-
tion. The application cannot be considered a standalone piece
of software, as it can only exist in the context of the runtime,
sharing the same memory space. Many functions and utili-
ties have direct contact with the control application and are
affecting its execution state. It is therefore prudent to consider
these functions as an extension of the control application and
include them as targets in the fuzzing framework.

The runtime exists in the OS as an ELF binary, leverag-
ing various dynamic libraries, both system provided as well
as in-house developed/modified. The main binary itself as
a standalone target is not a good choice for any type of dy-
namic analysis. The complexity of its functionality, with more
than 1000 functions being engaged just for maintenance and
communications and nearly 5000 functions in total, renders
any type of static analysis infeasible. In addition, the lack
of source code deters any attempt at compile-time binary
assessment supporting techniques such as instrumentation
and address sanitization. An active PIE flag could offer the
possibility of code migration enabling library extraction and
execution outside the original binary, which does not hold for
our versions of the runtime. Therefore, our only possibility
for fuzzing anything related to the runtime is through the dy-
namically linked libraries, shared objects (.so) in Linux, and
their included functions.

1

2 # i n c l u d e LIBDKBUSCOMMON_H
3

4 i n t main (i n t a rgc , c h a r ** a rgv) {
5

6 k b u s _ k s o c k _ t ksock = fopen (" / dev / kbus0 " , " r ") ;
7 [. . .]
8 k b u s _ k s o c k _ w r i t e _ d a t a (ksock , &argv , 32) ;
9 [. . .]

10 }

Listing 1: Sample code of Codesys function fuzzing harness.
Fuzzing .so’s can be very challenging, considering the

lack of information available for them. Since the library it-
self is not a valid target for execution, it must be hosted in
an external program, a test harness, which dynamically loads
it and declares some included function. The code has to be
short and concise to maximize performance and simplify de-
bugging when analyzing crash instances. With the help of
ghidra [39] we are also able to extract some decompiled
intro and outro code from the runtime compiled code so we
can emulate the behavior of the chosen function in the con-
text of the runtime. Regarding input arguments, we could
find documentation for some functions, at least in terms of
their calling convention. For the missing functions we once
more deployed ghidra to reverse engineer function input ar-
guments and derive their type. For undefined input types in
functions without documentation, which can be a pointer to a
struct or a typedef’ed variable, we could not proceed with
fuzzing. Listing 1 presents a sample of a test harness for a
KBUS send message function.

5 Experimental Evaluation

For the experimental evaluation of our project we targeted a
WAGO PFC-100 PLC featuring a TI AM335x chipset with
a Cortex-A8 ARM processor at 600MHz and 256Mb RAM
as the Device Under Test (DUT), and a laptop with an i7 pro-
cessor, 16GB RAM and 512 GB SSD as our main computer.
The computer is connected through SSH to the DUT over a
local network. Symbolic execution/instrumentation as well as
the runtime function test harness building are performed on
the computer, since we do not need device specific hardware/-
software for these steps and the superior performance offered
by a laptop setup speeds up the process. Control application
and runtime function fuzzing are handled locally on the DUT.
We have collected control binaries from github repositories
as well as the Codesys project website, for a total of 184
binaries. In addition, we have developed an assortment of
binaries, utilizing various functions and utilities, so we could
thoroughly test our fuzzing engine and observe its bug-finding
capabilities in a controlled manner4. We have also performed
regular fuzzing to the control application-related functions
we discussed in the fuzzing section. For these functions, we
deployed mature fuzzing tools, namely the American Fuzzy
Lop (AFL) [61], which offers both instrumentation and saniti-
zation capabilities, with select input seeds for each function.
We performed four distinct evaluations, testing correctness,
fuzzing control applications with code coverage feedback and
fuzzing runtime functions.
Correctness: For the correctness evaluation of our control
application fuzzing engine, we focused on input control and
output observation. We chose in-house developed binaries for
this section, since we need to be aware of their functionality
to predict the correct output and cross-validate with the ob-
served value. We utilize the E-Cockpit development suite for
its convenient graphical representation of the control process,
which includes live tracking of process output values. The
process we have targeted is a part of the Multi Stage Flash
(MSF) Desalination process [2] handled by the target PLC.
The MSF Desalination model is an academically developed
testbed for desalination plant research which has been used
as a target process in recent publications. The process input is
brine temperature, the output controls brine density involving
two Proportional Integral Derivative (PID) functions. We mod-
ified input values directly from the process memory space
and observed the altered outcome through the E-Cockpit.
We forced the same input value throughout the experiment,
a value which we collected from the real control input trans-
mitted through the I/O module, which was a temperature of
360°C. Fig. 5 depicts the output brine density fluctuation
through time before and during the fuzzing process. It is evi-
dent that the forced inputs have a direct impact on the process
which validates the input control of our fuzzing scheme. It is

4The database of house-developed and online-collected control applica-
tions will be available online.

