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Abstract

Di↵erential Privacy is a theoretical framework for ensuring the privacy of individual-level
data when performing statistical analysis of privacy-sensitive datasets. This tutorial provides
an introduction to and overview of di↵erential privacy, with the goal of conveying its deep
connections to a variety of other topics in computational complexity, cryptography, and theo-
retical computer science at large. This tutorial was written starting from notes taken during a
minicourse given by the author and Kunal Talwar at the 26th McGill Invitational Workshop on
Computational Complexity in February 2014, at the Bellairs Institute in Holetown, Barbados [1].
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1 Introduction and Definition

1.1 Motivation

Suppose you are a researcher in the health or social sciences who has collected a rich dataset on
the subjects you have studied, and want to make the data available to others to analyze as well.
However, the dataset has sensitive information about your subjects (such as disease diagnoses,
financial information, or political a�liations), and you have an obligation to protect their privacy.
What can you do?

The traditional approach to such privacy problems is to try to “anonymize” the dataset by re-
moving obvious identifiers, such as name, address, and date of birth, and then share the anonymized
dataset. However, it is now well understood that this approach is ine↵ective, because the data that
remains is often still su�cient to determine who is who in the dataset, given appropriate auxiliary
information. This threat is not hypothetical; there have now been many high-visibility demon-
strations that such “re-identification” attacks are often quite easy to carry out in practice, using
publicly available datasets as sources of auxiliary information [84].

A more promising approach is to mediate access to the data through a trusted interface, which
will only answer queries posed by data analysts. However, ensuring that such a system protects
privacy is nontrivial. Which queries should be permitted? Clearly, we do not want to allow queries
that target a particular individual (such as “Does Sonny Rollins have sensitive trait X?”), even
if they are couched as aggregate queries (e.g., “How many people in the dataset are 84-year-old
jazz saxophonists with trait X?”). Even if a single query does not seem to target an individual,
a combination of results from multiple queries can do so (e.g., “How many people in the dataset
have trait X?” and “How many people in the dataset have trait X and are not 84-year-old jazz
saxophonists?”). These attacks can sometimes be foiled by only releasing approximate statistics,
but Dinur and Nissim [31] exhibited powerful “reconstruction attacks” which showed that, given
su�ciently many approximate statistics, one can reconstruct almost the entire dataset. Thus, there
are fundamental limits to what can be achieved in terms of privacy protection while providing useful
statistical information, and we need a theory that can assure us that a given release of statistical
information is safe.

Cryptographic tools such as secure function evaluation and functional encryption do not address
these issues. The kind of security guarantee such tools provide is that nothing is leaked other than
the outputs of the functions being computed. Here we are concerned about the possibility that the
outputs of the functions (i.e., queries) already leak too much information. Indeed, addressing these
privacy issues is already nontrivial in a setting with a trusted data curator, whereas the presence
of a trusted third party trivializes most of cryptography.

Di↵erential privacy is a robust definition of privacy protection for data-analysis interfaces that:

• Ensures meaningful protection against adversaries with arbitrary auxiliary information (in-
cluding ones that are intimately familiar with the individuals they are targeting),

• Does not restrict the computational strategy used by the adversary (in the spirit of modern
cryptography), and

• Provides a quantitative theory that allows us to reason about how much statistical information
is safe to release and with what accuracy.
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Following the aforementioned reconstruction attacks of Dinur and Nissim [31], the concept of
di↵erential privacy emerged through a series of papers by Dwork and Nissim [35], Blum, Dwork,
McSherry, and Nissim [13], and Dwork, McSherry, Nissim, and Smith [48], with the latter providing
the elegant indistinguishability-based definition that we will see in the next section.

In the decade since di↵erential privacy was introduced, a large algorithmic literature has de-
veloped showing that di↵erential privacy is compatible with a wide variety of data-analysis tasks.
It also has attracted significant attention from researchers and practitioners outside theoretical
computer science, many of whom are interested in bringing di↵erential privacy to bear on real-life
data-sharing problems. At the same time, it has turned out to be extremely rich from a theoretical
perspective, with deep connections to many other topics in theoretical computer science and math-
ematics. The latter connections are the focus of this tutorial, with an emphasis on connections
to topics in computational complexity and cryptography. For a more in-depth treatment of the
algorithmic aspects of di↵erential privacy, we recommend the monograph of Dwork and Roth [36].

1.2 The Setting

The basic setting we consider is where a trusted curator holds a dataset x about n individuals,
which we model as a tuple x 2 X

n, for a data universe X. The interface to the data is given by a
(randomized) mechanism M : Xn ⇥ Q! Y, where Q is the query space and Y is the output space of
M. To avoid introducing continuous probability formalism (and to be able to discuss algorithmic
issues), we will assume that X, Q, and Y are discrete.

The picture we have in mind is as follows:

X
n 3

x1

x2
...

xn

�! M

q �
q(x)�!

Data Analyst/

Adversary

for a dataset x = (x1, . . . , xn).

1.3 Counting Queries

A basic type of query that we will examine extensively is a counting query, which is specified by a
predicate on rows q : X ! {0, 1}, and is extended to datasets x 2 X

n by counting the fraction of
people in the dataset satisfying the predicate:

q(x) =
1

n

nX

i=1

q(xi) ,

(Note that we abuse notation and use q for both the predicate on rows and the function that
averages q over a dataset.) The examples mentioned above in Section 1.1 demonstrate that it
is nontrivial to ensure privacy even when answering counting queries, because answers to several
counting queries can be combined to reveal information about individual rows.

There are several specific families of counting queries that are important for statistical analysis
and will come up many times in this tutorial:
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Point Functions (Histograms): Here X is an arbitrary set and for each y 2 X we consider the
predicate qy : X ! {0, 1} that evaluates to 1 only on input y. The family Q

pt = Q
pt(X)

consists of the counting queries corresponding to all point functions on data universe X.
(Approximately) answering all of the counting queries in Q

pt amounts to (approximately)
computing the histogram of the dataset.

Threshold Functions (CDFs): Here X is a totally ordered set, and we consider the set Qthr =
Q
thr(X) of threshold functions. That is, for each y 2 X, Qthr contains counting query cor-

responding to the function qy(z) that outputs 1 i↵ z  y. (Approximately) answering all
of the counting queries in Q

thr is tantamount to (approximating) the cumulative distribution
function of the dataset.

Attribute Means (1-way Marginals): Here X = {0, 1}d, so each individual has d Boolean at-
tributes, and Q

means = Q
means(d) contains the counting queries corresponding to the d co-

ordinate functions qj : {0, 1}d ! {0, 1} defined by qj(w) = wj for j = 1, . . . , d. Thus,
(approximately) answering all of the queries in Q

means = Q
means(d) amounts to (approxi-

mately) computing the fraction of the dataset possessing each of the d attributes. These are
also referred to as the (1-way) marginal statistics of the dataset.

Conjunctions (Contingency Tables): Here again X = {0, 1}d, and for an integer t 2 {0, 1, 2, . . . , d},
we consider the family Q

conj
t

= Q
conj
t

(d) of counting queries corresponding to conjunctions of
t literals. For example, Qconj

2 (5) contains the function q(w) = w2 ^ ¬w4, which could rep-
resent a query like “what fraction of individuals in the dataset have lung cancer and are
nonsmokers?”. Notice that Qconj

1 (d) consists of the queries in Q
means(d) and their negations,

and Q
conj
d

(d) contains the same queries as Q
pt({0, 1}d). We have |Qconj

t
(d)| =

�
d

t

�
· 2t = d⇥(t)

when t  d1�⌦(1). We also consider the family Q
conj = Q

conj(d) = [d
t=0Q

conj
t

(d), which is of

size 3d. The counting queries in Q
conj
t

are also called t-way marginals and answering all of
them amounts to computing the t-way contingency table of the dataset. These are important
queries for statistical analysis, and indeed the answers to all queries in Q

conj is known to be
a “su�cient statistic” for “logit models.”

Arbitrary Queries: Sometimes we will not impose any structure on the data universe X or query
family Q except possibly to restrict attention to families of e�ciently computable queries.
For the latter, we encode elements of both X and Q as strings, so X = {0, 1}d, Q = {qy :
X ! {0, 1}}y2{0,1}s for some s, d 2 N, where qy(w) = Eval(y, w) for some polynomial-time

evaluation function Eval : {0, 1}s ⇥ {0, 1}d ! {0, 1}.

1.4 Di↵erential Privacy

The definition of di↵erential privacy requires that no individual’s data has much e↵ect on what an
adversary sees. That is, if we consider any two datasets x and x0 that di↵er on one row (which
we will denote x ⇠ x0), the output distribution of M on x should be “similar” to that of M on x0.
Specifically, we require that

8T ✓ Y, Pr[M(x, q) 2 T ]  (1 + ") · Pr[M(x, q) 2 T ] .

The reverse relationship (Pr[M(x0, q) 2 T ]  (1 + ") · Pr[M(x, q) 2 T ]) follows by symmetry,
swapping x and x0. The choice of a multiplicative measure of closeness between distributions is
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important, and we will discuss the reasons for it later. It is technically more convenient to use e"

instead of (1+ "), because the former behaves more nicely under multiplication (e"1 · e"2 = e"1+"2).
This gives the following formal definition:

Definition 1.1 ((Pure) di↵erential privacy [48]). For " � 0, we say that a randomized mechanism
M : Xn ⇥ Q ! Y is "-di↵erentially private if, for every pair of neighboring datasets x ⇠ x0 2 X

n

(i.e., x and x0 di↵er in one row) and every query q 2 Q, we have

8T ✓ Y, Pr[M(x, q) 2 T ]  e" · Pr[M(x0, q) 2 T ] .

Equivalently,
8y 2 Y, Pr[M(x, q) = y]  e" · Pr[M(x0, q) = y] .

Here we typically take " as small, but nonnegligible (not cryptographically small), for example,
a small constant, such as " = 0.1. Smaller " provides better privacy, but as we will see, the definition
is no longer useful when " < 1/n. We will also think of n as known and public information, and
we will study asymptotic behavior as n!1.

We will often think of the query as fixed, and remove q from notation. In this section, we
consider answering only one query; a major focus of subsequent sections will be the problem of
answering many queries.

1.5 Basic Mechanisms

Before discussing the definition further, let us see some basic constructions of di↵erentially private
mechanisms.

Randomized response. Let q : X ! {0, 1} be a counting query, and x 2 X
n be a dataset. For

each row xi, let

yi =

(
q(xi) with prob. (1 + ")/2 ,

¬q(xi) with prob. (1� ")/2

and
M(x1, . . . , xn) = (y1, . . . , yn) .

If x ⇠ x0 are datasets that di↵er on the i-th row, their output distributions di↵er only if q(xi) 6=
q(x0

i
), in which case the outputs di↵er only in the i-th components, denoted yi and y0

i
, respectively.

We have
Pr[yi = q(xi)]

Pr[y0
i
= q(xi)]

=
(1 + ")/2

(1� ")/2
= eO(") .

And Pr[yi = q(x0
i
)]  Pr[y0

i
= q(x0

i
)]. Thus, randomized response is O(")-di↵erentially private.

We can use the result of randomized response to estimate the value of the counting query q(x) as
follows. Note that E[yi] = " · q(xi)+ (1� ")/2. Thus, by the Cherno↵ bound, with high probability
we have �����

1

n

X

i

1

"
·
✓
yi �

(1� ")

2

◆
� q(x)

�����  O

✓
1p
n · "

◆
.

As n!1, we get an increasingly accurate estimate of the average.
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An advantage of randomized response is that it does not require a trusted, centralized data
curator; each subject can carry out the randomization on her own and publicly announce her noisy
bit yi. Indeed, this method was introduced in the 1960s by Warner [108] for carrying out sensitive
surveys in the social sciences, where participants may not feel comfortable revealing information
to the surveyor. In Section 9, we will discuss the “local model” for di↵erential privacy, which
encompasses general mechanisms and interactive protocols where subjects ensure their own privacy
and need not trust anyone else.

The Laplace mechanism [48]. Let q be a counting query; it is natural to try to protect privacy
by simply adding noise. That is, M(x) = q(x) + noise. But how much noise do we need to add,
and according to what distribution?

Note that, if x ⇠ x0, we have |q(x) � q(x0)|  1/n. This suggests “noise” of magnitude 1/("n)
should be enough to makeM(x) andM(x0) “"-indistinguishable” in the sense required by di↵erential
privacy.

Which distribution will satisfy the multiplicative definition of di↵erential privacy? Recall that,
at every output y, the density of the output distribution should be the same under x and x0 up to a
factor of e". The density of M(x) at y is the density of the noise distribution at z = y�q(x), and the
density of M(x0) at y is the density of the noise distribution at z0 = y� q(x0); again |z� z0|  1/n.
So we see that it su�ces for the density of the noise distribution to change by a factor of at most
e" over intervals of length 1/n.

This leads us to the Laplace distribution Lap(�):

the density of Lap(�) at z / e�|z|/�.

If we set � = 1/"n, then we see that the ratio of densities is as we want: for z � 0, we have

density of Lap(1/"n) at z + 1/n

density of Lap(1/"n) at z
= e1/(n�) = e�" .

(For z  �1/n, the ratio of densities is e", and for z 2 (�1/n, 0), it is between e�" and e".)
It may seem more natural to use Gaussian noise, but it does not quite achieve the definition

of di↵erential privacy that we have given: in the tail of a Gaussian, the density changes by an
unbounded multiplicative factor over intervals of fixed width. Later, we will see a relaxation of
di↵erential privacy (called (", �)-di↵erential privacy) that is achieved by adding Gaussian noise of
appropriate variance.

Lap(�) has mean 0 and standard deviation
p
2 · �, and has exponentially vanishing tails:

Pr[|Lap(�)| > �t]  e�t .

The Laplace mechanism is not specific to counting queries; all we used was that |q(x)� q(x0)| 
1/n for x ⇠ x0. For an arbitrary query q : Xn ! R, we need to scale the noise to its global sensitivity:

GSq = max
x⇠x0

|q(x)� q(x0)|.

Then we have:
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Definition 1.2 (The Laplace mechanism). For a query q : Xn ! R, a bound B, and " > 0, the
Laplace mechanism Mq,B over data universe X takes a dataset x 2 X

n and outputs

Mq,B(x) = q(x) + Lap(B/").

From the discussion above, we have:

Theorem 1.3 (Properties of the Laplace mechanism).

1. If B � GSq, the Laplace mechanism Mq,B is "-di↵erentially private.

2. For every x 2 X
n and � > 0,

Pr[|Mq,B(x)� q(x)| > (B/") · ln(1/�)]  �.

As noted above, for a counting query q, we can take B = 1/n, and thus with high probability we
get error O(1/("n)), which is significantly better than the bound of O(1/"

p
n) given by randomized

response.
Global sensitivity is also small for a variety of other queries of interest:

1. For q(x) = max{q1(x), q2(x), . . . , qt(x)}, we have GSq  maxi{GSqi}.

2. For q(x) = d(x,H) where H ✓ X
n and d is Hamming distance,1 we have GSq  1. (“Is my

data set close to one that satisfies my hypothesis H?”).

3. A statistical query (sometimes called a linear query in the di↵erential privacy literature) is a
generalization of a counting query to averaging a real-valued function on the dataset. That
is, we are given a bounded function q : X! [0, 1], and are interested in the query:

q(x) =
1

n

nX

i=1

q(xi) .

Then GSq  1/n.

We promised that we would only work with discrete probability, but the Laplace distribution is
continuous. However, one can discretize both the query values q(x) and the Laplace distribution to
integer multiples of B (yielding a scaled version of a geometric distribution) and Theorem 1.3 will
still hold. We ignore this issue in the rest of the tutorial for the sake of simplicity (and consistency
with the literature, which typically refers to the continuous Laplace distribution).

1.6 Discussion of the Definition

We now discuss why di↵erential privacy utilizes a multiplicative measure of similarity between the
probability distributions M(x) and M(x0).

1
The Hamming distance d(x, x0

) between two datasets x, x0 2 X
n
is the number of rows on which x and x0

di↵er.
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Why not statistical distance? The first choice that one might try is to use statistical di↵erence
(total variation distance). That is, we require that, for every x ⇠ x0, we have

SD(M(x),M(x0))
def
= max

T✓Y

��Pr[M(x) 2 T ]� Pr[M(x0) 2 T ]
��  �.

"-Di↵erential privacy implies the above definition with � = 1� e�"  ", but not conversely.
We claim that, depending on the setting of �, such a definition either does not allow for any

useful computations or does not provide su�cient privacy protection.

�  1/2n: Then by a hybrid argument, for all pairs of datasets x, x0 2 X
n (even nonneighbors),

we have SD(M(x),M(x0))  n�  1/2. Taking x0 to be a fixed (e.g., all-zeroes) dataset, this
means that, with probability 1/2 on M(x), we get an answer independent of the dataset x
and the mechanism is useless.

� � 1/2n: In this case, the mechanism “with probability 1/2, output a random row of the dataset”
satisfies the definition. We do not consider a mechanism that outputs an individual’s data in
the clear to be protecting privacy.

However, it turns out to be quite useful to consider the following relaxation of di↵erential
privacy, which incorporates a negligible statistical distance term � in addition to the multiplicative
":

Definition 1.4 ((Approximate) di↵erential privacy). For " � 0, � 2 [0, 1], we say that a randomized
mechanism M : Xn ⇥ Q ! Y is (", �)-di↵erentially private if, for every two neighboring datasets
x ⇠ x0 2 X

n (x and x0 di↵er in one row) and every query q 2 Q, we have

8T ✓ Y, Pr[M(x, q) 2 T ]  e" · Pr[M(x0, q) 2 T ] + � . (1)

Here, we will insist that � is cryptographically negligible (in particular, �  n�!(1)); it can be
interpreted as an upper bound on the probability of catastrophic failure (e.g., the entire dataset
being published in the clear). This notion is often called approximate di↵erential privacy, in contrast
with pure di↵erential privacy as given by Definition 1.1. Note that, unlike pure di↵erential privacy,
with approximate di↵erential privacy it is not su�cient to verify Inequality (1) for sets T of size
1. (Consider a mechanism that outputs the entire dataset along with a random number from
{1, . . . , d1/�e}; then Pr[M(x, q) = y]  �  e" · Pr[M(x0, q) = y] + � for all y, but clearly does not
provide any kind of privacy or satisfy Definition 1.4.)

More generally, we will call two random variables Y and Y 0 taking values in Y (", �)-indistinguishable
if:

8T ✓ Y, Pr[Y 2 T ]  e" · Pr[Y 0 2 T ] + �, and

Pr[Y 0 2 T ]  e" · Pr[Y 2 T ] + �

Setting " = 0 is equivalent to requiring that SD(Y, Y 0)  �. (", �)-Indistinguishability has the fol-
lowing nice characterization, which allows us to interpret (", �)-di↵erential privacy as “"-di↵erential
privacy with probability at least 1� �”:

Lemma 1.5 (approximate DP as smoothed2 DP [19]). Two random variables Y and Y 0 are (", �)-
indistinguishable if and only if there are events E = E(Y ) and E0 = E0(Y 0) such that:

2
The terminology “smoothed” was coined by [91] for similar variants of entropy measures.
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1. Pr[E],Pr[E0] � 1� �, and

2. Y |E and Y 0|E0 are (", 0)-indistinguishable.

Proof. We prove the “if” direction, and omit the converse (which is rather technical). For every
set T , we have

Pr[Y 2 T ]  Pr[Y 2 T |E] · Pr[E] + Pr[E]

 Pr[Y 2 T |E] · (1� �) + �

 e" · Pr[Y 0 2 T |E0] · (1� �) + �

 e" · Pr[Y 0 2 T |E0] · Pr[E0] + �

 e" · Pr[Y 0 2 T ] + �

A Bayesian interpretation. Although statistical distance is not a good choice (on its own),
there are many other choices of distance measures, and we still have not justified why a multiplica-
tive measure is a particularly good choice. One justification comes from a Bayesian interpretation
of the definition of di↵erential privacy [48, 33, 65]. Consider a prior distribution (X,X 0) on neigh-
boring datasets, modeling an adversary’s prior on a real dataset X and a dataset X 0 that would
have been obtained if a particular individual had not participated. Given an output y  M(X),
the adversary will have a posterior belief on the dataset, given by the conditional distribution
X|M(X)=y. We will argue that di↵erential privacy implies that this posterior is close to the poste-
rior that would have been obtained if the mechanism had been run on X 0 instead, which we think
of as capturing “ideal” privacy for the individual.