USENIX Association 30th USENIX Security Symposium 2855

Figure 5: Output observation of forced input on industrial
process.

also clear that the timing of our force input methodology is
not perfectly accurate. An approximate 6% of the reported
outputs correlated with the original input, meaning that for
these cases our forced input was not overwritten by the real
input from the I/O module. From a performance standpoint,
this translates to a 6% decrease in maximum inputs processed
during a time span. The original inputs could be considered
as introducing unexpected behavior to our engine, in case
they cause a program crash while the fuzzer reporting its
own forced input as the cause. However, these original inputs
are used as seeds to our fuzzer, leading to redundant rather
than faulty results. Additionally, each crash-causing input is
considered and validated in a case-by-case basis, eliminating
mistakes in crash-causing input recognition.
Fuzzing Control Applications: For this part of the experi-
mental evaluation, we have created a collection of potentially
vulnerable control binaries. We have considered three distinct
scenarios for the introduced vulnerability, with regards to the
popularity of their existence in vulnerability assessment prac-
tice. These are 1) buffer overflow, 2) out of bounds writes,
and 3) divide by zero. Buffer overflow binaries feature mem-
ory manipulating instructions, such as memcpy, which lack
bounds check and the amount of data is a program variable.
Out-of-bounds write binaries involve an instantiated array
with a variable index, while divide-by-zero binaries have a
division operation with an input influenced denominator. The
vulnerable binaries have a similar composition:
• The instantiation of the vulnerable section. This can be

one of the vulnerable functions, an array assignment, or a
division operation.

• One or multiple function calls are included in the main
body of the application that may or may not include the
vulnerable part. We include function calls to determine
whether return addresses can be overwritten.

• Various conditional expressions or loops were introduced

to increase the execution complexity of the synthetic binary.
This has been done mostly to evaluate our instrumentation-
based feedback methodology. Depending on the binary,
the vulnerable part is included under a condition making it
harder for our fuzzing engine to uncover the vulnerability.
Fuzzing session duration was set to 1 hour, a time period

which was proven enough to witness at least one crash in-
stance in our preliminary experiments. Therefore, we fol-
lowed a black-box approach, mutating an initial zero input
vector. Table 4 illustrates the results for this part of the exper-
iment. The control application names correlate to their com-
plexity, i.e. the larger the number, the more decision based
flows exist in the program. The naming convention follows the
type of vulnerability the test was targeting and the vulnerable
function that was instantiated in the program, e.g. bf_mcpy_1
is the simplest program instantiating a memcpy function built
to uncover potential buffer overflows and oob_2_arr_10 is
the 10th program instantiating two arrays targeting out-of-
bounds access on both. The results in Table 4 are justifying
our initial hypothesis that, much like regular binaries, con-
trol applications can include binary-type vulnerabilities due
to programming errors, lack of compiler security improve-
ments, and vulnerable utility functions. We can also distin-
guish a lack of correlation between number of inputs pro-
cessed, which matches to the number of executions, and the
execution time until a first crash occurred. Time to execution
ratio is clearly dependent to the scan cycle of each control
application. The results also validate our fuzzing scheme in
terms of performance, forcing multiple crashes in a concise
time period, proving to be fast enough to be considered an
effective assessment method.

An interesting case category was the divide by zero pro-
gram which never lead to a crash, no matter the composition
of the binary itself. From further research we found out that
hardware division is not supported by our platform, with the
assembly code produced by the compilation tool replacing
regular idiv instructions with calls to division functions pre-
compiled for ARMv7, included in a standardized library. Thus,
any potential divide by zero error results in a zero output.

The control applications used in this experimental evalu-
ation were all developed in-house with the sole purpose of
having a collection of applications that were vulnerable from a
typical software application standpoint and we were confident
in uncovering the underlying vulnerabilities through fuzzing.
During our research, we have also collected and consolidated
a list of 187 control applications found in open repositories
on github and the official project database hosted by Codesys.
We have put these applications through our fuzzing setup and
we observed that most of them did not produce any crash or
even get in a hung state, regardless of time under test, since
many of them are very simple programs. The much more com-
plex desalination process, however, produced crashes that we
further analyze in order to demonstrate the usefulness of our
approach. The analysis highlighted an out-of-bounds write

2856 30th USENIX Security Symposium USENIX Association

Control
Application

Execution Speed
(inputs/sec)

First Crash
(time mm:ss)

First crash
(inputs)

Crashes
(1hr)

bf_mcpy_1 70.88 3:54 15270 32
bf_mcpy_6 64.2 3:08 12172 21
bf_mcpy_8 66.06 4:39 18216 17
bf_mcpy_12 62.11 7:06 26645 9
bf_mset_1 64.56 3:28 13441 21
bf_mset_3 62.68 2:54 10906 24
bf_mset_5 68.8 4:14 17554 16
bf_mset_9 69.76 10:23 43530 7
bf_mmove_1 64.63 2:56 11245 28
bf_mmove_4 63.1 2:39 10070 24
bf_mmove_7 66.31 3:49 15317 15
bf_mmove_12 64.53 13:03 50643 6
oob_1_arr_1 71.86 0:55 3880 39
oob_1_arr_6 77.03 1:43 8085 28
oob_1_arr_9 69.78 1:45 7326 27
oob_1_arr_13 75.2 3:27 27241 19
oob_2_arr_1 73.53 1:57 8558 35
oob_2_arr_5 71.1 2:45 22759 27
oob_2_arr_8 69.8 3:08 13366 22
oob_2_arr_13 70.95 3:12 13401 19
divby0_1 73.68 N/A N/A 0

Table 4: Fuzzing results for our in-house developed synthetic
control applications.