Proposition 1.6 (DP implies Bayesian privacy). Let M : Xn ! Y be any "-di↵erentially private
mechanism and let (X,X 0) be any joint distribution on X

n ⇥ X
n such that Pr[X ⇠ X 0] = 1. Then

for every dataset x 2 X
n and output y 2 Supp(M(X)) = Supp(M(X 0)),3

SD(X|M(X)=y, X|M(X0)=y)  2".

A special case of the proposition is when we fix X 0 = x0 to be constant (so that there is
nothing to learn from X 0) and X = (Xi, x0�i) is varying only in the data of one individual. Then
the proposition says that in such a case (where the adversary knows all but the i-th row of the
dataset), the adversary’s posterior on Xi is close to its prior. Indeed,

SD(Xi|M(X)=y, Xi) = SD(Xi|M(X)=y, Xi|M(X0)=y0) = SD(X|M(X)=y, X|M(X0)=y0)  2".

That is, whatever an adversary could have learned about an individual, it could have learned from
the rest of the dataset.

Proof. By Bayes’ rule,

Pr[X = x|M(X) = y] =
Pr[M(X) = y|X = x] · Pr[X = x]

Pr[M(X) = y]

 e" · Pr[M(X 0) = y|X = x] · Pr[X = x]

e�" · Pr[M(X 0) = y]

= e2" · Pr[X = x|M(X 0) = y].

3
Supp(Z) is defined to be the support of random variable Z, i.e., {z : Pr[Z = z] > 0}.
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By symmetry (swapping X and X 0), we also have Pr[X = x|M(X 0) = y]  e2" ·Pr[X = x|M(X) =
y]. Having all probability masses equal up to a multiplicative factor of e2" implies that the statistical
distance is at most 1� e�2"  2".

There is also a converse to the proposition: if M guarantees that the two posterior distributions
are close to each other (even in statistical di↵erence), then M must be di↵erentially private. In
fact, this will hold even for the special case mentioned above where X 0 is constant.

Proposition 1.7 (Bayesian privacy implies DP). Let M : Xn ! Y be any randomized mechanism,
and let x0 ⇠ x1 2 X

n be two neighboring datasets. Define the joint distribution (X,X 0) to equal
(x0, x0) with probability 1/2 and to equal (x1, x0) with probability 1/2. Suppose that, for some
y 2 Supp(M(x0) \ Supp(M(x1)),

SD(X|M(X)=y, X|M(X0)=y)  "  1/4. (2)

Then
e�O(") · Pr[M(x1) = y]  Pr[M(x0) = y]  eO(") · Pr[M(x1) = y].

In particular, if for all pairs x0 ⇠ x1 of neighboring datasets, we have that Supp(M(x0)) =
Supp(M(x1)) and (2) holds for all outputs y 2 Supp(M(x0)), then M is O(")-di↵erentially pri-
vate.

Note that, for the joint distributions (X,X 0) in Proposition 1.7, we have Pr[X ⇠ X 0] = 1, so
this is indeed a converse to Proposition 1.7.

Proof. Since X 0 is constant, X|M(X0)=y is the same as the prior X (namely, uniformly random from
{x0, x1}). Thus, by hypothesis, for b = 0, 1, we have

1

2
� "  Pr[X = xb|M(X) = y]  1

2
+ ".

On the other hand, by Bayes’ rule,

Pr[M(xb) = y] = Pr[M(X) = y|X = xb]

=
Pr[X = xb|M(X) = y] · Pr[M(X) = y]

Pr[X = xb]

2

(1/2)� "

1/2
· Pr[M(X) = y],

(1/2) + "

1/2
· Pr[M(X) = y]

�
.

Thus, Pr[M(x0) = y]/Pr[M(x1) = y] is between (1/2� ")/(1/2+ ") = e�O(") and (1/2+ ")/(1/2�
") = eO(").

There are also (", �) analogues of the above propositions, where we require that, with all but
negligible probability (related to �), the posterior probability distributions should be close to each
other [65].
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Interpretations of the Definition. We can now provide some more intuitive interpretations of
(and cautions about) the definition of di↵erential privacy:

• Whatever an adversary learns about you, she could have learned from the rest of the dataset
(in particular, even if you did not participate). Note that this does not say that the adversary
does not learn anything about you; indeed, learning about the population implies learning
about individuals. For example, if an adversary learns that smoking correlates with lung
cancer (the kind of fact that di↵erential privacy is meant to allow learning) and knows that
you smoke, it can deduce that you are more likely to get lung cancer. However, such a
deduction is not because of the use of your data in the di↵erentially private mechanism, and
thus may not be considered a privacy violation.

• The mechanism will not leak a significant amount of information specific to an individual
(or a small group, as we will see in the next section). Consequently, di↵erential privacy is
not an achievable privacy notion if the goal of the analysis is to take an action on a specific
individual in the dataset (e.g., to identify a candidate for a drug trial, a potential terrorist,
or a promising customer).

The above interpretations hold regardless of what auxiliary information or computational strategy
the adversary uses. Indeed, the definition provides an information-theoretic form of security. In
Section 10, we will consider a computational analogue of di↵erential privacy, where we restrict to
polynomial-time adversaries.

Variants of the definition and notation. In our treatment, the dataset is an ordered n-tuple
x 2 X

n, where n is known and public (not sensitive information).
A common alternative treatment is to consider datasets x that are multisets of elements of

X, without a necessarily known or public size. Then, a convenient notation is to represent x
as a histogram – that is, as an element of NX. In the multiset definition, the distance between
two datasets is the symmetric di↵erence |x�x0|, which corresponds to `1 distance in histogram
notation. Thus, neighboring datasets (at distance 1) are ones that di↵er by addition or removal
of one item. Di↵erential privacy under this definition has a nice interpretation as hiding whether
you participated in a dataset at all (without having to replace you by an alternate row to keep the
dataset size the same).

There is not a big di↵erence between the two notions, as one can estimate n = |x| with di↵eren-
tial privacy (it is just a counting query), the distance between two unordered datasets of the same
size under addition/removal versus substitution di↵er by at most a factor of 2, and one can apply a
di↵erentially private mechanism designed for ordered tuples to an unordered dataset by randomly
ordering the elements of the dataset.

1.7 Preview of the Later Sections

The primary goal of this tutorial is to illustrate connections of di↵erential privacy to computational
complexity and cryptography. Consequently, our treatment of the algorithmic foundations of dif-
ferentially private is very incomplete, and we recommend the monograph of Dwork and Roth [36]
for a thorough treatment, including more proofs and examples for the background material that is
only sketched here. We also focus heavily on counting queries in this tutorial, because they su�ce
to bring out most of the connections we wish to illustrate. However, the algorithmic literature
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on di↵erential privacy now covers a vast range of data-analysis tasks, and obtaining a thorough
complexity-theoretic understanding of such tasks is an important direction for future work.

The topics that will be covered in the later sections are as follows:

Section 2: We will describe composition theorems that allow us to reason about the level of
di↵erential privacy provided when many di↵erentially private algorithms are executed inde-
pendently. In particular, this will give us algorithms to answer nearly n2 counting queries
accurately while satisfying di↵erential privacy.

Section 3: We will briefly survey some alternatives to using global sensitivity to calibrate the level
of noise added for di↵erentially private estimates; sometimes we can get away with adding
noise that is proportional to the sensitivity of the query in a local neighborhood of our dataset
x (but we need to be careful in doing so).

Section 4: We will present some remarkable algorithms that can answer many more than n2

counting queries with di↵erential privacy. These algorithms are inspired by ideas from com-
putational learning theory, such as Occam’s razor and the multiplicative weights method.
Unfortunately, these algorithms are computationally quite expensive, requiring time that is
polynomial in the size of the data universe X (which in turn is exponential in the bit-length
of row elements).

Section 5: We will prove a number of information-theoretic lower bounds on di↵erential privacy,
showing that it is impossible to answer too many queries with too much accuracy. Some of
the lower bounds will be based on combinatorial and geometric ideas (such as “discrepancy”),
and others will be on fingerprinting codes, which were developed as a tool in cryptography
(for secure digital content distribution).

Section 6: We will turn to computational hardness results for di↵erential privacy, giving evidence
that there is no way in general to make the algorithms of Section 4 computationally e�cient.
These hardness results will be based on cryptographic constructs (such as traitor-tracing
schemes and digital signatures), and one result will also use probabilistically checkable proofs.

Section 7: Next, we will turn to some additional algorithms that bypass the hardness results
of Section 6 by focusing on specific, structured families of counting queries (and use alter-
native output representations). The methods employed include low-degree approximations
of Boolean functions (via Chebychev polynomials) and convex geometry and optimization
(semidefinite programming, Gaussian width, Grothendieck’s inequality).

Section 8: We will then look at PAC learning with di↵erential privacy, showing both some very
general but computationally ine�cient positive results, as well as some e�cient algorithms.
We will then see how methods from communication complexity have been used to show that
the sample complexity of di↵erentially private PAC learning (with pure di↵erential privacy)
is inherently higher than that of nonprivate PAC learning.

Section 9: In this section, we will explore generalizations of di↵erential privacy to the case where
the data is distributed among multiple parties, rather than all being held by a single trusted
curator. We will show, using connections to randomness extractors and to information com-
plexity, that sometimes distributed di↵erential privacy cannot achieve the same level of ac-
curacy attained in the centralized model.
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Section 10: The aforementioned limitations of multiparty di↵erential privacy can be avoided by
using cryptography (namely, secure multiparty computation) to implement the trusted cura-
tor. However, this requires a relaxation of di↵erential privacy to computationally bounded
adversaries. We will present the definition of computational di↵erential privacy, and point out
its connection to the notion of “pseudodensity” studied in the theory of pseudorandomness.

2 Composition Theorems for Di↵erential Privacy

2.1 Postprocessing and Group Privacy

One central property of di↵erential privacy, which we will use throughout the tutorial, is that it is
preserved under “postprocessing”:

Lemma 2.1 (Postprocessing). If M : Xn ! Y is (", �)-di↵erentially private and F : Y ! Z is any
randomized function, then F �M : Xn ! Z is (", �)-di↵erentially private.

Proof. Consider F to be a distribution on deterministic functions f : Y ! Z. Then, for every
x ⇠ x0 2 X

n and every subset T ✓ Z, we have

Pr[(F �M)(x) 2 T ] = E
f F

[Pr[M(x) 2 f�1(T )]]

 E
f F

[e" · Pr[M(x0) 2 f�1(T )] + �]

= e" · Pr[(F �M)(x0) 2 T ] + �.

Another useful property, alluded to in Section 1.6, is that di↵erential privacy provides protection
for small groups of individuals. For x, x0 2 X

n, let d(x, x0) denote the Hamming distance between
x and x0, or in other words the number of rows that need to be changed to go from x to x0 (so
x ⇠ x0 i↵ d(x, x0)  1).

Then the “group privacy” lemma for di↵erential privacy is as follows:

Lemma 2.2 (Group privacy). If M is an (", �)-di↵erentially private mechanism, then for all pairs
of datasets x, x0 2 X

n, M(x) and M(x0) are (k", k · ek" · �)-indistinguishable for k = d(x, x0).

Proof. We use a hybrid argument. Let x0, x1, x2, . . . , xk be such that x0 = x and xk = x0 and for
each i such that 0  i  k� 1, xi+1 is obtained from xi by changing one row. Then, for all T ✓ Y,
since M is (", �)-di↵erentially private,

Pr[M(x0) 2 T ]  e" Pr[M(x1) 2 T ] + �

 e" (e" Pr[M(x2) 2 T ] + �) + �
...

 ek" · Pr[M(xk) 2 T ] + (1 + e" + e2" + · · ·+ e(k�1)·") · �
 ek" · Pr[M(xk) 2 T ] + k · ek" · �.
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Note that, when � = 0, "-di↵erential privacy provides nontrivial guarantees for datasets x, x0

even at distance n, namely (n", 0)-indistinguishability, which in particular implies that M(x) and
M(x0) have the same support. In contrast, when � > 0, we only get nontrivial guarantees for
datasets at distance k  ln(1/�)/"; when k is larger, k · ek" · � is larger than 1. This gap is a source
of the additional power of (", �)-di↵erential privacy (as we will see).

2.2 Answering Many Queries

Now we consider a di↵erent form of composition, where we independently execute several di↵eren-
tially private mechanisms. Let M1,M2, . . . ,Mk be di↵erentially private mechanisms. Let

M(x) = (M1(x),M2(x), . . . ,Mk(x)),

where each Mi is run with independent coin tosses; for example, this is how we might obtain a
mechanism answering a k-tuple of queries.

The basic composition lemma says that the privacy degrades at most linearly with the number
of mechanisms executed.

Lemma 2.3 (Basic composition). If M1, . . . ,Mk are each (", �)-di↵erentially private, then M is
(k", k�)-di↵erentially private.

However, if we are willing to tolerate an increase in the � term, the privacy parameter " only
needs to degrade proportionally to

p
k:

Lemma 2.4 (Advanced composition [42]). If M1, . . . ,Mk are each (", �)-di↵erentially private and
k < 1/"2, then for all �0 > 0, M is

�
O(

p
k log(1/�0)) · ", k� + �0

�
-di↵erentially private.

We now prove the above lemmas, starting with basic composition.

Proof of Lemma 2.3. We start with the case � = 0. Fix datasets x, x0 such that x ⇠ x0. For an
output y 2 Y, define the privacy loss to be

Lx!x
0

M
(y) = ln

✓
Pr[M(x) = y]

Pr[M(x0) = y]

◆
= �Lx

0!x

M
(y).

When Lx!x
0

M
(y) is positive, the output y is “evidence” that the dataset is x rather than x0; and

conversely when it is negative.
Notice that "⇤-di↵erential privacy of M is equivalent to the statement that, for all x ⇠ x0 and

all y 2 Supp(M(x)) [ Supp(M(x0)),
|Lx!x

0
M

(y)|  "⇤.

Now, for M = (M1,M2, . . . ,Mk) and y = (y1, y2, . . . , yk), we have

Lx!x
0

M
(y) = ln

✓
Pr[M1(x) = y1 ^M2(x) = y2 ^ · · · ^Mk(x) = yk]

Pr[M1(x0) = y1 ^M2(x0) = y2 ^ · · · ^Mk(x0) = yk]

◆

= ln

 Q
k

i=1 Pr[Mi(x) = yi]Q
k

i=1 Pr[Mi(x0) = yi]

!

=
kX

i=1

Lx!x
0

Mi
(yi),
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so
���Lx!x

0
M

(y)
��� 

kX

i=1

���Lx!x
0

Mi
(yi)

���  k · ".

For the case that � > 0, we use Lemma 1.5. Specifically, since Mi(xi) and Mi(x0i) are (", �)-
indistinguishable, there are events Ei and E0

i
of probability at least 1 � � such that, for all yi, we

have ����ln
✓
Pr[M(xi) = yi|Ei]

Pr[M(x0
i
) = yi|E0i]

◆����  ".

Thus, in the above analysis, we instead condition on the events E = E1 ^ E2 ^ · · · ^ Ek and
E0 = E01 ^ E02 ^ · · · ^ E0

k
, redefining our privacy losses as

L
xi!x

0
i

Mi
(yi) = ln

✓
Pr[Mi(xi) = yi|Ei]

Pr[M(x0
i
) = yi|E0i]

◆
,

Lx!x
0

M
(y) = ln

✓
Pr[M(x) = y|E]

Pr[M(x0) = y|E0]

◆
.

Then we still have
���Lx!x

0
M

(y)
��� 

kX

i=1

���Lx!x
0

Mi
(yi)

���  k · ".

By a union bound, the probability of the events E and E0 are at least 1� k · �, so by Lemma 1.5,
M(x) and M(x0) are (k", k�)-indistinguishable, as required.

We now move on to advanced composition.

Proof sketch of Lemma 2.4. We again focus on the � = 0 case; the extension to � > 0 is handled
similarly to the proof of Lemma 2.3. The intuition for how we can do better than the linear
growth in " is that some of the yi’s will have positive privacy loss (i.e., give evidence for dataset x)
while some will have negative privacy loss (i.e., give evidence for dataset x0), and the cancellations
between these will lead to a smaller overall privacy loss.

To show this, we consider the expected privacy loss

E
yi Mi(x)

[Lx!x
0

Mi
(yi)].

By definition, this equals the Kullback–Liebler divergence (a.k.a. relative entropy)

D(Mi(x) kMi(x
0)),

which is known to always be nonnegative.
We first prove the following claim, which shows that the expected privacy loss of a di↵erentially

private mechanism is quite a bit smaller than the upper bound on the maximum privacy loss of ":

Claim 2.5. If Mi is "-di↵erentially private, where "  1, then

E
yi Mi(x)

[Lx!x
0

Mi
(yi)]  2"2.
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Proof of claim. We will show that

D(Mi(x)kMi(x
0)) +D(Mi(x

0)kMi(x))  2"2,

and then the result follows by the nonnegativity of divergence. Now,

D(Mi(x)kMi(x
0)) +D(Mi(x

0)kMi(x)) = E
yi Mi(x)

[Lx!x
0

Mi
(yi)] + E

yi Mi(x0)
[Lx

0!x

Mi
(yi)]

= E
yi Mi(x)

[Lx!x
0

Mi
(yi)]� E

yi Mi(x0)
[Lx!x

0
Mi

(yi)],

and using the upper bound of " on privacy loss we get that

E
yi Mi(x)

[Lx!x
0

Mi
(yi)]� E

yi Mi(x0)
[Lx!x

0
Mi

(yi)]

 2 ·
✓

max
yi2Supp(Mi(x))[Supp(Mi(x0))

���Lx!x
0

Mi
(yi)

���
◆
· SD(Mi(x),Mi(x

0))

 2" · (1� e�")

 2"2,

where SD is statistical distance, and we use the fact that (", 0)-indistinguishability implies a sta-
tistical distance of at most 1� e�".

Thus by linearity of expectation, for the overall expected privacy loss, we have

E
y M(x)

[Lx!x
0

M
(y)] = k ·O("2)

def
= µ.

Applying the Hoe↵ding bound for random variables whose absolute value is bounded by ", we get
that, with probability at least 1� �0 over y  M(x),

Lx!x
0

M
(y)  µ+O

⇣p
k log(1/�0)

⌘
· "  O

⇣p
k log(1/�0)

⌘
· " def

= "0,

where the second inequality uses the assumption that k < 1/"2 (so k"2 
p
k"2 and hence µ 

O(
p
k) · ").
Now for any set T , we have

Pr[M(x) 2 T ]  Pr
y M(x)

h
Lx!x

0
M

(y) > "0
i
+

X

y2T :Lx!x0
M (y)"0

Pr[M(x) = y]

 �0 +
X

y2T :Lx!x0
M (y)"0

e"
0 · Pr[M(x0) = y]

 �0 + e"
0 · Pr[M(x0) 2 T ],

so M is indeed ("0, �0)-di↵erentially private.

It should be noted that, although Lemma 2.4 is stated in terms of queries being asked simul-
taneously (in particular, nonadaptively), a nearly identical proof (appealing to Azuma’s inequality,
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instead of Hoe↵ding) shows that an analogous conclusion holds even when the queries (i.e., mecha-
nisms) are chosen adaptively (i.e., the choice of Mi+1 depends on the outputs of M1(x), . . . ,Mi(x)).

Observe that, if we have a set Q of k = |Q| counting queries and we wish to obtain a final
privacy of (", �0), then we can achieve this by first adding Laplace noise to achieve an initial privacy
guarantee of "0 for each query and then use the composition theorems. To use the basic composition
lemma, we would have to set

"0 =
"

k
,

so the Laplace noise added per query has scale

O

✓
1

"0n

◆
= O

✓
k

"n

◆
.

To obtain a bound on the maximum noise added to any of the queries, we can do a union bound
over the k queries. Setting � = 1/O(k) in Theorem 1.3, with high probability, the maximum noise
will be at most

↵ = O

✓
k · log k

"n

◆
.

Steinke and Ullman [99] showed how to save the log k factor by carefully correlating the noise used
for the k queries, and thus showed:

Theorem 2.6 (Arbitrary counting queries with pure di↵erential privacy [99]). For every set Q of
counting queries and " > 0, there is an "-di↵erentially private mechanism M : Xn ! RQ such that,
on every dataset x 2 X

n, with high probability M(x) answers all the queries in Q to within additive
error

↵ = O

✓
|Q|
"n

◆
.

Thus, taking " to be constant, we can answer any |Q| = o(n) counting queries with vanishingly
small error, which we will see is optimal for pure di↵erential privacy (in Section 5.2).

Similarly, to use the advanced composition theorem, we would have to set

"0 =
"

c ·
p
k · log(1/�)

,

yielding a maximum error of

↵ = O

✓
log k

"0n

◆
= O

 p
k · log(1/�) · log k

"n

!
.