Figure 6: Output observation between normal operation and
attack enabled on desalination process.

that corrupted the framework memory resulting in its termina-
tion. Given this fact, a DoS-type attack can be a reality, where
a spoofed sensor value can directly stop an industrial process
such as the desalination plant, resulting in production delay
and costly damages as analyzed in [43]. Figure 6 illustrates
this attack and its effect on the industrial process. In a de-
salination plant, an increase of just 1°C in brine temperature
causes a substantial decrease in steam flow rate which re-
sults in a 12%, or 1 ton/min, decrease in the produced output,
translating to a loss of several thousand dollars per [43].
Code Coverage: This part of the experiment was performed
to validate the efficiency of our fuzzing scheme through ex-
amining the amount of code our engine has explored testing
different inputs to the control binary. We have replaced NOPs
from distinct function blocks throughout the code with STR

instructions logging the current program counter (PC) to tag
the blocks the program has explored through execution. As
discussed earlier, the inclusion of NOPs in control binaries
serve as an extra robustness mechanism to protect execution
against non-detereministic memory accesses and do not add

5Function engaged in the CVE-2017-6025 reported at [16].

Function Description
Crashes

(1hr)
KbusRegisterRequestWrite Kbus write function 2
KbusRegisterRequestRead Kbus read function 1
kbus_ksock_write_data Kbus write function 4
kbus_ksock_read_data read function 7
XMLParse XML Parsing Function 8
SysSockRecv5 TCP receive data 6
CMAddCoomponentKbus Kbus instantiation 4
pthread_create Creates runtime thread 8
pthread_rwlock_unlock Updates thread privileges 2
pthread_join Joins PLC task threads 1
pthread_setschedparam Sets scheduler thread policy 1
GetLoginName Receives input login name 7
SysLibStrcpy String copy custom function 2
SysLibStrcmp String compare custom function 5
SysComWrite System communication output 7
SysComRead System communication input 2
GetHookName Get name of hooked function 6
CopyRtsMetrics Copies PLC data 8
getspnam Returns info from shadow file 5

Table 5: Fuzzing results for the runtime functions.

Figure 7: Code coverage results for a subset of our tested
control applications.

any hidden/obscure functionality. We sampled the logged PC
values every minute for 1-hour fuzzing sessions and present
the resulted code coverage percentages in Fig. 7

We have targeted six relatively low complexity control ap-
plications as test subjects for this experiment, to have a more
accurate approximation of the percentage of code coverage.
oob_1_arr_1 was the simplest one, containing at a small
number of execution flows (<10) from which our fuzzing
engine managed to discover 90%. bf_mcpy_1 was a slightly
more complex but still relatively simple application, contain-
ing less than 20 execution flows, with our fuzzer discovering
again approximately 90%. bf_mset2 yielded the least cover-
age out of the the tested functions, being the most complex
one, with 69% functions traversed.
Fuzzing Control Applications Analysis: Following the
fuzzing sessions for our control binaries, we performed a man-
ual analysis to determine the nature of the observed crashes.
There were two principal causes for the crash instances, a
stack buffer overflow or an out-of-bounds write. In either
case, a function instantiated in the PLC binary has its return
address overwritten by either an overflow of data or a mis-
addressed array assignment. Given the analysis at Section

USENIX Association 30th USENIX Security Symposium 2857

Figure 8: Fuzzing results of runtime functions.

3, we identified a number of functions vulnerable to over-
flow bugs based on their composition, i.e. lack of checks on
bounds or input/buffer sizes. Regarding array value assign-
ments, we observed the inability of the compiler to flag a
restricted memory write/read when the array index is influ-
enced by an input variable, such as a sensor value. Thus, in
both cases, the possibility to overwrite the return address of
a called function validates the potential for execution flow
altering attacks. For the next step, we considered the stack
hosting the called vulnerable function. We reverse engineered
the control application loading process observing its place-
ment in the memory space of the Codesys framework. The
code and data sections of the control application are pushed
into a stack of a temporary thread and execution of the appli-
cation itself happens locally in this stack. This fact led to the
assumption, and following validation, of the executable status
of all stacks instantiated for each running thread, including
the control application handling thread. While the Codesys
framework binary has the no-execute bit enabled, code can
still be executed in all instantiated stacks. Thus, with the
combination of overwriting a return address and confirmed
arbitrary execution in the process stack, we can formulate an
attack vector that can lead to system compromise. We built
a control binary with one of the vulnerabilities highlighted
earlier, where we also statically included shellcode consisting
of a NOP sled followed by assembly code that executes a
simple Linux system call. Following the loading and crash
of the binary, we were able to distinguish the rogue system
call on the kernel log. An arbitrary system call through binary
exploitation can enable much more complex payloads, such
as rootkit insertion. A rootkit can be easily placed on the PLC
with simple user-level access. Then a simple insmod with
the rootkit name as an argument can be used as a payload in
the vulnerable control application. Since the application, as
part of the Codesys runtime, runs on root-level privilege, the
insmod can be executed and the rootkit covertly inserted.
Fuzzing Runtime Functions: Our framework can success-

fully fuzz non-executable control binaries compiled from
high-level PLC programming languages. To have a complete
understanding of PLC security, we also need to investigate
potential vulnerabilities in the runtime environment. Fuzzing
functions in the Codesys runtime was performed on the DUT
with seed inputs based on the input argument types of each
function and an approximate understanding of the argument
purpose, e.g. a size variable, a text message or an address.
For more complex inputs, such as structs, we manually ini-
tialized the struct variable values and used the mutated inputs
alternating between the struct variables, concatenating or re-
peating based on variable type. We cross-compiled AFL for
the ARM architecture and utilized the included afl-gcc, an
enhancement of the latest gcc compiler with added instrumen-
tation capabilities, for compiling the test harnesses. Function
selection was an important part of this evaluation, since not
all available runtime function can be targeted for fuzzing or
are not influenced by an external input. As mentioned in Sec-
tion 4, the principal way of fuzzing the runtime functions is
building a test harness which instantiates the function itself.
In addition, we chose functions whose execution flow can
be controlled by a given input and thus are prime targets for
exploitation. Functions such as the thread scheduler are in-
dependent of external inputs and thus there is no user-based
means for exploitation. We performed fuzzing on all chosen
functions based on our selection process. The results for this
part of the experiment are illustrated in Fig. 8 and a subset is
listed in Table 5. Out of over 250 tested functions we isolated
133 which produced crash instances. The number of crashes
found was predictably small, due to the relatively low execu-
tion count, but enough to validate our initial assumption of
vulnerabilities in the functions interacting with the control
application. Through observation of the first crash instance
for the affected functions, we can also assert the efficiency
of this approach in discovering vulnerabilities in these utility
functions: An average of 14 minutes was enough to crash the
target function at least once.

Out of 850 total crash instances examined, we have a bet-
ter understanding of the cause of the crash for 97 of them,
all related to buffer or heap overflows. These functions were
instantiated in the test harness with related preceding instruc-
tions and structures, adding conditions and loops as well as
initializing-related variables we observed in the decompiled
instances of the runtime we received through ghidra.

While providing with convenient abstraction, decompila-
tion is still not fully accurate in reproducing the original code.
Thus, while our results uncover potential vulnerabilities in
certain parts of the runtime, the original source code could
have taken measures against them.

Summarizing, fuzzing the runtime produced concerning re-
sults indicating that immediate action is needed on improving
the security posture of these pieces of software.

2858 30th USENIX Security Symposium USENIX Association

6 Discussion and Related Work

In recent years ICS security has gained a lot of attention.
Most of the research focused on securing the system at the
network level though intrusion detection systems (IDSs) [56]
or anomaly detection [20] while, control applications have
not received the same attention. Traditionally, PLC control
applications/software have been researched as a means of de-
ploying malicious payloads to the device itself to compromise
the attached industrial process, a prominent example being
Stuxnet. As such, a control application has either been consid-
ered as malware in its entirety or as a malware infected legiti-
mate application, with most efforts focusing on detecting and
uncovering the malicious payload [44, 45]. Fuzzing has been
a popular topic in embedded device security analysis as well,
targeting devices such as smart meters [3], smartphones [58],
automotive [27], and a variety of other devices [32]. An inter-
esting work introduces input-generation fuzzing to evaluate
Robotic Vehicles (RV) control code and uncover cases that
would lead to incorrect control decisions [29]

In practice and in research PLC control software has not
been subject to security assessments with very few publi-
cations related to the presented work. Instead, many prior
efforts target the field of safety verification of PLC control
applications/software. In both [7] and [25] the authors per-
form language specific PLC control application verification.
Other efforts focus on detecting potential corruption of PLC
control applications through runtime monitoring and verifi-
cation [18, 26]. VETPLC [64] aims to verify real-world PLC
code, by taking into account the sequence of events and their
time constraints. Many of these solutions mainly focus on the
detection of safety violations.

SymPLC [23] leverages the OpenPLC [5] framework and
Cloud9 engine [9] to conduct dynamic analysis on control
applications. Symbolic execution was used to evaluate control
application binary code considering the application as a piece
of software and not just a control process facilitator. The intro-
duced SYMPLC framework abstracts the control application
byte code to a high-level C-based representation. Deploy-
ing mature symbolic analysis tools the authors succeeded in
achieving high function coverage for tested binaries.

The authors in [28] tackled reverse engineering Codesys
derived control applications combining manual exploration
of the target binary and automated analysis through symbolic
execution. The authors succeeded in producing a control flow
graph covering every function, statically or dynamically called
covering the entirety of the application. Leveraging this in-
formation, they showcased an automated on-the-fly attack
formulation based on a regular control application.