Again, it is known how to (mostly) remove the log k factor:

Theorem 2.7 (Arbitrary counting queries with approximate di↵erential privacy [99]). For every
set Q of counting queries over data universe X, and ", � > 0, there is an (", �)-di↵erentially private
mechanism M : Xn ! Rk such that, on every dataset x 2 X

n, with high probability M(x) answers
all the queries to within error

↵ = O

 p
|Q| · log(1/�) · log log |Q|

"n

!
.
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Again taking " to be constant and � to be negligible (e.g., � = 2� log2(n)), we can take k = |Q| =
⌦̃(n) and obtain error o(1/

p
n) (smaller than the sampling error!), which we will see is essentially

optimal for any reasonable notion of privacy (in Section 5.1). If we want error o(1), we can take
k = ⌦̃(n2), which is known to be optimal for di↵erential privacy if the answers are not coordinated
based on the queries [43] or if the data universe is large (as we will see in Section 5). However, in
Section 4, we will see some beautiful algorithms that can answer many more than n2 queries if the
data universe is not too large (forcing the queries to have some implicit relationships) by carefully
coordinating the noise between the queries.

Optimal composition. Remarkably, Kairouz, Oh, and Viswanath [64] have given an optimal
composition theorem for di↵erential privacy, which provides an exact characterization of the best
privacy parameters that can be guaranteed when composing a number of (", �)-di↵erentially private
mechanisms. The key to the proof is showing that an (", �) generalization of randomized response
(as defined in Section 1.5) is the worst mechanism for composition. Unfortunately, the resulting
optimal composition bound is quite complex, and indeed is even #P-complete to compute exactly
when composing mechanisms with di↵erent ("i, �i) parameters [82]. Thus, for theoretical purposes,
it is still most convenient to use Lemmas 2.3 and 2.4, which give the right asymptotic behavior for
most settings of parameters that tend to arise in theoretical applications.

2.3 Histograms

The bounds of Theorems 2.6 and 2.7 are for arbitrary, worst-case families of counting queries. For
specific families of counting queries, one may be able to do much better. A trivial example is when
the same query is asked many times; then we can compute just one noisy answer, adding noise
Lap(1/"), and give the same answer for all the queries. A more interesting example is the family
Q
pt of point functions on a data universe X, as defined in Section 1.3. Answering all |X| queries in

Q
pt (i.e., estimating the histogram of the dataset) using the above theorems would incur error at

least
p

|X|/"n. However, it turns out that we can achieve error O(log |X|)/"n.

Proposition 2.8 (Laplace histograms). For every finite data universe X, n 2 N, and " > 0, there
is an "-di↵erentially private mechanism M : Xn ! RX such that, on every dataset x 2 X

n, with
high probability M(x) answers all of the counting queries in Q

pt(X) to within error

O

✓
log |X|
"n

◆
.

Proof sketch. Recall that Qpt(X) contains a query qy for each y 2 X, where on a row w 2 X, qy(w)
is 1 i↵ w = y. The mechanism M adds independent noise distributed according to Lap(2/"n)
to the result of each query qy 2 Q

pt. This ensures that each individual noisy answer is "/2-
di↵erentially private. To show that we obtain "-di↵erential privacy overall, the key observation is
that, for two neighboring datasets x, x0, there are only two queries qy, qy0 2 Q

pt on which x and
x0 di↵er (corresponding to the values that x and x0 have in the row where they di↵er). Thus, the
proof of basic composition lemma (Lemma 2.3) implies that M(x) and M(x0) are (2 · ("/2), 0)-
indistinguishable, as desired.

We can also use the output of this mechanism to answer an arbitrary counting query q :
X ! {0, 1}, noting that q(x) =

P
y2X qy(x) · q(y). The above mechanism gives us ay = qy(x) +
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Lap(2/"n) for every y 2 X, from which we can compute the quantity a =
P

y2X ay · q(y), which
has expectation q(x) and standard deviation O(

p
|X|/"n). For answering multiple queries, we can

apply Cherno↵/Hoe↵ding and union bounds,4 yielding the following:

Theorem 2.9 (Arbitrary counting queries via the Laplace histogram). For every set Q of counting
queries on data universe X, n 2 N, and " > 0, there is an "-di↵erentially private mechanism
M : Xn ! RQ such that on every dataset x 2 X

n, with high probability M(x) answers all the queries
to within error

O

 p
|X| · log |Q|

"n

!
.

Note that the dependence on k = |Q| has improved from
p
k obtained by advanced composition

or Theorem 2.7 to
p
log k, at the price of introducing a (rather large) dependence on |X|. Thus, for

a family Q of counting queries on data universe X, it is better to use the Laplace histogram when
|X|⌧ |Q| and it is better to use advanced composition or Theorem 2.7 when |X| > |Q|.

Let us summarize the best error bounds we have seen so far for the example families of counting
queries given in Section 1.3.

Table 2.1: Error bounds for specific query families on a data universe X of size D = 2d (e.g.,
X = {0, 1}d or X = {1, 2, . . . , D}).
Query family Q |Q| (", 0)-dp Ref. (", �)-dp Ref.

Q
pt D O

�
d

"n

�
Prop. 2.8 O

�
d

"n

�
Prop. 2.8

Q
thr D Õ(

p
D)

"n
Thm. 2.9 Õ(

p
D)

"n
Thm. 2.9

Q
conj 3d Õ(

p
D)

"n
Thm. 2.9 Õ(

p
D)

"n
Thm. 2.9

Q
means d O

�
d

"n

�
Thm. 2.6 O

✓p
d log(1/�)·log log d

"n

◆
Thm. 2.7

Q
conj
t

for t⌧ d O(dt) O
⇣

d
t

"n

⌘
Thm. 2.6 O

✓
d
t/2·
p

log(1/�)·log log d
"n

◆
Thm. 2.7

We will see substantial improvements to most of these bounds in later sections.

3 Alternatives to Global Sensitivity

In this section, we consider the question of whether we can do better than adding noise Lap(GSq /"),
where GSq denotes the global sensitivity of query q (cf. Theorem 1.3).

As a first attempt, let us define a notion of “local sensitivity” at x:

LSq(x) = max
�
q(x)� q(x0)| : x0 ⇠ x

 
.

4
A bit of care is needed since the Lap(2/"n) noise random variables are not bounded. This can be handled by

first arguing that, with high probability, at most a 2
�⇥(t)

fraction of the noise random variables have magnitude in

the range [t/"n, 2t/"n). Then, conditioned on the magnitudes of the noise random variables (but not their signs),

we can group the random variables according to their magnitudes (up to a factor of 2) and apply Hoe↵ding to each

group separately.
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The di↵erence from global sensitivity is that we only take the maximum over datasets x0 that are
neighbors to our input dataset x, rather than taking the maximum over all neighboring pairs x0x̃00.

Naively, we might hope that M(x) = q(x)+Noise(O(LSq(x))) might provide di↵erential privacy.
Indeed, the local sensitivity provides a lower bound on the error we need to introduce:

Proposition 3.1 (Local sensitivity lower bound). Let q : X
n ! R be a real-valued query and

M : Xn ! Y be an (", �)-di↵erentially private mechanism. Then

1. For every x0 ⇠ x1 2 X
n, there is a b 2 {0, 1} such that

Pr


|M(xb)� q(xb)| <

|q(x0)� q(x1)|
2

�
 1 + �

1 + e�"
=

1

2
+O(� + ").

2. For every x 2 X
n, there is some x0 at Hamming distance at most 1 from x such that

Pr


|M(x0)� q(x0)| < LSq(x)

2

�
 1 + �

1 + e�"
=

1

2
+O(� + ").

Proof. 1. Let Gb =
n
y 2 R : |y � q(xb)| < |q(x0)�q(x1)|

2

o
and p = min {Pr [M(x0) 2 G0] ,Pr [M(x1) 2 G1]}.

Then:

1� p � Pr [M(x0) /2 G0]

� Pr [M(x0) 2 G1]

� e�" · Pr [M(x1) 2 G1]� �

� e�" · p� �.

Solving, we deduce that p  (1 + �)/(1 + e�").
2. Follows from part 1 by taking x0 = x and x1 ⇠ x such that LSq(x) = |q(x)� q(x1)|.

The problem with trying to use the local sensitivity to calibrate the noise is that we do not
want the amount of noise to itself distinguish between neighboring x and x0. For instance, let x be
such that q(x) = q(x0) = 0 for all x0 ⇠ x, but where there is one such neighbor x0 ⇠ x where x0

has a neighbor x00 such that q(x00) = 109. LSq(x) = 0, but LSq(x0) is large, and answering queries
noisily based on LSq would violate privacy because it distinguishes between x and x0.

Still, perhaps one could hope to provide only a small amount of noise if LSq is small everywhere
“near” x. For example, consider the query that asks for the median of n points {x1, x2, . . . xn} ✓
[0, 1]. The global sensitivity for this query is high. Indeed, consider the instance x where (n+1)/2
entries are 1 and (n�1)/2 entries are 0 (and thus the median is 1), as compared with the neighboring
instance x0 where one entry is changed from 1 to 0 (and thus the median is 0).

On the other hand, if there are many data points near the median, then it would follow that
the local sensitivity is small, not only at x but also at all datasets close to x. For such instances
x, we could indeed get away with adding only a small amount of noise, while maintaining privacy.
This is the type of situation that we will investigate. There are several related approaches that
have been taken along these lines, which we will discuss:

1. Smooth sensitivity [86]
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2. Propose–test–release [34]

3. Releasing stable values [96]

4. Privately bounding local sensitivity [68]

We remark that yet another approach, called restricted sensitivity, aims to add even less noise than
the local sensitivity [12, 68, 27, 89]. The observation is that Proposition 3.1 does not say that the
error on x must be at least LSq(x)/2; rather it says that the error must be at least LSq(x)/2 on x
or one of its neighbors. Thus if we have a hypothesis that our dataset belongs to some set H ✓ X

n

(e.g. in the case of a social network, we might believe that the graph is of bounded degree), it might
su�ce to add noise proportional to the restricted sensitivity, where we maximize |q(x)� q(x0)| over
x ⇠ x0 2 H, which can be much smaller than even the local sensitivity. The noise will still need to
be at least LSq(x)/2 on some neighbors x0 of x, but these can be neighbors outside of H.

3.1 Smooth Sensitivity

Define smooth sensitivity of query q : Xn ! R at x as follows:

SS"q(x) = max{LSq(x0) · e�"d(x,x
0) : x0 2 X

n},

where d(x, x0) denotes Hamming distance. Intuitively, we are smoothing out the local sensitivity,
so that it does not change much between neighboring datasets.

Nissim, Raskhodnikova, and Smith [86] introduced the notion of smooth sensitivity and showed
that:

• Adding noise O(SS"q(x)/") (according to a Cauchy distribution) is su�cient for "-di↵erential
privacy.

• SSq can be computed e�ciently when q is the median query (despite the fact that it is defined
as the maximum over a set of size |X|n), as well as for a variety of graph statistics (under
edge-level di↵erential privacy, cf. Section 3.4).

Zhang et al. [111] gave an alternative approach to “smoothing out” local sensitivity, which empiri-
cally provides improvements in accuracy.

3.2 Propose–test–release

A di↵erent way to provide less noise is to simply not allow certain queries. That is: rather than
using Laplace noise at a level that is high enough no matter what possible dataset might be queried,
an alternative is to initially propose an amount of noise that seems tolerable, and then test whether
answering a query with this amount of noise would violate privacy (namely, if the noise magnitude
is less than the local sensitivity in a neighborhood of the current dataset). If the test passes, then
we release a noisy answer. But perhaps we detect that adding this (small) amount of noise would
violate privacy. In that case, we simply refuse to answer. Of course, we should carry out the test
in a di↵erentially private manner.

More precisely, propose–test–release consists of the following three steps (parameterized by a
query q : Xn ! R and ", �,� � 0), yielding a mechanism M : Xn ! R[ {?} that does the following
on a dataset x 2 X

n:
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1. Propose a target bound � on local sensitivity.

2. Let d̂ = d(x, {x0 : LSq(x0) > �}) + Lap(1/"), where d denotes Hamming distance.

3. If d̂  ln(1/�)/", output ?.

4. If d̂ > ln(1/�)/", output q(x) + Lap(�/").

Proposition 3.2 (Propose–test–release [34]). For every query q : Xn ! R and ", �,� � 0, the
above algorithm is (2", �)-di↵erentially private.

Proof. Consider any two neighboring datasets x ⇠ x0. Because of the Laplacian noise in the
definition of d̂ and the fact that Hamming distance has global sensitivity at most 1, it follows that

Pr[M(x) = ?] 2 [e�" · Pr[M(x0) = ?], e" · Pr[M(x0) = ?]]. (3)

Also, for those outputs that are not ?, we have two cases:

Case 1: LSq(x) > �. In this case, d(x, {x00 : LSq(x00) > �}) = 0, so the probability that d̂ will
exceed ln(1/�)/" is at most �. Thus, for every set T ✓ R [ {?}, we have

Pr[M(x) 2 T ]  Pr[M(x) 2 T \ {?}] + Pr[M(x) 6= ?]
 e" · Pr[M(x0) 2 T \ {?}] + �

 e" · Pr[M(x0) 2 T ] + �,

where the second inequality follows from (3), noting that T \ {?} equals either {?} or ;.

Case 2: LSq(x)  �. In this case, |q(x)�q(x0)|  �, which in turn implies the (", 0)-indistinguishability
of q(x) + Lap(�/") and q(x0) + Lap(�/"). Thus, by (3) and basic composition, we have (2", 0)-
indistinguishability overall.

Notice that, like smooth sensitivity, the naive algorithm for computing d(x, {x0 : LSq(x0) > �})
enumerates over all datasets x0 2 X

n. Nevertheless, for the median function, it can again be
computed e�ciently.

3.3 Releasing Stable Values

A special case of interest in propose–test–release is when � = 0. Then it can be verified that
d(x, {x0 : LSq(x0) > �}) = d(x, {x0 : q(x0) 6= q(x)}) � 1, so the algorithm is testing whether the
function q is constant in a neighborhood of x (of radius roughly ln(1/�)/"), and if so, it outputs q
with no noise; that is, if q is stable around x, then we can safely release the value q(x) (exactly, with
no noise!), provided our test of stability is di↵erentially private. This also applies to, and indeed
makes the most sense for, discrete-valued functions q : Xn ! Y. In more detail, the mechanism
works as follows on x 2 X

n:

1. Let d̂ = d(x, {x0 : q(x0) 6= q(x)}) + Lap(1/"), where d denotes Hamming distance.

2. If d̂  1 + ln(1/�)/", output ?.
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3. Otherwise output q(x).

Similarly to Proposition 3.2, we have:

Proposition 3.3 (Releasing stable values). For every query q : Xn ! Y and ", � > 0, the above
algorithm is (", �)-di↵erentially private.

Consider, for example, the mode function q : Xn ! X, where q(x) is defined to be the most
frequently occurring data item in x (breaking ties arbitrarily). Then d(x, {x0 : q(x0) 6= q(x)}) equals
half of the gap in the number of occurrences between the mode and the second most frequently
occurring item (rounded up). So we have:

Proposition 3.4 (Stability-based mode). For every data universe X, n 2 N, and ", � � 0, there is
an (", �)-di↵erentially private algorithm M : Xn ! X such that, for every dataset x 2 X

n where the
di↵erence between the number of occurrences of the mode and the second most frequently occurring
item is larger than 4dln(1/�)/"e, M(x) outputs the mode of x with probability at least 1� �.

If instead we had used the Laplace Histogram of Proposition 2.8 (outputting the bin y 2 X

with the largest noisy count), we would require a gap of ⇥(log |X|)/" in the worst case, so the
stability-based method is better when |X| is large compared with 1/�. Indeed, let us now show how
stability-based ideas can in fact produce noisy histograms with an error bound of O(log(1/�))/"n.

Theorem 3.5 (Stability-based histograms [24]). For every finite data universe X, n 2 N, " 2
(0, lnn), and � 2 (0, 1/n), there is an (", �)-di↵erentially private mechanism M : Xn ! RX such
that, on every dataset x 2 X

n, with high probability M(x) answers all of the counting queries in
Q
pt(X) to within error

O

✓
log(1/�)

"n

◆
.

The intuition for the algorithm is that, if we only released noisy answers for point functions
qy that are nonzero on the dataset x, the error bound in Proposition 2.8 would improve from
O(log |X|)/"n to O(log n)/"n  O(log(1/�))/"n, since at most n point functions can be nonzero on
any dataset (namely those corresponding to the rows of the dataset). However, revealing which
point functions are nonzero would not be di↵erentially private. Thus, we only release the point
functions that are far from being zero (i.e., ones where the query is nonzero on all datasets at noisy
distance at most O(log(1/�)/") from the given dataset, analogously to Proposition 3.3).

Proof. The algorithm is the same as the Laplace histogram of Proposition 2.8, except that we do not
add noise to counts that are zero, and reduce all noisy counts that are smaller than O(log(1/�)/"n
to zero.

Specifically, given a dataset x 2 X
n, the algorithm works as follows:

1. For every point y 2 X:

(a) If qy(x) = 0, then set ay = 0.

(b) If qy(x) > 0, then:

i. Set ay  qy(x) + Lap(2/"n).

ii. If ay < 2 ln(2/�)/"n+ 1/n, then set ay  0.

2. Output (ay)y2X.

Now let us analyze this algorithm.
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Utility: The algorithm gives exact answers for queries qy where qy(x) = 0. There are at most n
queries qy with qy(x) > 0 (namely, ones where y 2 {x1, . . . , xn}). By the tails of the Laplace distri-
bution and a union bound, with high probability, all of the noisy answers qy(x) + Lap(2/"n) com-
puted in step 1(b)i have error at most O((log n)/"n)  O(log(1/�)/"n). Truncating the small values
to zero in step 1(b)ii introduces an additional error of up to 2 ln(1/�)/"n+ 1/n = O(log(1/�)/"n).

Privacy: Consider two neighboring datasets x ⇠ x0, where dataset x0 is obtained by replacing
row xi with x0

i
. Then the only point queries that di↵er on x and x0 are qxi and qx0

i
. Since the

answers to di↵erent queries qy are independent, we can analyze the answer to each query separately
and then apply composition. Consider the answers axi(x) and axi(x

0) to query qxi on datasets x
and x0, respectively. We know that qxi(x) > 0 (since row xi is in x). If we also have qxi(x

0) > 0,
then axi(x) and axi(x

0) are ("/2, 0)-indistinguishable by the di↵erential privacy of the Laplace
mechanism. (We can view the truncation step as postprocessing.) If qxi(x

0) = 0, then axi(x
0) is

always 0, and qxi(x) = 1/n (since x and x0 agree on all other rows), which means that Pr[axi(x) 6=
0] = Pr[Lap(2/"n) � 2 ln(2/�)/"n]  �/2 and we have (0, �/2)-indistinguishability. Thus, in all
cases, axi(x) and axi(x

0) are ("/2, �/2)-indistinguishable. By symmetry the same holds for the
answers ax0

i
(x) and ax0

i
(x0). On all other queries y, ay(x) and ay(x0) are identically distributed. By

basic composition, the joint distributions of all answers are (", �)-indistinguishable.

3.4 Privately Bounding Local Sensitivity

Rather than proposing (arbitrarily) a threshold � as in propose–test–release, more generally we
might try to compute a di↵erentially private upper bound on the local sensitivity. That is, we will
try to compute a di↵erentially private estimate �̂ = �̂(x) such that, with probability at least 1� �,
LSq(x)  �̂. If we can do this, then outputting q(x) + Lap(�̂/") will give an (", �)-di↵erentially
private algorithm, by an analysis as in the previous section.

The setting in which we will explore this possibility is where our dataset is a graph and we want
to estimate the number of triangles in the graph.

There are (at least) two notions of privacy that one might wish to consider for graph algorithms:

• Edge-level privacy. In this setting, we say that G ⇠ G0 if the graphs G and G0 di↵er on
one edge. This is a special case of the setting we have been studying, where we think of an
n-vertex graph as a dataset consisting of

�
n

2

�
rows from universe X = {0, 1} .

• Node-level privacy. In this setting, we say that G ⇠ G0 if the graphs G and G0 di↵er only on
edges that are adjacent to one vertex. This does not quite fit in the tuple-dataset setting we
have been studying, but the concept of di↵erential privacy naturally generalizes to this (as
well as any other family of “datasets” with some notion of “neighbors”).