Emulation is a popular methodology for assisting fuzzing
as showcased in [35, 65]. In our platform, however, the imple-
mentation of emulation is not as straightforward as in typical
Linux-based systems [55]. Either partial emulation, full binary
emulation, or full system emulation would be challenging to

incorporate to our framework:
• Partial emulation, e.g. I/O module emulation, which can

essentially replace our input forcing method can be an al-
ternative, but it is not a simple endeavor. The I/O modules
are proprietary peripherals with no software specifications
given to the public. A simplistic emulation of an I/O mod-
ule, based on its known functionality, could be viable but it
will fail the I/O check done by the Codesys framework for
valid connected I/O peripherals.

• Full emulation of the binary itself is an extremely chal-
lenging task, given its unique loading process. Outside the
context of the framework, the PLC binary is just a collec-
tion of assembly instructions packed in a file. Line-by-line
execution is an option, but it would fail at the first instance
of input delivery requiring a system call which is routed
and handled by the framework.

• Full system emulation would provide full control over the
emulated instance and the ability to manipulate conditions,
such as the aforementioned I/O check. A full system emu-
lation with the Codesys framework, however, is a very chal-
lenging project on its own. While there are broad firmware
emulation frameworks published recently, they lack how-
ever nuances native to Industrial Control Systems, e.g. the
handling of non-generic peripheral such as the I/O modules,
or a real-time scheduler.

7 Conclusion

In conclusion, we summarize the answers to the questions
that appear in the problem statement section 2.1:
• PLC binaries are inherently robust due to the high-level

nature of the PLC programming languages as well as the
very well-defined problems they are addressing. As the
binaries get more complex in terms of size or function,
however, exploitable vulnerabilities that can compromise
the host system or industrial process can be introduced.

• PLC runtimes suffer from the same problems that plague
regular C/C++ developed software, and this compromises
the whole industrial control system computation stack.

• Fuzzing is a great tool for uncovering vulnerabilities in
industrial control systems, even in the presence of heavy
I/O and scan cycles.

Acknowledgments

This project was supported partly by the U.S. Office of Naval
Research under Award N00014-15-1-2182, and by the NYU
Abu Dhabi Global PhD Fellowship program.

Resources

ICSFuzz will be available at the following github repository:
https://github.com/momalab/icsfuzz.

USENIX Association 30th USENIX Security Symposium 2859

References

[1] Adam Pilkey. F-secure’s guide to evil maid at-
tacks. https://blog.f-secure.com/f-secures-
guide-to-evil-maid-attacks/, 2018.

[2] Hala Faisal Al-Fulaij. Dynamic modeling of multi stage
flash (MSF) desalination plant. PhD thesis, UCL (Uni-
versity College London), 2011.

[3] Vincent Alimi, Sylvain Vernois, and Christophe Rosen-
berger. Analysis of embedded applications by evolution-
ary fuzzing. In 2014 International Conference on High
Performance Computing & Simulation (HPCS), pages
551–557. IEEE, 2014.

[4] Magnus Almgren, Davide Balzarotti, Jan Stijohann, and
Emmanuele Zambon. D5. 3 report on automated vulner-
ability discovery techniques.

[5] Thiago Rodrigues Alves, Mario Buratto, Flavio Mauri-
cio de Souza, and Thelma Virginia Rodrigues. Openplc:
An open source alternative to automation. IEEE Global
Humanitarian Technology Conference (GHTC 2014),
pages 585–589, 2014.

[6] Neelesh Bhattacharya, Abdelilah Sakti, Giuliano Anto-
niol, Yann-Gaël Guéhéneuc, and Gilles Pesant. Divide-
by-zero exception raising via branch coverage. In In-
ternational Symposium on Search Based Software Engi-
neering, pages 204–218. Springer, 2011.

[7] G. Canet, S. Couffin, J. . Lesage, A. Petit, and P. Sch-
noebelen. Towards the automatic verification of plc
programs written in instruction list. In International
Conference on Systems, Man and Cybernetics. IEEE,
2000, volume 4, pages 2449–2454 vol.4, Oct 2000.

[8] Defense Use Case. Analysis of the cyber attack on the
ukrainian power grid. Electricity Information Sharing
and Analysis Center (E-ISAC), 388, 2016.

[9] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chi-
pounov, and George Candea. Cloud9: a software testing
service. Operating Systems Review, 43:5–10, 2009.

[10] CODESYS. Codesys control v3 manual, 2019.

[11] CODESYS. CODESYS Device Directory. https:

//devices.codesys.com/device-directory/, 2019.
[Online ; Accessed January 2020].

[12] Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and
Jonathan Walpole. Buffer overflows: Attacks and de-
fenses for the vulnerability of the decade. In Pro-
ceedings DARPA Information Survivability Conference
and Exposition. DISCEX’00, volume 2, pages 119–129.
IEEE, 2000.