In applications (e.g., to social networks), node-level privacy is a preferable notion of privacy,
since it simultaneously protects all of the relationships associated with a vertex (which typically
represents an individual person), rather than just a single relationship at a time. However, since
our goal is only to illustrate the method of privately bounding local sensitivity, we will consider
only edge-level privacy. Let q�(G) be the number of triangles in G (where the � is meant to be
evocative of a triangle). It can be verified that

LSq�(G) = max{j : 9u9v u and v have j common neighbors}.
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This, in turn, is no more than the maximum degree of G. In contrast the global sensitivity is
GSq� = n � 2. However, if we consider the global sensitivity of the local sensitivity, we have
GSLSq� = 1. (If we think of the local sensitivity as a discrete analogue of a derivative, then this is
the analogue of having a bounded second derivative, despite the derivative sometimes being large.)

Consider the following mechanism M(G):

• Compute �̂ = LSq�(G) + Lap(1/") + ln(1/�)/".

• Output q�(G) + Lap(�̂/").

This mechanism can be shown to be (2", �)-di↵erentially private, and the total noise is of
magnitude

O

✓
LSq�(G) + (1 + log(1/�))/"

"

◆
.

Note that this approach is computationally e�cient if we can e�ciently evaluate the query q,
can e�ciently calculate LSq (which can be done using m ·(|X|�1) evaluations of q when the dataset
is in X

m), and have an upper bound on GSLSq .

4 Releasing Many Counting Queries with Correlated Noise

We have seen (in Theorems 2.6, 2.7, and 2.9) that any set Q of counting queries over data universe
X can be answered with di↵erential privacy and an error of at most

↵  O

 
min

(
|Q|
"n

,

p
|Q| · log(1/�) · log log |Q|

"n
,

p
|X| · log |Q|

"n

)!

on each of the queries (with high probability). When both |Q| and |X| are larger than n2, the
amount of error is larger than 1, and hence these approaches provide nothing useful (recall that
the true answers lie in [0, 1]).

In this section, we will see two methods that can answer many more than n2 counting queries
on a data universe of size much larger than n2. Both use ideas from learning theory.

4.1 The SmallDB Algorithm

Theorem 4.1 (The smallDB algorithm, Blum et al. [14]). For every set Q of counting queries on
a data universe X and every " > 0, there exists an "-di↵erentially private mechanism M such that,
for all datasets x 2 X

n, with high probability M(x) answers all queries in Q to within error at most

↵ = O

✓
log |Q| log |X|

"n

◆1/3

.

Moreover, M(x) outputs a “synthetic dataset” y 2 X
m with m = O(log |Q|/↵2) such that, with high

probability, we have |q(y)� q(x)|  ↵ for all q 2 Q, i.e., we can calculate all the answers using the
(smaller) synthetic dataset.

In fact, the bounds can be improved to ↵ = Õ(VC(Q) · log |X|/"n)1/3 and m = VC(Q) · Õ(1/↵2),
where VC(Q) is the Vapnik–Chervonenkis dimension of the class Q.5

5
VC(Q) is defined to be the largest number k such that there exist x1, . . . , xk 2 X for which {(q(x1), . . . , q(xk)) :

q 2 Q} = {0, 1}k. Clearly, VC(Q)  log |Q|.
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The key point is that the error grows (less than) logarithmically with the number |Q| of queries
and the size |X| of the data universe; this allows us to handle even exponentially many queries. (On
the other hand, the error vanishes more slowly with n than the earlier results we have seen — like
1/n1/3 rather than 1/n.) Let us compare the implications of the smallDB algorithm for concrete
query families with the bounds we saw in Section 2 for pure di↵erential privacy (Table 2.1): We

Table 4.1: Error bounds for specific query families under (", 0)-di↵erential privacy on a data universe
X of size D = 2d (e.g. X = {0, 1}d or X = {1, 2, . . . , D}). Highlighted cells indicate the best bounds
in the regime where n  Do(1) or n  do(t).

Query family Q |Q| VC(Q) Previous bound Ref. Theorem 4.1

Q
pt D 1 O

�
d

"n

�
Prop. 2.8 Õ

�
d

"n

�1/3

Q
thr D 1 Õ(

p
D)

"n
Thm. 2.9 Õ

�
d

"n

�1/3

Q
conj 3d d Õ(

p
D)

"n
Thm. 2.9 O

⇣
d
2

"n

⌘1/3

Q
means d blog2 dc O

�
d

"n

�
Thm. 2.6 O

⇣
d log d
"n

⌘1/3

Q
conj
t

for t⌧ d O(dt) O(t log d) O
⇣

d
t

"n

⌘
Thm. 2.6 O

⇣
t·d log d

"n

⌘1/3

see that there is an exponential improvement in the dependence on D = 2d = |X| for the case of
threshold functions and conjunctions (and similarly in the dependence on t for t-way conjunctions).
In particular, we only need n to be polynomially large in the bit-length d of the rows to have
vanishingly small error; in such a case, we can produce and publish a di↵erentially private synthetic
dataset that accurately summarizes exponentially many (2⇥(d)) statistics about the original dataset
(e.g., the fractions of individuals with every combination of attributes, as in Q

conj(d)). It is amazing
that such a rich release of statistics is compatible with strong privacy protections.

These improvements also hold compared with the bounds we had for (", �)-di↵erential privacy
(where the dependence on |Q| was only quadratically better than for pure di↵erential privacy).
On the other hand, for point functions and attribute means, our earlier bounds (even for pure
di↵erential privacy) are better than what is given by Theorem 4.1.

Proof of Theorem 4.1. We begin by establishing the existence of at least one accurate m-row syn-
thetic dataset y⇤: Let y⇤ be a random sample of m rows from x, say with replacement for simplicity.
By the Cherno↵ bound,

Pr[ 9q 2 Q s.t. |q(y⇤)� q(x)| > ↵ )]  2�⌦(m↵
2) · |Q| < 1 ,

for an appropriate choice of m = O(log |Q|/↵2). This is similar to “Occam’s razor” arguments in
computational learning theory (cf. [70]). In fact, it is known that m = O(VC(Q) · log(1/↵)/↵2)
su�ces.

Of course, outputting a random subsample of the dataset will not be di↵erentially private.
Instead, we use (a special case of) the exponential mechanism of McSherry and Talwar [79]. Specif-
ically, consider the following mechanism M(x):

1. For each y 2 X
m, define weightx(y) = exp

✓
�"n ·max

q2Q
|q(y)� q(x)|

◆
.
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2. Output y with probability proportional to weightx(y). That is,

Pr[M(x) = y] =
weightx(y)P

z2Xm weightx(z)
.

Notice that, if x ⇠ x0, then weightx(y) and weightx0(y) di↵er by a multiplicative factor of at most e".
That is, we smoothly vary the weight put on di↵erent synthetic datasets according to the amount
of error they will give us, with low-error synthetic datasets receiving the highest weight.

Let us now formally analyze this algorithm.

Privacy: Fix x ⇠ x0 2 X
n, y 2 X

m. Then,

Pr[M(x) = y] =
weightx(y)P
y0 weightx(y

0)
 e" · weightx0(y)P

y0 e
�" · weightx0(y0)

 e2" · Pr[M(x0) = y].

Thus, we have 2"-di↵erential privacy.

Accuracy: Define an output y 2 X
m to be �-accurate if maxq2Q |q(y) � q(x)|  �. Our goal is

to show that, with high probability, M(x) is 2↵-accurate. Recall that earlier we showed that there
exists an ↵-accurate output y⇤. We have

Pr[M(x) is not 2↵-accurate] =
X

y2Xm
,

y not 2↵-accurate

weightx(y)P
z
weightx(z)


X

y2Xm
,

y not 2↵-accurate

weightx(y)

weightx(y⇤)

 |X|m · exp (�"n · 2↵)
exp (�"n · ↵)

⌧ 1 (if ↵"n > 2m log |X|).

Recall that m = O(log |Q|)/↵2. Solving for ↵ gives the theorem.

The exponential mechanism is quite general and powerful, and can be used to design di↵eren-
tially private mechanisms for sampling “good” outputs from any output space Y. Specifically, we
can replace the expression

�max
q2Q

|q(y)� q(x)|

with an arbitrary “score function” score(x, y) indicating how good y is as an output on dataset x,
and replace the factor of n in the exponent with a bound B on the reciprocal of maxz GSscore(·,z) .
That is, we obtain the following mechanism Mscore,B(x):

1. For each y 2 Y, define weightx(y) = exp (" · score(x, y)/B).

2. Output y with probability proportional to weightx(y). That is,

Pr[M(x) = y] =
weightx(y)P
z2Yweightx(z)

.
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Similarly to the proof of Theorem 4.1, it can be shown that:

Proposition 4.2 (The exponential mechanism, McSherry and Talwar [79]). For every function
score : Xn ⇥ Y! R such that Y is finite, " � 0, and B > 0,

1. If B � maxz GSscore(·,z), then the mechanism Mscore,B is 2"-di↵erentially private, and

2. For every dataset x 2 X
n, with high probability, Mscore,B(x) outputs y such that

score(x, y) � argmaxy⇤ score(x, y
⇤)�O(log |Y|) ·B/".

The downside. While the exponential mechanism is very powerful, it can be computationally
very expensive, as a direct implementation requires enumerating over all y 2 Y. Indeed, in the
application of Theorem 4.1, the computation time is roughly

|Y| = |X|m = exp

✓
log |Q| log |X|

↵2

◆
,

so it is very slow. For example, we get runtime exp(d2/↵2) for the query family Q
conj of conjunctions

on {0, 1}d.

4.2 Private Multiplicative Weights

We now present a state-of-the-art algorithm for general queries:

Theorem 4.3 (Private multiplicative weights, Hardt and Rothblum [58]). For every set Q of
counting queries on a data universe X and every ", � > 0, there exists an (", �)-di↵erentially private
mechanism M such that, for all datasets x 2 X

n, with high probability M(x) answers all queries in
Q to within error at most

↵ = O

 p
log |X| · log(1/�) · log |Q|

"n

!1/2

.

Moreover, M(x) can answer the queries in an online fashion (answering each query as it arrives)
and runs in time poly(n, |X|) per query.

The algorithm can also be modified to produce a synthetic dataset, though we will not show
this here.

Note that the error vanishes more quickly with n than in Theorem 4.1 (as 1/n1/2 rather than
1/n1/3), and the log |X| has been replaced by

p
log |X| · log(1/�). Comparing with the results we

have seen for our example query families, we have
For Qconj and Q

conj
t

, we obtain a saving in the dependence on |X| = 2d. In particular, for answer-
ing all conjunctions on {0, 1}d with error tending to zero, we only need n = !(d3/2 ·

p
log(1/�)/")

rather than n = !(d2/") as in Theorem 4.1. The running time has improved too, but is still at
least |X| · |Q|, which is exponential in d. (Of course, in this generality, one needs |X| · |Q| bits to
specify an arbitrary set of counting queries on {0, 1}d.)

29



Table 4.2: Error bounds for specific query families under (", �)-di↵erential privacy on a data universe
X of size D = 2d (e.g., X = {0, 1}d or X = {1, 2, . . . , D}). Highlighted cells indicate the best bounds
in the regime where n  Do(1) or n  do(t) and � � 2� polylog(n). In the case of incomparable bounds,
both are highlighted.

Query family Q Sect. 2 Ref. Thm. 4.1 Thm. 4.3

Q
pt O

�
d

"n

�
Prop. 2.8 O

✓
d
3/2·
p

log(1/�)
"n

◆1/2

Q
thr Õ(

p
D)

"n
Thm. 2.9 Õ

�
d

"n

�1/3
O

✓
d
3/2·
p

log(1/�)
"n

◆1/2

Q
conj Õ(2d/2)

"n
Thm. 2.9 O

⇣
d
2

"n

⌘1/3
O

✓
d
3/2·
p

log(1/�)
"n

◆1/2

Q
means O

✓p
d log(1/�)·log log d

"n

◆
Thm. 2.7 O

✓p
d log(1/�)·log d

"n

◆1/2

Q
conj
t

for t⌧ d O

✓
d
t/2·
p

log(1/�)·log log d
"n

◆
Thm. 2.7 O

⇣
t·d log d

"n

⌘1/3
O

✓
t log d
p

d log(1/�)
"n

◆1/2

Proof. The algorithm views the dataset x as a distribution on types r 2 X:

x(r) =
#{i 2 [n] : xi = r}

n
.

Then,
q(x) = E

r x

[q(r)].

The algorithm will maintain a distribution h on X, some hypothesis for what the data distribution
is. It will try to answer queries with h, and update h when it leads to too much error. It will turn
out that only a small number of updates are needed, and this will imply that the overall privacy
loss is small. Here are the details:

1. INITIALIZE the hypothesis h to the uniform distribution on X.

2. REPEAT at most O(log |X|)/↵2 times (outer loop)

(a) RANDOMIZE the accuracy threshold: ↵̂ = ↵/2 + Lap(1/"0n), where "0 is a parameter
that will be set later in the proof.

(b) REPEAT (inner loop)

i. Receive next query q.

ii. If |q(x)�q(h)|+Lap(1/"0n) < ↵̂, then output a = q(h) and CONTINUE inner loop.
Otherwise, output a = q(x) + Lap(1/"0n) (with fresh noise) and EXIT inner loop.

(c) UPDATE the hypothesis h:

i. Reweight using query q: 8w 2 X g(w) =

(
h(w)e(↵/8)·q(w) if a > q(h),

h(w)e�(↵/8)·q(w) if a < q(h).

ii. Renormalize: 8w 2 X h(w) =
g(w)P
v2X g(v)

.

(d) CONTINUE outer loop.
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Utility analysis: By the exponentially vanishing tails of the Laplace distribution, with high
probability none of the (at most 3|Q|) samples from Lap(1/"0n) used in steps 2a and 2(b)ii has
magnitude larger than

O

✓
log |Q|
"0n

◆
 ↵

8
,

provided we set "0 � c log |Q|/↵n for a su�ciently large constant c. By the triangle inequality, this
implies that all answers that we provide are within ±3↵/4 of q(x).

Now, we must show that the mechanism will not stop early.

Claim 4.4. Assuming all the samples from Lap(1/"0n) have magnitude at most ↵/8, the outer
loop cannot exceed its budget of O(log |X|)/↵2 iterations.

Proof sketch. We use the Kullback–Liebler divergence D(x||h) as a potential function. At the start,
h is the uniform distribution on |X|, so

D(x||h) = log |X|�H(x)  log |X|,

where H(x) is the Shannon entropy of the distribution x. Suppose that, in some iteration, we do
an update (i.e., reweight and renormalize) to go from hypothesis h to hypothesis h0. Since all the
noise samples have magnitude at most ↵/8, we must have |q(x) � q(h)| � ↵/4 in order to do an
update, and in this case b � q(h) has the same sign as q(x) � q(h). By a tedious but standard
calculation (used in typical analyses of the multiplicative weights method), this implies that

D(x||h0)  D(x||h)� ⌦(↵2).

Since divergence is always nonnegative, we can have at most log |X|/⌦(↵2) updates.

Privacy analysis: The mechanism takes a dataset x and outputs a sequence (a1, . . . , ak) of noisy
answers to a sequence of queries (q1, . . . , qk) (which we will treat as fixed in this analysis). Note
that the output (a1, . . . , ak) is determined by the sequence (b1, . . . , bk) where bi = ? if there is no
update on query qi and bi = ai otherwise. (This information su�ces to maintain the hypothesis
h used by the algorithm, as the update to h done in step 2c depends only on the current query
qi and the noisy answer ai = bi.) Thus, by closure under postprocessing (Lemma 2.1), it su�ces
to show that the mechanism that outputs the sequence (b1, . . . , bk) is (", �)-di↵erentially private.
This mechanism, in turn, is obtained by (adaptively) composing O(log |X|)/↵2 submechanisms,
each corresponding to one execution of the outer loop. Specifically, each such submechanism is
parameterized by the output of the previous submechanisms, which is of the form (b1, . . . , bi�1)
with bi�1 6= ?, and produces the output (bi, . . . , bj) corresponding to one more execution of the
outer loop — so bi = bi+1 = · · · = bj�1 = ? and bj 6= ? (unless j = k, in which case we may also
have bj = ?).

We will argue below that each such submechanism is 4"0-di↵erentially private (even though
the number of queries it answers can be unbounded). Given this claim, we can apply advanced
composition to deduce that the overall mechanism satisfies (", �)-di↵erential privacy for

" = O

 r
log |X| log(1/�)

↵2
· "0

!
.
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Substituting "0 = c log |Q|/↵n (as needed in the utility analysis above) and solving for ↵ yields the
theorem.

So now we turn to analyzing a submechanism M corresponding to a single execution of the outer
loop (after a fixed prior history (b1, . . . , bi�1)). Since it su�ces to verify pure di↵erential privacy
with respect to singleton outputs, it su�ces to show that, for every hypothesis h (determined by
the prior history (b1, . . . , bi�1)) and every possible output sequence b = (bi, . . . , bj) with bi = bi+1 =
· · · = bj�1 = ?, the following mechanism Mh,b(x), which tests whether the output of the next
iteration of the outer loop is b, is 4"0-di↵erentially private:

1. SAMPLE ⌫↵, ⌫i, ⌫i+1, . . . , ⌫j , ⌫a  Lap(1/"0n). (Making all random choices at start.)

2. RANDOMIZE the accuracy threshold: ↵̂ = ↵/2 + ⌫↵.

3. REPEAT for t = i to j (inner loop)

(a) Receive next query qt.

(b) If bt = ? and |qt(x)� qt(h)|+ ⌫t � ↵̂, then HALT and OUTPUT 0.

(c) If bt 6= ? (which implies t = j), then:

i. If |qt(x)� qt(h)|+ ⌫t < ↵̂, HALT and OUTPUT 0.

ii. If qt(x) + ⌫a 6= bj , HALT and OUTPUT 0.

4. OUTPUT 1 (if we have not halted with output 0 so far).

Let us consider the case when bj 6= ?; the case when bj = ? is similar but simpler. We will
argue 4"0-di↵erential privacy even when ⌫i, ⌫i+1, . . . , ⌫j�1 are fixed to arbitrary values (so the only
randomness is from ⌫↵, ⌫j , ⌫a); averaging over these independent random variables will preserve
di↵erential privacy.

To show this, we will show that we can compute the output of Mh,b from the composition of
three algorithms, which are "0-, 2"0-, and "0-di↵erentially private, respectively.

To determine whether we ever halt and output 0 in step 3b it su�ces to calculate

� = ↵̂� max
it<j

(|qt(x)� qt(h)|+ ⌫t) = ↵/2 + ⌫↵ � max
it<j

(|qt(x)� qt(h)|+ ⌫t).

We halt and output 0 in one of the executions of step 3b i↵ �  0. The calculation of � is "0-
di↵erentially private by the Laplace mechanism because ↵/2 � maxit<j(|qt(x) � qt(h)| + ⌫t) has
sensitivity at most 1/n as a function of the dataset x (recalling that h and the ⌫t’s for i  t < j
are all fixed) and ⌫↵ is distributed according to Lap(1/"0n). This argument is the key to why the
private multiplicative weights can answer so many queries—we are only paying once for privacy
despite the fact that this condition involves an unbounded number of queries.

Given �, to determine whether or not we halt and output 0 in step 3(c)i, it su�ces to test
whether |qj(x) � qj(h)| + ⌫j � ↵̂ = � + maxit<j(|qt(x) � qt(h)| + ⌫t). This is 2"0-di↵erentially
private by the Laplace mechanism because |qj(x) � qj(h)| � � � maxit<j(|qt(x) � qt(h)| + ⌫t)
has sensitivity at most 2/n as a function of x and ⌫j is independently distributed according to
Lap(1/"0n).

Finally, step 3(c)ii is "0-di↵erentially private by the Laplace mechanism (with fresh randomness
⌫a).
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Remark 4.5.

• The hypothesis h maintained by the private multiplicative weights algorithm can be thought
of as a fractional version of a synthetic dataset. Indeed, with a bit more work it can be
ensured that at the end of the algorithm, we have |q(h) � q(x)|  ↵ for all q 2 Q. Finally,
random sampling from the distribution h can be used to obtain a true, integral synthetic
dataset y 2 X

m of size m = O(log |Q|/↵2) just like in Theorem 4.1.

• The algorithm works in an online fashion, meaning that it can answer query qi without
knowing the future queries qi+1, qi+2, . . .. However, if all queries are given simultaneously, the
algorithm can be sped up by using the exponential mechanism (Proposition 4.2) to identify
queries that will generate an update (rather than wasting time on queries that do not generate
an update) [61].