[13] Weidong Cui, Marcus Peinado, Karl Chen, Helen J
Wang, and Luis Irun-Briz. Tupni: Automatic reverse
engineering of input formats. In Proceedings of the 15th
ACM conference on Computer and communications se-
curity, pages 391–402. ACM, 2008.

[14] Dániel Darvas, Borja Fernández Adiego, András Vörös,
Tamás Bartha, Enrique Blanco Vinuela, and Víctor
M González Suárez. Formal verification of complex
properties on plc programs. In International Conference
on Formal Techniques for Distributed Objects, Compo-
nents, and Systems, pages 284–299. Springer, 2014.

[15] Dániel Darvas, István Majzik, and Enrique Blanco
Viñuela. Formal verification of safety plc based control
software. In International Conference on Integrated
Formal Methods, pages 508–522. Springer, 2016.

[16] CVE Details. Codesys Runtime System Security
Vulnerabilities. https://www.cvedetails.com/
vulnerability-list/vendor_id-12574/

product_id-23853/version_id-164054/3s-

software-Codesys-Runtime-System--.html, 2018.
[Online ; Accessed January 2020].

[17] Alexey G Finogeev and Anton A Finogeev. Information
attacks and security in wireless sensor networks of indus-
trial scada systems. Journal of Industrial Information
Integration, 5:6–16, 2017.

[18] L. Garcia, S. Zonouz, Dong Wei, and L. P. de Aguiar.
Detecting plc control corruption via on-device runtime
verification. In 2016 Resilience Week (RWS), pages
67–72, Aug 2016.

[19] Luis Garcia, Ferdinand Brasser, Mehmet Hazar Cin-
tuglu, Ahmad-Reza Sadeghi, Osama A Mohammed, and
Saman A Zonouz. Hey, my malware knows physics!
attacking plcs with physical model aware rootkit. In
NDSS, 2017.

[20] Pedro García-Teodoro, Jesús E. Díaz-Verdejo, Gabriel
Maciá-Fernández, and Enrique Vázquez. Anomaly-
based network intrusion detection: Techniques, systems
and challenges. Computers & Security, 28:18–28, 2009.

[21] David Greenfield. Why is Linux Trending? https://

www.automationworld.com/why-linux-trending,
2018. [Online ; Accessed January 2020].

[22] The Guardian. Robot kills worker at Volkswagen
plant in Germany. https://www.theguardian.com/
world/2015/jul/02/robot-kills-worker-at-

volkswagen-plant-in-germany, 2015. [Online;
accessed July 2019].

2860 30th USENIX Security Symposium USENIX Association

https://blog.f-secure.com/f-secures-guide-to-evil-maid-attacks/
https://blog.f-secure.com/f-secures-guide-to-evil-maid-attacks/
https://devices.codesys.com/device-directory/
https://devices.codesys.com/device-directory/
https://www.cvedetails.com/vulnerability-list/vendor_id-12574/product_id-23853/version_id-164054/3s-software-Codesys-Runtime-System--.html
https://www.cvedetails.com/vulnerability-list/vendor_id-12574/product_id-23853/version_id-164054/3s-software-Codesys-Runtime-System--.html
https://www.cvedetails.com/vulnerability-list/vendor_id-12574/product_id-23853/version_id-164054/3s-software-Codesys-Runtime-System--.html
https://www.cvedetails.com/vulnerability-list/vendor_id-12574/product_id-23853/version_id-164054/3s-software-Codesys-Runtime-System--.html
https://www.automationworld.com/why-linux-trending
https://www.automationworld.com/why-linux-trending
https://www.theguardian.com/world/2015/jul/02/robot-kills-worker-at-volkswagen-plant-in-germany
https://www.theguardian.com/world/2015/jul/02/robot-kills-worker-at-volkswagen-plant-in-germany
https://www.theguardian.com/world/2015/jul/02/robot-kills-worker-at-volkswagen-plant-in-germany

[23] Shengjian Guo, Meng Wu, and Chao Wang. Symbolic
execution of programmable logic controller code. In
Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, pages 326–336. ACM,
2017.

[24] Peter Huitsing, Rodrigo Chandia, Mauricio Papa, and
Sujeet Shenoi. Attack taxonomies for the modbus pro-
tocols. International Journal of Critical Infrastructure
Protection, 1:37–44, 2008.

[25] Ralf Huuck. Semantics and analysis of instruction
list programs. Electron. Notes Theor. Comput. Sci.,
115(C):3–18, January 2005.

[26] Helge Janicke, Andrew Nicholson, Stuart Webber, and
Antonio Cau. Runtime-monitoring for industrial control
systems. Electronics, 4(4):995–1017, 2015.

[27] Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. Prospect: peripheral proxying supported em-
bedded code testing. In Proceedings of the 9th ACM
symposium on Information, computer and communica-
tions security, pages 329–340. ACM, 2014.

[28] Anastasis Keliris and Michail Maniatakos. ICSREF: A
framework for automated reverse engineering of indus-
trial control systems binaries. In NDSS, 2019.

[29] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan
Fei, Zhan Tu, Gregory Walkup, Xiangyu Zhang, Xinyan
Deng, and Dongyan Xu. Rvfuzzer: finding input
validation bugs in robotic vehicles through control-
guided testing. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 425–442, 2019.

[30] Ralph Langner. Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security & Privacy, 9(3):49–51, 2011.

[31] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas
Feld, and Michael Hoffmann. Industry 4.0. Business &
information systems engineering, 6(4):239–242, 2014.

[32] Hyeryun Lee, Kyunghee Choi, Kihyun Chung, Jaein
Kim, and Kangbin Yim. Fuzzing can packets into auto-
mobiles. In 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications,
pages 817–821. IEEE, 2015.

[33] Gaoqi Liang, Steven R Weller, Junhua Zhao, Fengji Luo,
and Zhao Yang Dong. The 2015 ukraine blackout: Im-
plications for false data injection attacks. IEEE Trans-
actions on Power Systems, 32(4):3317–3318, 2017.

[34] Hal Lonas. Introduction to GCC Compiler Induced Vul-
nerability. https://www.openwall.com/lists/oss-
security/2018/10/22/3, 2018. [Online ; Accessed
January 2020].

[35] Dominik Maier, Benedikt Radtke, and Bastian Harren.
Unicorefuzz: On the viability of emulation for ker-
nelspace fuzzing. In 13th {USENIX} Workshop on
Offensive Technologies ({WOOT} 19), 2019.

[36] Michaël Marcozzi, Qiyi Tang, Alastair Donaldson, and
Cristian Cadar. A systematic impact study for fuzzer-
found compiler bugs. arXiv preprint arXiv:1902.09334,
2019.

[37] John Matherly. Complete guide to shodan. Shodan,
LLC (2016-02-25), 2015.

[38] Stephen E McLaughlin, Saman A Zonouz, Devin J
Pohly, and Patrick D McDaniel. A trusted safety verifier
for process controller code. In NDSS, volume 14, 2014.

[39] National Security Agency. A software reverse en-
gineering (sre) suite of tools developed by nsa’s re-
search directorate in support of the cybersecurity mis-
sion. https://ghidra-sre.org/, 2019.

[40] SecureWorld News Team. Industrial Con-
trol Systems: Suffer a Breach and Lose Big.
https://www.secureworldexpo.com/industry-
news/industrial-control-systems-suffer-a-

breach-and-lose-big, 2017. [Online ; Accessed
January 2020].

[41] Tolga Ovatman, Atakan Aral, Davut Polat, and Ali Os-
man Ünver. An overview of model checking practices
on verification of plc software. Software & Systems
Modeling, 15(4):937–960, 2016.

[42] Nicole Perlroth and Clifford Krauss. A Cy-
berattack in Saudi Arabia Had a Deadly
Goal. Experts Fear Another Try. https:

//www.nytimes.com/2018/03/15/technology/
saudi-arabia-hacks-cyberattacks.html, 2018.
[Online ; Accessed January 2020].

[43] Prashant Hari Narayan Rajput, Pankaj Rajput, Marios
Sazos, and Michail Maniatakos. Process-aware cyber-
attacks for thermal desalination plants. In Proceedings
of the 2019 ACM Asia Conference on Computer and
Communications Security, pages 441–452, 2019.

[44] Julian L Rrushi. Timing performance profiling of sub-
station control code for ied malware detection. In Pro-
ceedings of the 3rd Annual Industrial Control System
Security Workshop, pages 15–23. ACM, 2017.

[45] Abraham Serhane, Mohamad Raad, Raad Raad, and
Willy Susilo. Plc code-level vulnerabilities. In 2018 In-
ternational Conference on Computer and Applications
(ICCA), pages 348–352. IEEE, 2018.

USENIX Association 30th USENIX Security Symposium 2861

https://www.openwall.com/lists/oss-security/2018/10/22/3
https://www.openwall.com/lists/oss-security/2018/10/22/3
https://ghidra-sre.org/
https://www.secureworldexpo.com/industry-news/industrial-control-systems-suffer-a-breach-and-lose-big
https://www.secureworldexpo.com/industry-news/industrial-control-systems-suffer-a-breach-and-lose-big
https://www.secureworldexpo.com/industry-news/industrial-control-systems-suffer-a-breach-and-lose-big
https://www.nytimes.com/2018/03/15/technology/saudi-arabia-hacks-cyberattacks.html
https://www.nytimes.com/2018/03/15/technology/saudi-arabia-hacks-cyberattacks.html
https://www.nytimes.com/2018/03/15/technology/saudi-arabia-hacks-cyberattacks.html

[46] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice-
automatic detection of authentication bypass vulnerabil-
ities in binary firmware. In NDSS, 2015.

[47] Ryan Singel. Industrial Control Systems Killed
Once and Will Again, Experts Warn. https:

//www.wired.com/2008/04/industrial-cont/,
2008. [Online; accessed July 2019].

[48] Slimm609. Checkseck. https://github.com/
slimm609/checksec.sh, 2011.