5 Information-Theoretic Lower Bounds

In the previous section, we have seen di↵erentially private algorithms that can answer many count-
ing queries with good accuracy. Now we turn to lower bounds, with the goal of showing that these
algorithms are nearly optimal in terms of the number of queries and accuracy they can achieve.
These lower bounds will be information-theoretic, meaning that they apply regardless of the com-
putational resources of the mechanism M.

5.1 Reconstruction Attacks and Discrepancy

5.1.1 Reconstruction

We begin by defining a very weak standard for privacy, namely avoiding an attack that reconstructs
almost all of the dataset:

Definition 5.1 (Blatant nonprivacy, Dinur and Nissim [31]). A mechanism M : Xn ! Y is called
blatantly nonprivate if, for every x 2 X

n, one can use M(x) to compute an x0 2 X
n, such that x0

and x di↵er in at most n/10 coordinates (with high probability over the randomness of M).

It can be shown that a mechanism that is (1, 0.1)-di↵erentially private cannot be blatantly
nonprivate (if |X| > 1). Indeed, if we run an (", �)-di↵erentially private mechanismM on a uniformly
random dataset X  X

n, then the expected fraction of rows that any adversary can reconstruct is
at most e"/|X|+ � (since if we replace any row Xi with an independent row X 0

i
, M(X�i, X 0i) reveals

no information about Xi and thus does not allow for reconstructing Xi with probability larger than
1/|X|).

We now give some fundamental lower bounds, due to Dinur and Nissim [31], on the tradeo↵
between the error and the number of counting queries that can be answered while avoiding blatant
nonprivacy. These lower bounds predate, and indeed inspired, the development of di↵erential
privacy.

Let X = {0, 1}. Then a dataset of n people is simply a vector x 2 {0, 1}n. We will consider
(normalized) inner-product queries specified by a vector q 2 {0, 1}n: the intended answer to the
query q is hq, xi/n 2 [0, 1]. Think of the bits in x as specifying a sensitive attribute of the n
members of the dataset and q as specifying a subset of the population according to some publicly

33



known demographics. Then hq, xi/n measures the correlation between the specified demographic
traits and the sensitive attribute.

These are not exactly counting queries, but they can be transformed into counting queries as
follows: Let X̃ = [n]⇥ {0, 1} be our data universe, map an inner-product query q 2 {0, 1}n to the
counting query q̃((i, b)) = qi · b, and consider datasets of the form x̃ = ((1, x1), (2, x2), . . . , (n, xn)),
q̃((i, b)) = qi ·b. Then q̃(x̃) = hq, xi/n, and reconstructing x is equivalent to reconstructing x̃, which
again contradicts (1, 0.1)-di↵erential privacy.

Theorem 5.2 (Reconstruction from many queries with large error [31]). Let x 2 {0, 1}n. If we
are given, for each q 2 {0, 1}n, a value yq 2 R such that

����yq �
hq, xi
n

����  ↵,

then one can use the yq’s to compute x0 2 {0, 1}n such that x and x0 di↵er in at most 4↵ fraction
of coordinates.

Corollary 5.3. If M(x) is a mechanism that outputs values yq as above with ↵  1/40, then M is
blatantly nonprivate.

Thus at least ⌦(1) additive error is needed for privately answering all 2n normalized inner-
product queries, which as noted correspond to 2n counting queries on a data universe of size 2n.

The smallDB mechanism (Theorem 4.1) can answer exp(⌦̃(n)) counting queries over a data
universe X with "-di↵erential privacy and error ↵ provided |X|  exp(polylog(n)) and ",↵ �
1/ polylog(n). Corollary 5.3 says that we cannot push this further to answer 2n queries.

Proof of Theorem 5.2. Pick any x0 2 {0, 1}n such that, for all q 2 {0, 1}n,
����yq �

hq, x0i
n

����  ↵.

(We know that at least one such x0 exists, namely x.)
We need to prove that x and x0 di↵er on at most a 4↵ fraction of coordinates. Let q1 = x and

let q0 be the bitwise complement of x. Then, the relative Hamming distance between x and x0

equals

d(x, x0)

n
=

|hq0, xi � hq0, x0i|+ |hq1, xi � hq1, x0i|
n


����
hq0, xi

n
� yq0

����+
����yq0 �

hq0, x0i
n

����+
����
hq1, xi

n
� yq1

����+
����yq1 �

hq1, x0i
n

����
 4 · ↵.

Of course we can avoid the above attack by restricting the adversary to fewer than 2n queries.
The next theorem will say that, even for much fewer queries (indeed O(n) queries), we must incur
a significant amount of error, ↵ � ⌦(1/

p
n). This is tight, matching Theorem 2.7 up to a factor of

O(
p

log(1/�) · log log n). We will in fact study the more general question of what additive error is
needed for privately answering any set Q of counting queries.
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Let q1, . . . , qk 2 {0, 1}n be a collection of vectors, which we view as specifying inner-product
queries hq, xi/n as above. Suppose we have a mechanism M that answers these queries to within
error ↵, i.e., with high probability outputs y1, . . . , yk 2 [0, 1] with

����yj �
hqj , xi

n

����  ↵.

Let us try to show that M is blatantly nonprivate. Our privacy-breaking strategy is the same: take
any x0 2 {0, 1}n with ����yj �

hqj , x0i
n

����  ↵

for each j.
Then, by the triangle inequality, we have |hqj , x� x0i|/n  2↵ for all j = 1, . . . , k. For blatant

nonprivacy, we want to use this to deduce that x and x0 have Hamming distance at most n/10, i.e.,
kx� x0k1  n/10. Suppose not. Let z = x� x0. Let Q denote the k⇥ n matrix whose rows are the
qj . Thus, we have

1. z is a {0,+1,�1} vector with kzk1 > n/10,

2. kQzk1  2↵n.

Thus, we have a contradiction (and hence can conclude that M is blatantly nonprivate) if the partial
discrepancy of Q, defined as follows, is larger than 2↵n:

Definition 5.4 ((Partial) discrepancy). For a k ⇥ n matrix Q, we define its discrepancy Disc(Q)
and its partial discrepancy PDisc(Q) as

Disc(Q) = min
z2{±1}n

kQzk1, and

PDisc(Q) = min
z2{0,+1,�1}n,
kzk1>n/10

kQzk1.

The qualifier “partial” refers to the fact that we allow up to 90% of z’s coordinates to be zero,
in contrast to ordinary discrepancy which only considers vectors z 2 {±1}n. A more combinatorial
perspective comes if we think of the rows of Q as characteristic vectors of subsets of X, and z as a
partial ±1-coloring of the elements of X. Then kQzk1 measures the largest imbalance in coloring
over all the sets in Q, and PDisc(Q) refers to minimizing this maximum imbalance over all partial
colorings z.

Summarizing the discussion before Definition 5.4, we have:

Theorem 5.5 (Reconstruction via partial discrepancy). Let q1, . . . , qk 2 {0, 1}n and Q be the
k ⇥ n matrix whose rows are the qj’s. Then any mechanism M : {0, 1}n ! Rk that answers all of
the normalized inner-product queries specified by q1, . . . , qk to within additive error ↵ smaller than
PDisc(Q)/2n is blatantly nonprivate.

We note that Theorem 5.5 is a generalization of Theorem 5.2. Indeed, if Q is the 2n⇥n matrix
whose rows are all bitstrings of length n (i.e., the family of all subsets of [n]), then the partial
discrepancy of Q is greater than n/20. (For a partial coloring z with greater than n/10 nonzero
entries, either the set of coordinates on which z is 1 or the set of coordinates on which z is �1 will
have imbalance greater than n/20.)

Let us now use Theorem 5.5 to deduce the second theorem of Dinur and Nissim [31].
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Theorem 5.6 (Reconstruction from few queries with small error [31]). There exists c > 0 and
q1, . . . , qn 2 {0, 1}n such that any mechanism that answers the normalized inner-product queries
specified by q1, . . . , qn to within error at most c/

p
n is blatantly nonprivate.

In fact, the theorem holds for a random set of queries, as follows from combining the following
lemma (setting k = s = n) with Theorem 5.5:

Lemma 5.7 (Discrepancy of a random matrix). For all integers k � s � 0, with high probability,
a k ⇥ s matrix Q with uniform and independent entries from {0, 1} has partial discrepancy at least

⌦
⇣
min

np
s · (1 + log(k/s)), s

o⌘
.

Up to the hidden constant, this is the largest possible discrepancy for a k ⇥ s matrix. Indeed,
a random coloring achieves discrepancy at most O(

p
s · log k) (by a Cherno↵ bound and union

bound). The celebrated “six standard deviations su�ce” result of Spencer [97] improves the log k
to log(k/s).

Proof sketch. Pick the rows q1, . . . , qk 2 {0, 1}s uniformly at random. Fix z 2 {0,+1,�1}s with
kzk1 > s/10. Then for each j, hqj , zi is a di↵erence of two binomial distributions, at least one
of which is the sum of more than s/20 independent, unbiased {0, 1} random variables (since z
has more than s/20 coordinates that are all 1 or all �1). By anticoncentration of the binomial
distribution (cf. [76, Prop. 7.3.2]), we have for every t � 0

Pr
qj

⇥
|hqj , zi| � min{t

p
s, s/20}

⇤
� max

n
1�O(t),⌦

⇣
e�O(t2)

⌘o
.

Thus, for each z we have

Pr
⇥
8j 2 [k], |hqj , zi| < min{t

p
s, s/20}

⇤
 min

n
O(t), 1� ⌦

⇣
e�O(t2)

⌘ok

.

By a union bound, we have

Pr
⇥
9z 2 {�1, 0,+1}s : kzk1 > s/10 and 8j 2 [k], |hqj , zi| < min{t

p
s, s/20}

⇤

< 3s ·min
n
O(t), 1� ⌦

⇣
e�O(t2)

⌘ok

.

We now choose t to ensure that this probability is small. For every k � s, taking t to be a small
enough constant su�ces to ensure that 3s · O(t)k ⌧ 1. However, once k/s is su�ciently large, we
can take a larger value of t (corresponding to higher discrepancy) if we use the other term in the
min. Specifically, we can take t = c

p
log(ck/s) for a su�ciently small constant c, and obtain

3s ·
⇣
1� ⌦

⇣
e�O(t2)

⌘⌘k
 3s ·

⇣
1� ⌦

⇣ s

ck

⌘⌘k
= 3s · e�⌦(s/c) ⌧ 1.

In all cases, we can take t = ⌦
⇣p

1 + log(k/s)
⌘
, as needed for the lemma.

The reconstruction attacks we gave in the proof of the above theorems take time more than 2n,
because they require searching for a vector x0 2 {0, 1}n such that

8j
����yj �

hqj , x0i
n

����  ↵. (4)
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However, it is known how to obtain a polynomial-time reconstruction attack for certain query
families. In particular, a polynomial-time analogue of Theorem 5.6 can be obtained by using a
linear program to e�ciently find a fractional vector x0 2 [0, 1]n satisfying Condition (4) and then
rounding x0 to an integer vector. To show that this attack works, we need to lower-bound the
fractional analogue of partial discrepancy, namely

inf
z2[�1,1]n,
kzk1>n/10

kQzk1,

which again can be shown to be ⌦(
p
n) for a random n⇥ n matrix Q, as well as for some explicit

constructions [37].
One can consider a relaxed notion of accuracy, where the mechanism is only required to give

answers with at most c/
p
n additive error for 51% of the queries, and for the remaining 49% it is

free to make arbitrary error. Even such a mechanism can be shown to be blatantly nonprivate. If
one wants this theorem with a polynomial-time privacy-breaking algorithm, then this can also be
done with the 51% replaced by about 77%. (This is a theorem of Dwork, McSherry, and Talwar
[39], and is based on connections to compressed sensing.)

5.1.2 Discrepancy Characterizations of Error for Counting Queries

We now work towards characterizing the error required for di↵erential privacy for answering a
given set of counting queries. Let q1, . . . , qk 2 {0, 1}X be a given set of counting queries over a data
universe X (viewed as vectors of length |X|). We will abuse notation and use Q to denote both the
set {q1, . . . , qk} of counting queries as well as the k ⇥ |X| matrix whose rows are the qj . For a set
S ✓ X, we let QS denote the restriction of Q to the columns of S.

Then we have:

Theorem 5.8 (Partial discrepancy lower bound). Let Q = {q : X ! {0, 1}} be a set of counting
queries over data universe X, and let M : Xn ! RQ be a (1, 0.1)-di↵erentially private mechanism
that with high probability answers every query in Q with error at most ↵. Then

↵ � max
S✓X,|S|2n

|S| even

PDisc(QS)/2n.

Proof sketch. Suppose for contradiction that ↵ < PDisc(QS)/2n for some set S of size at most 2n.
Let us restrict attention to datasets x of the following form: the first |S|/2 rows of x, denoted y,
consist of |S|/2 distinct elements of S, and the rest are fixed to an arbitrary value w 2 X. Then
for a counting query q : X! {0, 1}, we have

q(x) =
hqS ,�(y)i+ (n� |S|/2) · q(w)

n
,

where qS 2 {0, 1}S is the vector (q(s))s2S (one of the rows in QS) and �(y) 2 {0, 1}S is the
characteristic vector of y (i.e., the indicator of which elements of S are in y). Thus, an estimate
of q(x) to within additive error at most ↵ yields an estimate of the normalized inner product
hqS ,�(y)i/|S| to within additive error ↵n/|S| < PDisc(QS)/2. If we have such estimates for every
query q 2 Q, then by Theorem 5.5, we can reconstruct at least 90% of the coordinates of the
characteristic vector �(y), which can be shown to contradict (1, 0.1)-di↵erential privacy.

37



If we do not fix n but require the error to scale linearly with n, then this lower bound can be
phrased in terms of hereditary partial discrepancy, which is defined to be

HerPDisc(Q)
def
= max

S✓X
PDisc(QS).

In this language, we have the theorem of Muthukrishnan and Nikolov [83]:

Theorem 5.9 (Hereditary discrepancy lower bound [83]). For every set Q = {q : X ! {0, 1}} of
counting queries over data universe X, the following holds for all su�ciently large n (in particular
for all n � |X|/2): Let M : Xn ! RQ be a (1, 0.1)-di↵erentially private mechanism that with high
probability answers every query in Q with error at most ↵. Then

↵ � (HerPDisc(Q)� 1)/2n.

(We subtract 1 from the hereditary partial discrepancy to compensate for the fact it removes the
constraint that |S| is even from Theorem 5.8.) Put di↵erently, the hereditary partial discrepancy
is a lower bound on the non-normalized error (↵n) needed to answer the queries with di↵erential
privacy (for su�ciently large n). Remarkably, Nikolov, Talwar, and Zhang [85] showed that this
bound is nearly tight:

Theorem 5.10 (Hereditary discrepancy upper bound [85]). For every set Q = {q : X! {0, 1}} of
counting queries over data universe X, every ", � > 0, and n 2 N, there is an (", �)-di↵erentially
private mechanism M : Xn ! RQ that answers every query in Q with error

↵ 
HerPDisc(Q) · polylog(|Q|) ·

p
log(1/�)

"n

with high probability.

We will not prove the latter theorem, but will get a taste of its techniques in Section 7.3. We note
that the distinction between partial discrepancy and ordinary discrepancy becomes less significant

once we move to the hereditary versions. Indeed, if we define HerDisc(Q)
def
= maxS✓XDisc(QS), then

it is known that

HerPDisc(Q)  HerDisc(Q)  HerPDisc(Q) ·O(min{log |X|, log |Q|}). (5)

(See the book by Matoušek [75] for proofs.) Hereditary discrepancy is a well-studied concept in
combinatorics, and a remarkable byproduct of the aforementioned work on di↵erential privacy was
a polylogarithmic approximation algorithm for hereditary discrepancy, solving a long-standing open
problem [85].

5.1.3 Discrepancy Lower Bounds for Specific Query Families

Note that Theorems 5.9 and 5.10 only provide a nearly tight characterization in case we look
for error bounds of the form f(Q)/n, which scale linearly with n (ignoring the dependence on "
and log(1/�) for this discussion). In particular, the lower bound of Theorem 5.9 only says that
HerPDisc(Q) is a lower bound on the function f(Q) for su�ciently large n. If our dataset size n is
below the point at which this lower bound kicks in, we may be able to achieve significantly smaller
error.
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For finite dataset sizes n, we can use the lower bound of Theorem 5.8:

↵ � max
S✓X,|S|2n

|S| even

PDisc(QS)/2n.

Unfortunately, partial discrepancy is a combinatorially complex quantity, and can be hard to es-
timate. Fortunately, there are several relaxations of it that can be easier to estimate and thereby
prove lower bounds:

Proposition 5.11. Let Q be a k ⇥ |X| query matrix (with {0, 1} entries). Then:

1. For every S ✓ X and T ✓ [k], we have

PDisc(QS)) >
1

10

s
|S|
|T | · �min(Q

T

S ),

where Q
T

S
denotes the |T |⇥ |S| submatrix of QS with rows indexed by T , and �min(QT

S
) denotes

the smallest singular value of QT

S
.

2.

max
S✓X,|S|2n

|S| even

PDisc(QS) >
min{VC(Q)� 1, 2n}

20
.

Proof. 1. We have

PDisc(QS) � PDisc(QT

S )

= min
z2{�1,1}|S|

,

kzk1>|S|/10

kQT

Szk1

> inf
z 6=0

kQT

S
zk1

kzk1 · 10/|S|

� inf
z 6=0

kQT

S
zk2/

p
|T |

(kzk2 ·
p
|S|) · 10/|S|

=
1

10

s
|S|
|T | · �min(Q

T

S ).

2. By definition of VC dimension, there is an even-sized set S of at least min{(VC(Q) � 1, 2n}
columns for which the rows of QS contain all 2k binary strings of length k. The partial
discrepancy of this set of vectors is thus greater than k/20.

Combining Proposition 5.11 with Theorem 5.8, we obtain lower bounds on the error ↵ needed
by di↵erentially private mechanisms in terms of least singular values of submatrices Q

T

S
and in

terms of the VC dimension VC(Q). The lower bound on error in terms of least singular values is
due to Kasiviswanathan et al. [66], and the lower bound on error in terms of VC dimension is due to
Blum et al. [14]. An advantage of using the singular-value relaxation in place of partial discrepancy
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is that it allows for a polynomial-time reconstruction attack, similarly to the discussion after the
proof of Theorem 5.6. The attack based on VC dimension is based on brute-force enumeration,
just like Theorem 5.2, but the search space is of size 2VC(Q)  |Q|.

Recall that the largest possible discrepancy among k ⇥ s matrices (with k � s) is achieved (up
to constant factors) by a random matrix, with the bound stated in Lemma 5.7. To apply this for
lower bounds on di↵erentially private release of counting queries, we can take Q to be a family of
k random counting queries over a data universe X, and S ✓ X to be an arbitrary subset of size
s = min{|Q|, |X|, n}. Then QS is a random matrix, and combining Lemma 5.7 and Theorem 5.8,
we obtain:

Theorem 5.12 (Largest possible discrepancy lower bound). For every data universe X and n, k 2
N, there is a family of k counting queries Q over X such that, if M : X

n ! RQ is a (1, 0.1)-
di↵erentially private mechanism that with high probability answers every query in Q with error at
most ↵, we have

↵ � ⌦

 
min

(p
|Q|
n

,

p
|X| · (1 + log(|Q|/|X|))

n
,

r
log(|Q|/n)

n
, 1

)!
.

Let us compare this with the upper bounds that we have for (", �)-di↵erential privacy given
by Theorems 2.7, 2.9, and 4.3. For every family of counting queries, choosing the best of these
algorithms will give an error bound of

↵  O

0

@min

8
<

:

p
|Q| · log(1/�) · log log |Q|

"n
,

p
|X| · log |Q|

"n
,

sp
log |X| · log(1/�) · log |Q|

"n
, 1

9
=

;

1

A .

Ignoring factors of log(1/�) and 1/", the first two bounds nearly match the first two lower bounds
of Theorem 5.12. The third bound, however, di↵ers by the

p
log |X| factor that appears in the error

bound of private multiplicative weights but does not appear in the lower bound (which leaves open
the possibility of having vanishingly small error whenever |Q|  f(n) for some f(n) = exp(⌦̃(n)),
independent of the size of the data universe). In Section 5.3, we will see di↵erent lower-bound
techniques that can yield this

p
log |X| factor.

Let us now turn to the concrete families of counting queries from Section 1.3:

• Point functions (Qpt): Here PDisc(QS) = 1 for every S (since all the sets are of size 1), so
we do not obtain any interesting lower bound.

• Threshold functions (Qthr): Here also PDisc(QS) = 1 for every S, because if we write
S = {s1 < s2 < · · · < st} and color sj according to the parity of j, every subset of S defined
by a threshold function (i.e., every prefix of S) has imbalance at most 1.

• Attribute means on {0, 1}d (Qmeans(d)): Here we can analyze PDisc(QS) for a uni-
formly random subset S ✓ {0, 1}d of size s = min{n, d}. Then QS is statistically close
to a uniformly random {0, 1} matrix of size d ⇥ s, which by Lemma 5.7, has partial dis-

crepancy ⌦
⇣p

s · (1 + log(d/s))
⌘

with high probability. So when d < n, we have an error

lower bound of ⌦
⇣p

d/n
⌘
, which is nearly tight, matching the upper bound of Theorem 2.7

up to a factor of
p

log(1/�) · log log d/". But when d > n, the lower bound is no better
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than ⌦
⇣p

(log d)/n
⌘
, which leaves quite a large gap from the upper bound, which remains

O
⇣p

d · log(1/�) log log d/"
⌘
. In particular, the upper bound is useless when d = !(n2), but

the lower bound leaves open the possibility of having vanishingly small error for any d = 2o(n).

• t-way conjunctions on {0, 1}d (Qconj
t

(d)): The VC dimension of this class is at least
t · blog(d/t)c, so we have an error lower bound of ⌦(min{t log(d/t)/n, 1}). For t = O(1), Ka-
siviswanathan et al. [66] showed that, for the subset T ⇢ Q

conj
t

(d) consisting of the
�
d

t

�
mono-

tone conjunctions (without negations), if we pick a random set S of size min{n, dt/ polylog(d)},
we have �min(QT

S
) � ⌦(dt/2/ polylog(n)) with high probability. Consequently, we have

PDisc(QS) �
1

10
·
s

|S|
�
d

t

� · ⌦
 

dt/2

polylog(n)

!
= ⌦̃

⇣p
min{n, dt}

⌘
.

When n > dt, we get an error bound of ↵ � ⌦̃(dt/2)/n, which is tight up to polylogarithmic
factors, but when n = o(dt), we are again quite far from the upper bounds of Theorem 2.7.

• All conjunctions on {0, 1}d (Qconj(d)): The VC dimension of this class is at least d, yielding
an error lower bound of ⌦(min{d/n, 1}). Matoušek et al. [77] showed that the hereditary
discrepancy of Q = Q

conj(d) is ⇥̃((2/
p
3 )d) and thus the same is also true for the partial

hereditary discrepancy (by Inequality (5)). To use Theorem 5.8 when n < 2d�1, we can
restrict attention to the first d0 = blog2 nc variables, and obtain

max
S✓X,|S|2n

|S| even

PDisc(QS) � ⌦̃

 
min

(✓
2p
3

◆d

,

✓
2p
3

◆d
0)!

� ⌦̃
⇣
min

n
20.21d, n0.21

o⌘
.

This yields an error lower bound of

↵ � ⌦̃

✓
min

⇢
20.21d

n
,

1

n0.79

�◆
.

By the hereditary discrepancy upper bound (Theorem 5.10), there is an algorithm that

achieves error ↵  Õ((2/
p
3 )d)·
p

log(1/�)
"n

⇡ 20.21d·
p

log(1/�)
"n

, so the the bounds are nearly matching

when n� 20.21d. But when n = 2o(d), the lower bound of 1/n0.79 is quite far from the upper
bound of O(d3/2

p
log(1/�)/"n)1/2 given by private multiplicative weights (Theorem 4.3).

Table 5.1 summarizes these lower bounds and compares them with the upper bounds we have
seen.

5.2 Packing Lower Bounds

We will now see a geometric approach to lower bounds that often gives tight lower bounds on
(", 0)-di↵erential privacy, and can separate it from (", �)-di↵erential privacy. In particular, we will
prove that answering k arbitrary counting queries with (", 0)-di↵erential privacy requires an error
of ↵ � ⌦(k/"n), whereas we saw in Theorem 2.7 that we can achieve error O(

p
k · log(1/�)/"n)

with (", �)-di↵erential privacy.
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Table 5.1: Error bounds for specific query families under (", �)-di↵erential privacy on a data universe
X of sizeD = 2d (e.g., X = {0, 1}d or X = {1, 2, . . . , D}). Lower bounds apply for (1, 0.1)-di↵erential
privacy.

Query family Q Upper bounds Ref. Lower bounds from Thm. 5.8

Q
means O

✓p
d log(1/�)·log log d

"n

◆
Thm. 2.7 ⌦

⇣p
d

n

⌘
if d  n

⌦

✓q
1+log(d/n)

n

◆
if d > n

Q
conj
t

, t⌧ d O

✓
d
t/2·
p

log(1/�)·log log d
"n

◆
Thm. 2.7 min

⇢
⌦̃(dt/2)

n
, ⌦̃

⇣
1p
n

⌘�
if t = O(1)

O

✓
t log d
p

d log(1/�)
"n

◆1/2

Thm. 4.3 ⌦
⇣
min

n
t log(d/t)

n
, 1
o⌘

Q
conj Õ(20.21d)

n
Thm. 5.10 min

⇢
⌦̃(20.21d)

"n
, ⌦̃

�
1

n0.79

��

O

✓
d
3/2·
p

log(1/�)
"n

◆1/2

Thm. 4.3 ⌦
�
min

�
d

n
, 1
 �

The approach is not specific to counting queries, and can be applied to virtually any com-
putational problem that we might try to solve with di↵erential privacy. Suppose that, for every
dataset x 2 X

n, we have a set Gx ✓ Y of outputs that are “good” for x. Then the lower bound
says that, if we have a “large” collection of datasets x such that the sets Gx are disjoint, then any
(", 0)-di↵erentially private mechanism must fail to produce a good output with high probability on
at least one of the datasets in this collection.

Theorem 5.13 (Packing lower bound [59, 10]). Let C ✓ X
n be a collection of datasets all at

Hamming distance at most m from some fixed dataset x0 2 X
n, and let {Gx}x2C be a collection of

disjoint subsets of Y. If there is an (", �)-di↵erentially private mechanism M : Xn ! Y such that
Pr[M(x) 2 Gx] � p for every x 2 C, then

1

|C| � p · e�m·" � �.

In particular, when p = 1/2 and � = 0, we have |C|  2 · em".

Proof. By group privacy (Lemma 2.2), for every x 2 C, we have

Pr[M(x0) 2 Gx] � p · e�m" �m�.

Since the sets Gx are disjoint, we have

1 � Pr

"
M(x0) 2

[

x2C
Gx

#

=
X

x2C
Pr [M(x0) 2 Gx]

� |C| · (p · e�m" �m�).

42



Note that, when � = 0, the theorem (setting m = n) says that we can only have roughly
e"n ⌧ |X|n datasets on which a di↵erentially private mechanism’s behavior is really distinct.

But for � > 0, the theorem says nothing when m > ln(1/�)/" (because p · e�m"�m� < 0). The
reason is the use of group privacy (Lemma 2.2), which tells us nothing when considering datasets
that are at distance larger than ln(1/�)/".

Let us now see how packing implies a lower bound of ⌦(min{log |X|, log(1/�)}/"n) for nonre-
dundant classes of counting queries, namely ones where all elements of the data universe are dis-
tinguishable by the queries.

Theorem 5.14 (Packing lower bound for nonredundant queries). Let Q = {q : X! {0, 1}} be any
class of counting queries that distinguish all the elements of X. That is, for all w 6= w0 2 X, there
is a query q 2 Q such that q(w) 6= q(w0). Suppose M : Xn ! RQ is an (", �)-di↵erentially private
mechanism that with high probability answers every query in Q with error at most ↵. Then

↵ � min

⇢
⌦

✓
log |X|
"n

◆
,⌦

✓
log(1/�)

"n

◆
,
1

2

�
.

Note that an error bound of 1/2 is achievable by the trivial (0, 0)-di↵erentially private algorithm
that answers 1/2 for all queries.

The hypothesis holds for all of the concrete query families we have considered (point functions,
threshold functions, attribute means, and t-way conjunctions). In particular, for the class of point
functions Q

pt({0, 1}d), the lower bound of ↵ � ⌦(min{d/"n, log(1/�)/"n}) is tight, matched by
Proposition 2.8 and Theorem 3.5 (which algorithm is better depends on whether d or log(1/�) is
larger). In particular, this shows that approximate di↵erential privacy can achieve smaller error
(namely Õ(

p
d) ·

p
log(1/�)/"n) than is possible with pure di↵erential privacy when log(1/�) <

d/ polylog(d).
For attribute means over {0, 1}d (i.e., Qmeans(d)), we obtain a tight lower bound of ⌦(d/"n)

when � = 0, which matches the upper bound for arbitrary sets of k = d counting queries given by
Theorem 2.6. By Theorem 2.7, approximate di↵erential privacy can achieve asymptotically smaller
error when k > log(1/�).

Proof. For a dataset x 2 X
n, let Gx be the closed `1 ball of radius ↵ around the vector (q(x))q2Q.

The assumption about M implies that, for every dataset x 2 X
n, we have Pr[M(x) 2 Gx] � 1/2.

We will now construct a set C of |X| datasets for which the Gx’s are disjoint. Specifically, for
each w 2 X, let x(w) 2 X

n be the dataset whose first m = b2↵n + 1c rows are all equal to w,
and whose remaining n � m rows are all equal to w0 for a fixed element w0 2 X. We will take
C = {x(w) : w 2 X}. To see that Gx(w) and Gx(w0) are disjoint for every w 6= w0, let q be a query
such that q(w) 6= q(w0) (which exists by hypothesis). Then |q(x(w))� q(x(w0))| = m/n > 2↵. The
datasets in C are all at distance at most m from the dataset x(w0). Thus by Theorem 5.13, we
deduce that

1

|X| � e�"m/2� �,

which implies that either � � e�"m/4, in which case ↵ � ⌦(ln(1/�)/"n), or 1/|X| � e�"m/4, in
which case ↵ � ⌦(log |X|/"n).

Now, let us see how the packing lower bound can be applied to arbitrary sets Q of counting
queries to obtain tight bounds on the sample complexity—how large n needs to be to achieve an ar-
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bitrarily small, but constant error ↵—with the matching upper bound coming from an instantiation
of the exponential mechanism.

To formalize this, let X be our data universe, and consider the |X| vectors in RQ corresponding
to the tuples of answers that can be achieved on individual elements on X; that is, for each w 2 X,
let aw = (q(w))q2Q. Now, following Hardt and Talwar [59], we consider the convex body K =
ConvexHull({aw : w 2 X}) that is the convex hull of all of these vectors. Notice that, for any
dataset x 2 X, the tuple of answers on x is ax = (1/n)

P
n

i=1 axi 2 K.
Define the packing number P↵(K) to be the largest number of points we can fit in K such that

all the pairwise `1 distances are greater than ↵. (That is, the closed `1 balls of radius ↵/2 centered
at the points are disjoint. But we do not require that the balls themselves are entirely contained
within K; this notion of packing is sometimes referred to as metric entropy.)

Theorem 5.15 (Packing characterization of sample complexity). 1. For all su�ciently small � >
0, there is an ↵ > 0 such that the following holds for all sets Q = {q : X! {0, 1}} of counting
queries, n 2 N, and " 2 (0, 1): If M : Xn ! RQ is an (", 0)-di↵erentially private mechanism
that, on every dataset x 2 X

n, answers all of the queries in Q to within error at most ↵ with
high probability, then

n �
log(P�(K))

�"
,

where K is the convex body corresponding to Q as defined above.

2. For every ↵ > 0, there is a � > 0 such that the following holds for all sets Q = {q : X! {0, 1}}
of counting queries, n 2 N, and " 2 (0, 1): If

n �
log(P�(K))

�"
,

where K is the convex body corresponding to Q, then there is an (", 0)-di↵erentially private
mechanism that, on every dataset x 2 X

n, answers all of the queries in Q to within error at
most ↵ with high probability.

Thus, to achieve error ↵ = o(1), it is necessary and su�cient to have n = !(Po(1)(K)). The
above theorem is based on ideas from [93, Lecture 6].6

Proof. 1. Let M = P�(K) and let a1, . . . , aM be the corresponding points in K, all at pairwise
`1 distance greater than �.

Our first step will be to approximate the points aj by points a
y(j) for datasets of sizem = �n/2,

so that kaj � a
y(j)k1  �/3. The definition of K tells us that, for each point aj there is a

distribution Dj on X such that aj = Ew Dj [aw], where aw = (q(w))q2Q is the vertex of
K corresponding to the answers on w 2 X. We will probabilistically construct the dataset
y(j) 2 X

m by randomly sampling m rows according to Dj . As mentioned in the proof of
Theorem 4.1, if m � O(VC(Q) · log(1/�)/�2), then standard results in learning theory show
that with high probability we have kaj � a

y(j)k1  �/3, as desired. By Proposition 5.11 and

6
In [93, Lecture 6], the bounds are stated in terms of the discrete set of points Kn = {ax : x 2 X

n} rather

than the convex body K. An advantage of Theorem 5.15 is that the set K does not depend on n (since we are

trying to characterize n in terms of it), but the formulation in [93] has the advantage of applying even to arbitrary

low-sensitivity families (rather than just counting or statistical queries).

44



Theorem 5.8, we know that n � ⌦(VC(Q)/↵) (for su�ciently small ↵), and thus m = �n/2 �
⌦(�VC(Q)/↵). Thus we can take ↵ small enough (depending on �), to ensure that we have
m � O(VC(Q) · log(1/�)/�2) as needed.

Given the datasets y(j) 2 X
m, observe that the points a

y(j) are at pairwise distance greater

than � � 2�/3 = �/3 (by the triangle inequality). Now we construct datasets x(j) 2 X
n of

size n by padding the y(j)’s with n �m copies of a fixed row w from X; the points a
x(j) are

now at pairwise distance greater than (m/n) · (�/3) = �2/6. So if for every x 2 X
n, we take

the set Gx to be a closed `1 ball of radius �2/12, then the sets {G
x(j)}1jM are disjoint.

Moreover we can take ↵  �2/12, and then the ↵-accuracy hypothesis on M says that, for
every x 2 X

n, Pr[M(x) 2 Gx] � 1/2.

So all the conditions of Theorem 5.13 are satisfied (with p = 1/2, � = 0) and we obtain

2(log e)·(�n/2)·" = em·" � M

2
�M (log e)/2,

where the latter inequality uses M � 1/(2�) � 23.6 � 21/(1�(log e)/2) for any Q containing a
nonconstant query and su�ciently small �. This implies that n � log(P�(K)/�", as desired.

2. Let M = P�(K), and let a1, . . . , aM be the corresponding points in K all at pairwise distance
greater than � from each other. By the maximality of the packing, every point in K is at
`1 distance at most � from at least one of the ai’s (otherwise we could add the point to
obtain a larger packing).7 On a dataset x 2 X

n, we will use the exponential mechanism
(Proposition 4.2) to sample a point aj that is close to ax in `1 distance, in a manner similar
to Theorem 4.1. Specifically,

M(x) : output aj with probability / e�"n·kaj�axk1 .

Indeed, Theorem 4.1 is a special case of this mechanism where we take the aj ’s to be the answer
vectors ay that we get from small datasets y 2 X

m. By Proposition 4.2 (with score(x, aj) =
�kaj � axk1), this mechanism is 2"-di↵erentially private, and achieves error at most � +
O(logM)/"n with high probability. Thus, if n � (logM)/�(2") and � is su�ciently small
(depending on ↵), we obtain error at most ↵ with high probability.

Note that there is a significant loss in the dependence on the error ↵ in the proofs, so this
theorem does not determine the rate at which we can get the error to decay as a function of the
other parameters (for example, whether we can get it to decay linearly in n or

p
n). If we work

with `2 rather than `1 error, then tighter characterizations of the rate of error decay are known
(up to factors polylog(|Q|, |X|)), by applying more sophisticated geometric methods to the convex
body K [59, 11, 85].

5.3 Fingerprinting Lower Bounds

The lower bounds from Sections 5.1 and 5.2 above address two extreme ranges of �. Reconstruction
attacks prove lower bounds even for constant � (e.g., � = .1), and packing (mainly) proves lower

7
In other words {a1, . . . , aM} form a �-net of K with respect to `1 norm.
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bounds for � = 0. Recall that, for satisfactory privacy guarantees, the desired range of � is that
it should be cryptographically negligible, i.e., � = n�!(1), as (", �)-di↵erential privacy allows for
leaking each row with probability �. In particular, when � � 1/n, we can output a subsample
consisting of a � fraction of the rows of the dataset, which in turns allows for answering any family

Q of counting queries to within accuracy ↵ = O
⇣p

(log |Q|)/�n
⌘
(by a Cherno↵ Bound). (When

� is constant, this matches the best lower bound we can get from discrepancy in the regime where
n⌧ min{|Q|, |X|}, cf. Theorem 5.12.) Thus, to prove lower bounds of the form ↵ = ⌦(1), we need
to focus on the regime �  O(log |Q|)/n.

It turns out that a very well-suited tool for this task is fingerprinting codes, which were developed
in the cryptography literature by Boneh and Shaw [15] for a completely di↵erent task. Specifically,
they were designed for preventing piracy of digital content. Imagine a digital movie distribution
company that wants to deliver copies of a movie to n di↵erent customers, and the company wants
to mark each copy so that, if one of the customers or a coalition S of the customers released a
pirated copy of the movie created from their own copies, the distribution company would be able
to point a finger at one of the pirates in S. There are d scenes in the movie, and each of the scenes
can be watermarked by either 0 or 1 (say by choosing one of two slightly di↵erent angles from
which the movie was shot). The colluding pirates may splice their copies to evade detection. The
fingerprinting code should help protect the movie by specifying for each scene and each customer
whether it should be watermarked by 0 or 1. An associated tracing algorithm should determine
one of the colluding pirates with high probability from the code and a pirated copy.

Definition 5.16 (Fingerprinting codes, syntax). A fingerprinting code of length d = d(n) for n
users consists of two randomized algorithms:

1. A generating algorithm Gen that takes the number n of users and produces an n ⇥ d binary
fingerprinting matrix C where Ci,j 2 {0, 1} determines the watermark of customer i in scene j
along with a tracing key tk . (It turns out that without loss of generality we can take tk = C.)

2. A tracing algorithm Trace that takes as input the tracing key tk and watermarks w 2 {0, 1}d
from a potentially pirated movie and outputs an element of [n] [ {?} (which we interpret as
an accused customer or “fail”).

For a generating matrix C and a coalition S ✓ {1, . . . , n}, we say that w 2 {0, 1}d is feasible for
S if, for every j 2 {1, . . . , d}, wj equals to ci,j for some i 2 S. Put di↵erently, if CS , the submatrix
of C consisting of the rows in S, is constant on value bj on some column j, then we require that
wj = bj . This captures the constraint that the coalition produces its pirated movie by splicing its
copies together.

That is, a coalition S can deploy an arbitrary (randomized) pirating algorithm P : {0, 1}|S|⇥d !
{0, 1}d that takes as its input CS for a generating matrix C and produces a watermark sequence w
that is feasible for S. (So we will require security even against pirates who are able to determine
the watermarks in their movie copies.)

Definition 5.17 (Fingerprinting codes, security). A fingerprinting code (Gen,Trace) is secure if,
for every n, every S ✓ {1, . . . , n} and every randomized pirating algorithm P : {0, 1}|S|⇥d ! {0, 1}d,
we have

Pr
C Gen(1n)
w P (CS)

[w is feasible for C and S, and Trace(C,w) 62 S]  neg(n).
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(Recall that neg(n) denotes a negligible probability, i.e., n�!(1).)

An optimal construction of fingerprinting codes was given by Tardos [101]:

Theorem 5.18 (Optimal fingerprinting codes [101]). For every n, there is a fingerprinting code of
length d = Õ(n2) for n users.

We will not prove this theorem, but will instead show a simpler but suboptimal construction
from the original paper of Boneh and Shaw [15].

A fingerprinting code of length Õ(n3): Gen(1n) outputs a matrix obtained by randomly
permuting columns of the matrix

0

BBBBBBBB@

0 block 1st block 2nd block . . . n-th block

111 . . . 111 111 . . . 111 111 . . . 111
000 . . . 000 111 . . . 111 111 . . . 111

000 . . . 000 111 . . . 111

0 0 0 . . . 1
000 . . . 000

1

CCCCCCCCA

Each block spans Õ(n2) identical columns. For such a randomly generated matrix, a coalition S
that does not include the i-th user cannot distinguish columns that come from the (i � 1)-th and
the i-th blocks of the matrix, as these columns are identical in the submatrix CS . The tracing
algorithm takes advantage of this observation. The tracing algorithm Trace(C,w) outputs the first
i such that

Avg
j in block i

[wj ]� Avg
j in block i� 1

[wj ] �
1

n
,

where Avgj2T f(j) denotes the average of f(j) over j in set T . For a feasible codeword w, such an
index i is guaranteed to exist since Avgj in block 0[wj ] = 0 and Avgj in block n[wj ] = 1. The correct-
ness of the tracing algorithm follows from the following claim, which ensures that the probability
we falsely accuse a user outside the coalition S is negligible:

Claim 5.19. For a given coalition S and pirate P, a randomly generated C  Gen(1n) and w  
P(CS), with probability greater than 1� neg(n), for all i 62 S, we have

Avg
j in block i

[wj ]� Avg
j in block i� 1

[wj ] <
1

n
.