[49] Rob Sobers. 60 Must-Know Cybersecurity Statis-
tics for 2019. https://www.varonis.com/blog/
cybersecurity-statistics/, 2019. [Online ; Ac-
cessed January 2020].

[50] Ralf Spenneberg, Maik Brüggemann, and Hendrik
Schwartke. Plc-blaster: A worm living solely in the
plc. Black Hat Asia, 16, 2016.

[51] Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3:
Programming industrial automation systems. Springer,
1995.

[52] Dimitrios Tychalas, Anastasis Keliris, and Michail Ma-
niatakos. LED Alert: Supply Chain Threats for Stealthy
Data Exfiltration in Industrial Control Systems. In 2019
IEEE 25th International Symposium on On-Line Test-
ing and Robust System Design (IOLTS), pages 194–199.
IEEE, 2019.

[53] Dimitrios Tychalas, Anastasis Keliris, and Michail Mani-
atakos. Stealthy information leakage through peripheral
exploitation in modern embedded systems. IEEE Trans-
actions on Device and Materials Reliability, 20(2):308–
318, 2020.

[54] Dimitrios Tychalas and Michail Maniatakos. Open plat-
form systems under scrutiny: A cybersecurity analysis
of the device tree. In 2018 25th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS),
pages 477–480. IEEE, 2018.

[55] Dimitrios Tychalas and Michail Maniatakos. IFFSET:
In-Field Fuzzing of Industrial Control Systems using
System Emulation. In 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 662–
665. IEEE, 2020.

[56] David I. Urbina, Jairo A. Giraldo, Alvaro A. Cardenas,
Nils Ole Tippenhauer, Junia Valente, Mustafa Faisal,
Justin Ruths, Richard Candell, and Henrik Sandberg.
Limiting the impact of stealthy attacks on industrial con-
trol systems. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, pages 1092–1105, New York, NY, USA, 2016.
ACM.

[57] David I Urbina, Jairo Alonso Giraldo, Nils Ole Tip-
penhauer, and Alvaro A Cárdenas. Attacking fieldbus
communications in ics: Applications to the swat testbed.
In SG-CRC, pages 75–89, 2016.

[58] Fabian Van Den Broek, Brinio Hond, and Arturo Cedillo
Torres. Security testing of gsm implementations. In In-
ternational Symposium on Engineering Secure Software
and Systems, pages 179–195. Springer, 2014.

[59] Suan Hsi Yong and Susan Horwitz. Protecting c pro-
grams from attacks via invalid pointer dereferences. In
ACM SIGSOFT Software Engineering Notes, volume 28,
pages 307–316. ACM, 2003.

[60] Jonas Zaddach and Andrei Costin. Embedded devices
security and firmware reverse engineering. Black-Hat
USA, 2013.

[61] Michal Zalewski. American fuzzy lop. http://

lcamtuf.coredump.cx/afl. [Online; Accessed Jan-
uary 2020].

[62] Kim Zetter. The Ukrainian Power Grid Was Hacked
Again. https://motherboard.vice.com/en_us/
article/bmvkn4/ukrainian-power-station-

hacking-december-2016-report, 2017. [Online;
Accessed January 2020].

[63] Li Zhang and Vrizlynn LL Thing. A hybrid symbolic
execution assisted fuzzing method. In Region Ten Con-
ference, pages 822–825. IEEE, 2017.

[64] Mu Zhang, Chien-Ying Chen, Bin-Chou Kao, Yassine
Qamsane, Yuru Shao, Yikai Lin, Elaine Shi, Sibin Mo-
han, Kira Barton, James R. Moyne, and Z. Morley Mao.
Towards automated safety vetting of plc code in real-
world plants. In S&P 2019. IEEE, 2019.

[65] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu
Song, Hongsong Zhu, and Limin Sun. Firm-afl: high-
throughput greybox fuzzing of iot firmware via aug-
mented process emulation. In 28th {USENIX} Security
Symposium ({USENIX} Security 19), pages 1099–1114,
2019.

2862 30th USENIX Security Symposium USENIX Association

https://www.wired.com/2008/04/industrial-cont/
https://www.wired.com/2008/04/industrial-cont/
https://github.com/slimm609/checksec.sh
https://github.com/slimm609/checksec.sh
https://www.varonis.com/blog/cybersecurity-statistics/
https://www.varonis.com/blog/cybersecurity-statistics/
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://motherboard.vice.com/en_us/article/bmvkn4/ukrainian-power-station-hacking-december-2016-report
https://motherboard.vice.com/en_us/article/bmvkn4/ukrainian-power-station-hacking-december-2016-report
https://motherboard.vice.com/en_us/article/bmvkn4/ukrainian-power-station-hacking-december-2016-report

	Introduction
	Preliminaries
	Problem Formulation
	Threat Model
	Codesys Runtime
	Control Application Binaries

	Control Application Analysis
	PLC programming languages
	Comparing programming languages
	Potentially vulnerable functions in PLC applications

	Fuzzing Industrial Control Systems
	Fuzzing Control Applications
	Fuzzing the Runtime

	Experimental Evaluation
	Discussion and Related Work
	Conclusion