Proof. Fix i 62 S, and condition on the codeword w  P(CS). Since columns from block i and
i � 1 are identical in CS , it is still not determined which permuted columns are from block i and
which are from block i� 1. More precisely, if we condition additionally on the entire submatrix CS

of the (permuted) codebook C as well as the permuted locations of all columns other than those
from blocks i and i� 1, then the blocks i and i� 1 are still a uniformly random partition of their
union into two equal-sized sets. The averages Avgj in block i[wj ] and Avgj in block i� 1[wj ] have the
same expectation over the choice of the partition (namely Avgj in block i or i� 1[wj ]). Since each is
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the average over Õ(n2) coordinates (selected without replacement from the union), Cherno↵-type
bounds imply that, with all but negligible probability (depending on the choice of the polylog(n)
factor in the Õ(·)), they will each deviate from the expectation by less than 1/2n (and hence will
di↵er from each other by less than 1/n).

While the analysis of optimal fingerprinting codes, with d = Õ(n2), is more involved, the
description of the codes is very simple. Following generalizations and simplifications given in Dwork
et al. [47], for every j 2 [d], we can pick a bias pj  [0, 1] uniformly at random, and then generate
the j-th column as n independent samples from the Bernoulli distribution with expectation pj . In
fact, any su�ciently “smooth” and “spread out” distribution on the pj ’s can be used.

Now, we will use fingerprinting codes to derive lower bounds on di↵erential privacy, following
Bun et al. [21]:

Theorem 5.20 (Fingerprinting codes ) for attribute means [21]). If there is a fingerprinting
code with codewords of length d for n + 1 users then there is no (1, 1/10n)-di↵erentially private
mechanism M : ({0, 1}d)n ! [0, 1]d for answering all d attribute means (i.e., the counting queries
Q
means(d)) with error ↵ < 1/2.

Proof. Suppose for contradiction that there exists a (1, 1/10n)-di↵erentially private mechanism M

for answering attribute means with error ↵ < 1/2. Without loss of generality, we may assume that,
for every dataset x, the output distribution of M(x) does not depend on the order of the rows of x
(else M can randomly permute them first).

Use the hypothesized fingerprinting code to generate a (random) codebook C for n + 1 users.
Let S = {1, . . . , n} (i.e., the coalition consisting of all users except user n + 1). Let (a1, . . . , ad)
be attribute means obtained from M on the data set CS . Define a vector w 2 {0, 1}d by rounding
vector (a1, . . . , ad) to the nearest integer. Since M makes error less than 1/2 (with high probability),
w is a feasible pirated codeword for CS . That is, we think of P(·) = Round(M(·)) as the pirate for
the fingerprinting code. Since M is di↵erentially private, so is P.

By the properties of the fingerprinting code

Pr[Trace(tk ,P(CS)) 2 {1, . . . , n}] � 1� neg(n),

where the probability is taken over (C, tk) Gen(1n+1) and the coin tosses of P.
Hence, for n large enough, there is an i⇤ such that

Pr[Trace(tk ,P(CS)) = i⇤] � 1

2n
.

Let S0 = {1, . . . , n + 1} � {i⇤}. Since CS and CS0 are neighboring datasets (after an appropriate
permutation of the rows), the di↵erential privacy of P tells us that

Pr[Trace(tk ,P(CS)) = i⇤]  e1 · Pr[Trace(tk ,P(CS0)) = i⇤] +
1

10n
.

Thus, we have

Pr[Trace(tk ,P(CS0)) = i⇤] � 1

2en
� 1

10en
� ⌦(1/n),

which contradicts the security of the fingerprinting code, as with nonnegligible probability we are
accusing someone not in the coalition S0.
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Notice that the “good guys” and “bad guys” have switched roles in this relation between
fingerprinting codes and di↵erential privacy. The mechanism M, which is supposed to protect
privacy, plays the role of the adversarial pirate P for the fingerprinting code. And the Trace

algorithm from the fingerprinting code (corresponding to the “authorities”) plays the role of the
privacy adversary. Tracing attacks (determining whether an individual was in the dataset or not)
are not quite as devastating as the reconstruction attacks, but they still can be quite significant—
for example, if the dataset consists of a collection of individuals who were all diagnosed with
a particular disease. Indeed such tracing attacks (on releases of exact rather than approximate
statistics) led the US National Institutes of Health to remove online access to summary statistics of
certain genomic datasets [63, 110]. For a fingerprinting code to give a “realistic” attack, the tracing
should not require extensive auxiliary information (captured by the tracing key tk) and should be
fairly robust to the distribution according to which the codebook was generated. These issues are
explored in [47].

Combining Theorems 5.18 and 5.20, we see that estimating d attribute means on a dataset of
size n = ⌦̃(

p
d) requires an error of ↵ � 1/2 for (1, 1/10n)-di↵erential privacy. Simple reductions

imply that, in general, we need error ↵ > ⌦̃(
p
d)/"n. Steinke and Ullman [99] have tightened the

lower bound to nearly match Theorem 2.7 (up to a factor of O
�p

log log d
�
):

Theorem 5.21 (Fingerprinting lower bound for attribute means [99]). The following holds for
every d 2 N, " 2 (0, 1), and � 2 (2�d, 1/n1.1). Suppose M : ({0, 1}d)n ! [0, 1]d is an (", �)-
di↵erentially private mechanism that with high probability answers every attribute mean query in
Q
means(d) with error at most ↵. Then

↵ � ⌦

 
min

(p
d log(1/�)

"n
, 1

)!
.

Recall from Table 5.1 that partial discrepancy gave a lower bound of ⌦(
p
d/n) when d < n, and

otherwise gave a lower bound no better than
p
(log d)/n. Packing (Theorem 5.14) gave a lower

bound of ⌦(min{d, log(1/�)}/"n). Theorem 5.21 subsumes all of these bounds.
The fingerprinting lower bound above is for a particular family of counting queries—attribute

means—in which the number of queries (|Qmeans(d)| = d) is logarithmic in the size of the data
universe (X = {0, 1}d), but it can be composed with reconstruction attacks of Section 5.1 to also
yield nearly tight lower bounds for the case in which the number |Q| of queries is much larger:

Theorem 5.22 (Lower bounds for arbitrary counting queries [21]). For every d, n, k 2 N such that

n2.1  k  22
d/3

, there is a family Q of k counting queries on data universe X = {0, 1}d such that
the following holds: If M : (X)n ! RQis an (", 1/10n) di↵erentially private mechanism that with
high probability answers all queries in Q within error at most ↵, then

↵ � ⌦̃

 p
log |X| · log(|Q|)

"n

!1/2

.

This theorem mostly closes the gap between the largest discrepancy-based lower bounds (The-
orem 5.12) and the upper bound given by private multiplicative weights (Theorem 4.3). So, we
have a nearly tight understanding of the accuracy with which we can answer a worst-case set Q of
counting queries, as a function of |X|, |Q|, n, and the privacy parameters. In fact, a similar lower
bound is also known for the special case of t-way marginals, by composing the fingerprinting lower
bound for attribute means with reconstruction lower bounds for marginals [14, 66, 29]:
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Theorem 5.23 (Lower bound for t-way marginals [21]). For every constant ` 2 N, the following

holds for all d, n, t 2 N such that n  d2`/3/" and `+ 1  t  d: If M : ({0, 1}d)n ! RQ
conj
t (d) is an

(", 1/10n)-di↵erentially private mechanism that with high probability answers all queries in Q
conj
t

(d)
to within error at most ↵, then

↵ � min

8
<

:⌦̃

 
t
p
d

"n

!1/2

,⌦(1)

9
=

; .

However, as we have seen for point functions (Proposition 2.8 and Theorem 3.5), for some
families of queries Q, one can do much better than these bounds. Ideally, we would understand the
best accuracy achievable in terms of the combinatorial structure of the query family, similarly to
what the hereditary dfiscrepancy bounds (Theorems 5.9 and 5.10) give, but for a given value of n
and ideally without extra polylog(|Q|) factors.

Open Problem 5.24. For an arbitrary family Q = {q : X ! {0, 1}} of counting queries, n 2
N, " > 0, and � = o(1/n), characterize (to within “small” approximation factors) the smallest
achievable error by (", �)-di↵erentially private mechanisms M : Xn ! RQ.

A potentially easier task, advocated by Beimel et al. [10], is to characterize the “sample com-
plexity” for constant error, as we did for pure di↵erential privacy in Theorem 5.15:

Open Problem 5.25. For an arbitrary family Q = {q : X ! {0, 1}} of counting queries, " > 0,
and � = o(1/n), characterize (to within “small” approximation factors) the sample complexity (i.e.,
smallest value of n) needed by (", �)-di↵erentially private mechanisms M : Xn ! RQ to answer all
the queries in Q to within an arbitrarily small constant error ↵ > 0.

We note that there is a partial converse to the connections between fingerprinting codes and
di↵erential privacy [21]; that is, if answering a set Q of counting queries is impossible with di↵erential
privacy for a given set of parameters (↵, n, ", �), this implies a weak form of a fingerprinting code
that is defined with respect to the query family Q and the given parameters. It would be very
interesting to tighten this relationship; this would be one approach to Open Problems 5.24 and
5.25.

Open Problem 5.26. Identify a variant of fingerprinting codes whose existence is equivalent to
the impossibility of answering a family Q accurately with di↵erential privacy (up to some loss in
parameters).

6 Computational Lower Bounds

Now we turn to computational lower bounds, giving evidence that some tasks that are information-
theoretically possible with di↵erential privacy are nevertheless computationally intractable. Specif-
ically, recall that both the smallDB and private multiplicative weights algorithms of Section 4 can
accurately answer (many) more than n2 counting queries over data universe X = {0, 1}d with di↵er-
ential privacy, provided that n is large enough compared with d (e.g., n � d2), but use computation
time exponential in d. Below we will see evidence that this exponential computation is necessary
in the worst case.
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6.1 Traitor-Tracing Lower Bounds

Our first hardness results will be based on traitor-tracing schemes, which were introduced by Chor
et al. [28] as a cryptographic tool for preventing piracy of digital content, like fingerprinting codes.
Their benefit over fingerprinting codes is that they allow for distributing an unbounded amount of
content over a broadcast channel (after a setup phase where private keys are sent to the users).
The price is having computational rather than information-theoretic security. The notion of traitor-
tracing schemes predated the notion of fingerprinting codes, and their application to lower bounds
for di↵erential privacy also came first, in Dwork et al. [40].

To motivate the definition of traitor-tracing schemes, imagine a video-streaming company that
distributes software or hardware that is capable of decoding their (encrypted) streaming signal.
Each customer gets his own decryption program that has a unique decryption key, so that copying
can be detected. However, we are also concerned that S customers might collude to create (and
sell) unauthorized pirate decryption programs. They can build their pirate program using the
decryption keys found in their own decryption program in an arbitrary way, so we may not be able
to explicitly read o↵ any of the keys from the pirate program. The goal of the traitor-tracing scheme
is to be able to identify at least one of the colluding customers who contributed his decryption key.
We can formalize this setup as follows:

Definition 6.1. A traitor-tracing scheme consists of four algorithms (Gen,Enc,Dec,Trace) as follows:

1. The (randomized) key generation algorithm Gen(1d, 1n) takes as input 1d, 1n, where d is a
security parameter and n is a number of customers, and outputs (k1, . . . , kn, bk , tk), where
ki 2 {0, 1}d is the decryption key for user i, bk is the broadcast key, and tk is the tracing key.

2. The (randomized) encryption algorithm Encbk (m) takes as input the broadcast key bk and a
message m 2 {0, 1} and outputs a ciphertext c.

3. The decryption algorithm Decki(c) takes as input a user key ki and a ciphertext c and outputs
a message m 2 {0, 1}. We require that it always holds that Decki(Encbk (m)) = m for keys
(ki, bk) that are output by Gen.

4. The syntax of the (randomized) tracing algorithm Trace will be described below (as there are
two variants).

We will consider two di↵erent scenarios for tracing, depending on the type of pirates that we
wish to trace and the access that Trace has to those pirates. Each will give us di↵erent types of
lower bounds for di↵erential privacy.

Stateless pirates Here the tracer can run the pirate decryption program many times from its
same initial state, but on di↵erent ciphertexts as input. For example, this models the scenario
where the pirate decryption program is a piece of software whose code is given to the tracer.
We want to be able to trace given any pirate program that is correctly able to decrypt
proper encryptions with high probability (though the tracer will feed the pirate malformed
ciphertexts that are neither encryptions of 0 or 1 to help in identifying one of the colluders).
This is the original and most standard notion of traitor tracing in the literature.

Stateful but cooperative pirates Here the tracer can submit a sequence of ciphertexts to the
pirate, but the pirate may answer them in a correlated fashion, for example, changing its
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behavior to evade tracing if it receives and detects a malformed ciphertext. However, we will
only require tracing for “cooperative” pirates, which still correctly distinguish encryptions
of 0 from 1 even if they receive some other malformed ciphertexts. Tracing stateful pirates
is well-motivated for traitor tracing; the “cooperativeness” condition is less natural in that
context, but arises naturally in our application to di↵erential privacy lower bounds.

We now formalize these two requirements.

Definition 6.2 (Tracing stateless pirates). A traitor-tracing scheme (Gen,Enc,Dec,Trace) is secure
against stateless pirates if the following holds for every n = poly(d) and every S ✓ [n]: let P be a
probabilistic poly(d)-time algorithm that given the keys (ki)i2S outputs a Boolean circuit P̃ . Then,

Pr[Trace(P̃ , tk) /2 S and P̃ is a useful decryptor]  neg(d),

where the probabilities are taken over (k1, . . . , kn, bk , tk)  Gen(1d, 1n), P̃  P((ki)i2S), and the
coins of Trace and P. The condition that P̃ is a useful decryptor means that, for every m 2 {0, 1},
Pr[P̃ (Encbk (m)) = m] = 1, where the probability is taken over the coin tosses of Enc. (In the
literature, tracing is typically required even for pirates that have just a nonnegligible advantage
in distinguishing encryptions of 0 from encryptions of 1, but tracing pirate decoders that always
decrypt correctly will su�ce for our purposes.)

Definition 6.3 (Tracing stateful pirates). A traitor-tracing scheme (Gen,Enc,Dec,Trace) is secure
against stateful but cooperative pirates if there is a polynomial function k(·, ·) (called the tracing
query complexity) such that, for every n = poly(d) and every S ✓ [n], the following holds for
k = k(d, n): Let P be any probabilistic poly(d)-time algorithm that, given the keys (ki)i2S and a
sequence (c1, . . . , ck) of ciphertexts, outputs a sequence (m1, . . . ,mk) 2 {0, 1}k. Then,

Pr[TraceP((ki)i2S ,·)(tk) /2 S and P cooperates]  neg(d),

where the probabilities are taken over (k1, . . . , kn, bk , tk)  Gen(1d, 1n) and the coins of Trace.
We require that Trace makes only one query (c1, . . . , ck) to P (amounting to feeding k = k(d, n)
nonadaptively chosen ciphertexts to P), and say that P cooperates if, for every coordinate j where
cj is in the support of Encbk (bj) for some bj 2 {0, 1}, we have bj = mj .

We note that tracing stateless pirates is easier than tracing stateful but cooperative pirates,
because whenever P̃ is a useful decryptor, using it to decrypt each ciphertext will qualify as coop-
erating.

Theorem 6.4 (Traitor-tracing schemes against stateful pirates [28, 103]). Assuming one-way func-
tions exist, there exists a traitor-tracing scheme secure against stateful but cooperative pirates with
tracing query complexity k(n, d) = Õ(n2).

Proof sketch. The key generation, encryption, and decryption are as in the original construction
of Chor et al. [28] (which was for stateless pirates). Fix a secure private-key encryption system
(Enc0,Dec0) (which exists if one-way functions exist). Gen(1d, 1n) generates independently keys
k1, . . . , kn for the encryption system (Enc0,Dec0) and sets tk = bk = (k1, k2, . . . , kn). Encoding is
given by

Encbk(b) = (Enc0k1(b),Enc
0
k2
(b), . . . ,Enc0kn(b))
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and decryption for user i by
Decki(c1, . . . , cn) = Dec

0
ki
(ci).

The tracing algorithm is from Ullman [103], and utilizes fingerprinting codes in order to minimize
the tracing query complexity and handle stateful but cooperative pirates. Trace

P (tk , bk) first
generates a fingerprinting codebook, namely an n ⇥ k matrix C  Genf.p.(1n). (Recall from
Theorem 5.18 that we can take k = Õ(n2).) It then creates ciphertexts c(1), c(2), . . . , c(k) by

c(j)
i

= Enc
0
ki
(Ci,j).

The tracing algorithm queries its oracle P ((ki)i2S , c(1), c(2), . . . , c(k)) to get answers w = (w1, . . . , wk),
and runs the tracing algorithm of the fingerprinting code Tracef.p.(C,w) to get a suspect i. It out-
puts this i.

We sketch the correctness of this tracing scheme: if the pirate algorithm is computationally
bounded, then it cannot learn any information about the messages encrypted by private keys of
users not participating in S, so w essentially depends only on the rows of C in S. We now observe
that w is feasible when P is cooperative, except with negligible probability. Indeed, if all entries of
column j of CS agree on value bj , then to P, c(j) is indistinguishable from a valid encryption of bj ,
and hence wj = bj with all but negligible probability.

We now show that such traitor-tracing schemes imply the hardness of answering many counting
queries with di↵erential privacy, a result due to Ullman [103].

Theorem 6.5 (Tracing stateful pirates ) hardness of answering many queries [103]). If there
exists a traitor-tracing scheme secure against stateful but cooperative pirates with tracing query
complexity k(d, n), then every (1, 1/10n)-di↵erentially private mechanism for answering k = k(n+
1, d) e�ciently computable counting queries with error ↵ < 1/2 on datasets with n individuals from
X = {0, 1}d must run in time superpolynomial in d. Here the queries are given as input to the
mechanism, as Boolean circuits of size poly(n, d).

Proof sketch. Suppose M is a di↵erentially private mechanism like in the statement of the theorem.
We will show how to construct a pirate for the traitor-tracing scheme using M and conclude from
the security of the scheme that M must have a runtime big enough to break the scheme.

Start by setting up the traitor-tracing scheme with n+1 users and take a dataset x containing the
keys of a coalition of n users obtained by removing one user at random. We consider counting queries
on this dataset given by ciphertext decryption: for a ciphertext c, the query qc evaluates to qc(ki) =
Decki(c), where we identify the row corresponding to the i-th user with its key ki. Therefore, when
query qc is answered accurately by M on the dataset x we obtain an ±↵-approximation a to the
number of users in x whose key decrypts c to 1. If c is a valid encryption of a message m 2 {0, 1},
then |a �m|  ↵ < 1/2, so rounding a will equal m. With this notation, we define our pirate as
follows:

P((ki)i2S , c
(1), . . . , c(k)) = Round(M(x = (ki)i2S , qc(1) , . . . , qc(k))),

where Round : [0, 1]k ! {0, 1}k denotes componentwise rounding.
As discussed above, the accuracy of M implies that P is cooperative. On the other hand, the

fact that M is di↵erentially private implies that P is also di↵erentially private. As in the proof of
Theorem 5.20, tracing contradicts di↵erential privacy. Thus, P must not be traceable, and hence
must have superpolynomial running time.
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Combining the above two theorems we get:

Corollary 6.6 (Hardness of answering many counting queries). Assume one-way functions exist.
Then for every n = poly(d), there is no polynomial-time (1, 1/10n)-di↵erentially private algorithm
for answering more than Õ(n2) e�ciently computable counting queries with error ↵ < 1/2 (given
as Boolean circuits input to the mechanism) over data universe X = {0, 1}d.

This lower bound is nearly tight, in that we can answer k = ⌦̃(n2) e�ciently computable
counting queries in polynomial time with di↵erential privacy using the Laplace mechanism and
advanced composition (or Theorem 2.7).

Let us review the above proof’s translation between objects in the traitor-tracing scheme and
those in di↵erential privacy:

user keyspace {0, 1}d 7! data universe X = {0, 1}d

ciphertext c 7! counting query qc(k) = Deck(c)

pirate P  [ mechanism M

tracing algorithm Trace 7! privacy adversary

In particular, mechanisms that take a sequence of counting queries as input and produce a
vector of answers correspond very naturally to stateful but cooperative pirates. On the other hand,
a common application of the algorithms of Section 4 is not to specify the queries as input, but rather
to fix some large family of counting queries over data universe {0, 1}d (for example, the family of 3d

conjunction queries) and then take n large enough so that we can produce a compact representation
of the answers to all of these queries (e.g., a synthetic dataset). What does this translate to in
the traitor-tracing world? Since we are interested in a family Q of e�ciently computable counting
queries, we ideally should have ciphertexts that are of length poly(d) (so that the queries have
polynomial description length), not growing linearly with n as in Theorem 6.4. Second, the pirate
P should no longer directly produce answers to the queries (i.e., decrypt ciphertexts), but rather
it should use its keys (ki)i2S to produce a summary (which we can view as an algorithm or data
structure) P̃ that can then be used to estimate the answer to any query in the class (i.e., decrypt
any properly generated ciphertext). This leads us naturally to traitor tracing with stateless pirates,
as used in the original connection of Dwork et al. [40]:

Theorem 6.7 (Tracing stateless pirates ) hardness of di↵erentially private summaries [40]). If
there is a traitor-tracing scheme secure against stateful pirates with ciphertexts of length `(n, d),
then for every d and n = poly(d), there is a family Q of e�ciently computable counting queries of
description length `(n+1, d) (and size 2`(n+1,d)) over data universe {0, 1}d, such that no polynomial-
time (1, 1/10n)-di↵erentially private mechanism can accurately summarize the answers to all of the
queries in Q on datasets of size n.

We note that this theorem is only interesting if ` ⌧ n. Indeed, Theorem 5.2 shows that there
is a family of 2n e�ciently computable counting queries over a data universe of size 2n that is
information-theoretically impossible to answer accurately with di↵erential privacy. So we need
traitor-tracing schemes with ciphertext length that is smaller than n, the number of users, unlike
in the construction of Theorem 6.4. At the time that Theorem 6.7 was proven, the best known
construction of traitor-tracing schemes against stateless pirates had ciphertext length `(n, d) =p
n · poly(d) [17] (under hardness assumptions about bilinear maps on certain groups), and this
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already implied an interesting hardness result for di↵erential privacy. But it left open the possibility
that producing di↵erentially private summaries is possible for any e�ciently computable family Q

of counting queries provided that n � (log |X|) · (log |Q|)2.
Recently, however, there are candidate constructions of traitor-tracing schemes with ciphertext

length ` = poly(d), independent of n, assuming the existence of one-way functions and either
“secure multilinear maps” or “indistinguishability obfuscation” [51, 16]. This yields a family Q of
2` = 2poly(d) counting queries over a data universe X of size 2d for which no poly(d)-time algorithm
can produce an accurate di↵erentially private summary (for any n = poly(d)). More recently,
Kowalczyk et al. [72] showed that the same hardness result holds when either |Q| or |X| is poly(n),
by constructing traitor-tracing schemes where either the ciphertexts or the keys are of length
O(log n), albeit with a weaker security property that still su�ces to show hardness of di↵erential
privacy. Specifically, the theorem says:

Theorem 6.8 (iO ) hardness of di↵erential privacy [72]). Assuming the existence of indistin-
guishability obfuscation and one-way functions:

1. For every d 2 N and every n = poly(d), there is a family Q of O(n7) e�ciently computable
counting queries over data universe X = {0, 1}d (specified by a uniform poly(d)-time evalua-
tion algorithm that takes an `-bit description of a query q, for ` = 7 log n+O(1), and an input
y 2 {0, 1}d and outputs q(y)) such that no polynomial-time di↵erentially private mechanism
can accurately answer all of the queries in Q on datasets of size n.

2. For every ` 2 N and every n = poly(`), there is a family Q of 2` e�ciently computable
counting queries over data universe X = {0, 1}d for d = 7 log n+O(1) (specified by a uniform
poly(`)-time evaluation algorithm that takes an `-bit description of a query q and an input
y 2 {0, 1}d and outputs q(y)) such that no polynomial-time di↵erentially private mechanism
can accurately summarize the answers to all of the queries in Q on datasets of size n.

We note that, when |Q| and |X| are both of size poly(n), the algorithm of Theorem 4.3 can
answer all of the queries in polynomial time (so we cannot hope to prove hardness in this case). If,
in part 1, the |Q| could be reduced to n2+o(1), then the hardness result would be stronger than that
of Corollary 6.6 (albeit under a stronger complexity assumption). Indeed, here the set of queries
is fixed and each query is described by O(log n) bits, whereas in Corollary 6.6, the queries have
description length larger than n and need to be provided as input to the mechanism. It would also be
interesting to reduce |X| to n2+o(1) in part 2; this too would be optimal because, when |X|  n2�⌦(1),
the Laplace histogram is a poly(n)-time computable summary that is simultaneously accurate for

up to 2n
⌦(1)

queries (Theorem 2.9).

Open Problem 6.9. Can either |Q| or |X| in Theorem 6.8 be reduced to n2+o(1)?

The existence of “indistinguishability obfuscation”, as assumed in Theorem 6.8, is still very
unclear, and thus it would be significant to replace it with a more well-understood complexity
assumption:

Open Problem 6.10. Can a hardness result like Theorem 6.8 be established under a more stan-
dard and widely believed complexity assumption? This is open even for the case where we do not
require either |Q| or |X| to be of size poly(n), but rather we allow n and the mechanism running
time to be poly(d, `).
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Similarly to (but earlier than) the case with fingerprinting codes, there is a partial converse to
the connection between traitor-tracing schemes and the hardness of di↵erential privacy [40], and it
would be very interesting to tighten this relationship.

Open Problem 6.11. Identify a variant of traitor-tracing schemes whose existence is equivalent
to the hardness of answering (or summarizing) counting queries with di↵erential privacy (up to
some loss in parameters, but ideally having a relationship holding per-query family Q).

6.2 Lower Bounds for Synthetic Data

The lower bounds of the previous section provide families of e�ciently computable counting queries
that are hard to answer with di↵erential privacy. However, these families consist of rather com-
plicated functions that evaluate cryptographic algorithms (namely, the decryption algorithm for
traitor-tracing schemes). We do not know similar results for simple/natural function classes of
interest, such as the set of all 3d conjunctions on data universe {0, 1}d.

However, we can prove a hardness result for di↵erentially private algorithms that work by
producing a synthetic dataset, as do the algorithms of Section 4. (This is explicitly stated for the
smallDB algorithm, and the private multiplicative weights algorithm can be modified to produce
synthetic data.) In fact, the result will hold even for the family Q

conj
2 of 2-way marginals.

Theorem 6.12 (Hardness of synthetic data for simple queries [104]). Assuming one-way functions
exist, there exists a constant ↵ > 0 such that there is no n = poly(d) and polynomial-time (1, 1/10n)-
di↵erentially private mechanism that given a dataset with n individuals over X = {0, 1}d outputs a
synthetic dataset approximating all the counting queries in Q

conj
2 (d) (i.e., all the 2-way marginals)

to within additive error at most ↵.

We note that the requirement that the mechanism produces a synthetic dataset cannot be
removed from the theorem. Indeed, recall that the Laplace mechanism and advanced composition
will approximate all k = ⇥(d2) 2-way conjunctions within error ↵ = Õ(

p
k)/"n = Õ(d)/"n in time

poly(n, d). So for n = poly(d), we get vanishingly small error in polynomial time.

Proof. The main ingredients in the proof are digital signature schemes and probabilistically check-
able proofs (PCPs). We will use digital signatures to construct datasets for which it is hard to
generate synthetic data that preserves the answer to a cryptographically defined query, and then
we will use PCPs to transform this cryptographic query into a collection of 2-way conjunctions.

Recall that a digital signature scheme is given by a triple of polynomial-time algorithms as
follows:

1. A randomized key generation algorithm Gen(1d) = (pk , sk) that produces a public key pk and
a private key sk given a security parameter d as input.

2. A randomized signing algorithm that, given a message m 2 {0, 1}d and a secret key sk ,
produces a signature � = Signsk (m) 2 {0, 1}d.

3. A deterministic verification algorithm Verpk (m,�) that always accepts a signature for m
generated using the secret key sk corresponding to pk .
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Informally, we say that the scheme is secure if, given access to examples (mi,�i = Signsk (mi))
signed with the same secret key, any algorithm running in time poly(d) cannot generate a new
message m0 /2 {mi} and a signature �0 such that Verpk (m0,�0) = 1.

We now describe how to use digital signatures to construct datasets for which it is hard to
generate synthetic data preserving the answer to a cryptographically defined counting query. This
construction is due to Dwork et al. [40]:

The dataset: Generate (pk , sk)  Gen(1d) and construct a dataset x with n individuals, where
each row contains a pair (mi,�i) with mi selected uniformly at random from {0, 1}d and
�i  Signsk (mi).

The query: Consider the counting query q(·) = Verpk (·). This query is e�ciently computable and
evaluates to 1 on the whole dataset.

The hardness: Now suppose for contradiction that there exists a polynomial-time di↵erentially
private mechanism M that given x produces a synthetic dataset x̂ 2 ({0, 1}d)n̂ which is
accurate with respect to q with high probability. By accuracy, x̂ must contain at least one
row x̂j = (m̂j , �̂j) such that Verpk (m̂j , �̂j) = q(x̂j) = 1. To derive a contradiction, we consider
two cases:

• If m̂j /2 x, then M succeeded in creating a forgery for the signature scheme in polynomial
time, contradicting its security.

• If m̂j 2 x, then M intuitively has violated privacy, as it has copied part of a row
(which is independent from all other rows) entirely in the output. More precisely, for
every i 2 [n], the probability that an (", �)-di↵erentially private mechanism M outputs
mi is at most e"/2d + �, since it could output mi with probability at most 1/2d if we
replaced the i-th row with all zeroes. Thus, the probability M outputs any mi is at most
n · (e"/2d + �) < 1/20 for " = 1 and � = 1/10n.

We now describe how to use PCPs to replace the cryptographic query Verpk with 2-way con-
junctions. Actually, we will only describe how to get a result for 3-way conjunctions, as it uses a
more familiar type of PCP theorem.

Recall that Circuit SAT is an NP-hard problem. Then, by a strong form of the PCP theorem
there exist a constant ↵ > 0 and three polynomial time algorithms Red, Enc, Dec satisfying the
following:

1. Red is a randomized reduction that, given a circuit C, outputs a 3-CNF formula Red(C) =
� = �1 ^ . . . ^ �m such that if C is satisfiable then � is satisfiable, and otherwise there is no
assignment satisfying more than (1� ↵)m clauses of �.

2. If w is a satisfying assignment for C, then z = Enc(C,w) is a satisfying assignment for �.

3. If z is an assignment for � satisfying more than (1 � ↵)m clauses, then w = Dec(C, z) is a
satisfying assignment for C.

Item 1 is the standard formulation of the PCP theorem in terms of the hardness of approximating
MAX-3SAT; it asserts a Karp reduction from Circuit SAT to the promise problem Gap-MAX-
3SAT. Items 2 and 3 are saying that this reduction is actually a Levin reduction, meaning we can
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e�ciently transform witnesses between the Circuit SAT instance and the corresponding Gap-MAX-
3SAT instance.

Here is our modified construction:

The dataset: Let x be the dataset constructed above using digital signatures. We write z for the
dataset with n individuals obtained by encoding each row xi of x with the encoding algorithm
given by the PCP theorem, relative to the circuit C = Verpk . That is, zi = Enc(Verpk , xi).

The queries: Our set of queries is all 3-way conjunctions, but we will only exploit accuracy with
respect to the clauses of the 3-CNF formula � = �1 ^ · · · ^ �m output by Red(Verpk ). Note
that for every row zi in z we have �(zi) = 1 (since Verpk (xi) = 1), so for every clause �j in �
we have �j(z) = n�1

P
i2[n] �j(zi) = 1.

The hardness: Suppose for contradiction that M is a polynomial-time di↵erentially private mech-
anism that produces synthetic datasets that are ↵-accurate with respect to 3-way conjunctions
and let ẑ = M(z). Then for every j 2 [m] we have �j(ẑ) � 1� ↵. By averaging, this implies
that there exists some row ẑi of ẑ that satisfies at least (1�↵) ·m clauses from �. Therefore,
using this row from the sanitized dataset we can obtain (m̂, �̂) = Dec(Verpk , ẑ) such that
Verpk (m̂, �̂) = 1. Now the same argument used earlier shows that either (m̂, �̂) is a forgery
(in case m̂ /2 x) or a violation of privacy (in case m̂ 2 x).

The hardness results we have seen either apply to contrived (cryptographic) queries (Corol-
lary 6.6 and Theorem 6.8) or constrain the form of the mechanism’s output to synthetic data
(Theorem 6.12). Obtaining a hardness result for any “natural” family of queries without restrict-
ing the form of the mechanism’s output remains an intriguing open problem.

Open Problem 6.13. Give evidence of hardness of accurately answering any “natural” family
of counting queries under di↵erential privacy, without constraining the form of the mechanism’s
output.

At the same time, the lack of such a hardness result should provide some hope in looking for
algorithms, and suggests that we should look for output representations other than synthetic data.
We can gain hope from computational learning theory, where proper learning (where the learner’s
output is constrained to come from the same representation class as the concept it is learning)
is often computationally harder than unconstrained, improper learning. Indeed, we will see the
benefits of moving beyond synthetic data for conjunctions in the next section.

7 E�cient Algorithms for Specific Query Families

In this section, we will see that, for some specific, natural families of queries, one can in fact obtain
e�cient algorithms for answering more than n2 queries.

7.1 Point Functions (Histograms)

We have already seen that, for the class Q
pt = Q

pt(X) of point functions on X, we can achieve a
better accuracy–privacy tradeo↵ than is possible with an arbitrary class Q of e�ciently computable
queries. Indeed, Proposition 2.8 and Theorems 3.5 and 5.14 show that the optimal error achievable
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for Qpt(X) is ⇥(min{log |X|, log(1/�), "n}/"n), whereas for an arbitrary query family with |Q| = |X|,
there is a lower bound of ⌦((log |X|)3/2/"n)1/2 for a wide range of parameters (Theorem 5.22).

Now we will see that in fact the optimal algorithms for point functions can be implemented in
polynomial time, and can be modified to generate synthetic data.

Theorem 7.1 (Point functions with di↵erential privacy [2]). For every data universe X, n 2 N,
and ", � > 0 such that � < 1/n, there is a poly(n, log |X|)-time (", �)-di↵erentially private algorithm
that takes a dataset of n rows from data universe X = {0, 1}d and outputs a synthetic dataset
approximating the value of all counting queries in Q

pt(X) up to an additive error of

↵ = O

✓
min

⇢
log |X|
"n

,
log(1/�)

"n
, 1

�◆

with high probability.

Proof sketch. The stability-based histogram of Theorem 3.5 with error O(log(1/�)/"n) already runs
in polynomial time, as it outputs nonzero values only for points that occur in the dataset. However,
the basic Laplace-based histogram of Proposition 2.8 adds noise Lap(2/") to the value of all |X| = 2d

point functions, and thus does not run in polynomial time. Thus, to obtain a polynomial-time
algorithm with error ↵ = O(log |X|/"n), first we consider a modification of the Laplace-based
histogram algorithm that only uses the largest O(1/↵) noisy fractional counts and treats the rest
as zero. This modification maintains di↵erential privacy by closure under postprocessing, and
can be shown to maintain error O(log |X|/"n). (Note that there can only be at most 1/� points
whose exact fractional counts are at least � = ⌦(↵), and outputting zero for the remaining points
introduces an error of at most �.) With this modification, to implement the mechanism e�ciently,
we can first add (discrete) Laplace noise to the m  n point functions qy for the points y that occur
at least once in the dataset, and then sample the distribution of the top d1/↵e values of |X| �m
discrete Lap(2/") random variables. Sampling the latter distribution to within su�cient accuracy
to maintain di↵erential privacy (with some additional modifications to the mechanism) can be done
in time poly(log |X|, 1/", d1/↵e) = poly(n, log |X|).

To obtain synthetic data in both cases, we can simply use the noisy answers to determine how
many copies of each point to put in the synthetic dataset. With a synthetic dataset of size O(1/↵),
the errors due to rounding will only increase the error by a constant factor.

7.2 Threshold Functions (CDFs)

For the class of threshold functions Qthr([2d]) on domain [2d], for pure di↵erential privacy (� = 0),
again the best possible accuracy is ⇥(d/"n), matching the lower bound of Theorem 5.14, and it
can be achieved in polynomial time:

Theorem 7.2 (Thresholds with pure di↵erential privacy [41, 45]). For every n, d 2 N, " > 0, there
is a poly(n, d)-time (", 0)-di↵erentially private algorithm that takes a dataset of n rows from data
universe X = [2d] and outputs a synthetic dataset maintaining the value of all threshold-function
counting queries up to an error of

↵ = max

⇢
O(d)

"n
, Õ

✓
1

"n

◆�

with high probability.
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Interestingly, in the case of approximate di↵erential privacy, there is an inherent dependence
on log⇤ d in the error.

Theorem 7.3 (Thresholds with approximate di↵erential privacy [9, 22]). For every n, d 2 N,
", � > 0 such that exp(�"n/ log⇤ n)  �  1/n2:

1. There is a poly(n, d)-time (", �)-di↵erentially private algorithm that takes a dataset of n rows
from data universe X = [2d] and outputs a synthetic dataset maintaining the value of all
threshold-function counting queries up to an error of

↵ = max

(
2(1+o(1)) log⇤ d · log(1/�)

"n
, Õ

✓
1

"n

◆)
.

2. Every (", �)-di↵erentially private algorithm for answering all threshold functions on datasets
of n rows from data universe X = [2d] must incur an error of at least

↵ = ⌦

✓
min

⇢
(log⇤ d) · log(1/�)

"n
, 1

�◆
.

We will not cover the proofs of these results, except to note that the log⇤ d lower bound has a
Ramsey-theoretic proof [18], raising the possibility that there is a more general Ramsey-theoretic
combinatorial quantity that can help in characterizing the optimal accuracy or sample complexity
for di↵erentially private algorithms (Open Problems 5.24 and 5.25).

Note that our understanding of threshold functions is not as tight as for point functions, and it
would be interesting to close the gap between the upper and lower bounds. In particular:

Open Problem 7.4. Does the optimal error for releasing threshold functions over X = [2d] with
approximate di↵erential privacy grow linearly or exponentially with log⇤ d, or something in between?

7.3 Conjunctions (Marginals)

Unlike point functions and thresholds, the class Qconj of conjunctions is unlikely to have a polynomial-
time di↵erentially private algorithm for generating synthetic data, by Theorem 6.12. This suggests
that we should look to other ways of summarizing the answers to conjunction queries.

Indeed, we will sketch two algorithms that beat the barrier of Theorem 6.12 by avoiding synthetic

data. One algorithm summarizes the answers to all conjunction queries in subexponential (2Õ(
p
d))

time (using a subexponential-sized dataset), using low-degree approximations to Boolean functions.
(Assuming the existence of digital signature schemes with exponential security and nearly linear-
time verification, the proof of Theorem 6.12 can be extended to show that generating synthetic data
requires time at least 2d

1�o(1)
, even when n = 2d

1�o(1)
.) The other algorithm answers all k = ⇥(d2)

2-way conjunctions in polynomial time with error Õ(
p
d)/"n, in particular allowing us to answer

k = ⌦̃(n4)� n2 such queries, using ideas from convex geometry and optimization.

Theorem 7.5 (Marginals via low-degree approximation [102]). There is a constant c such that

for all ",↵ > 0, d, n, t 2 N with d � t and n � dc
p
t·log(1/↵)/", there is an "-di↵erentially private

algorithm running in time poly(n) that takes a dataset x 2 ({0, 1}d)n and, with high probability,
outputs a “summary” (say, as a Boolean circuit) that allows for approximating the answer to all
the queries in Q

conj
t

(d) to within additive error ↵.
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A more sophisticated algorithm from [26] reduces the amount of data needed to nearly optimal
(n = O(t · d0.51)) at the cost of a larger (but still slightly subexponential) running time of 2o(d).

Proof sketch. Starting with our dataset x with n rows in X = {0, 1}d, the mechanism M will
produce a “summary” S that will approximate the function fx defined as fx(q) = q(x). S will be
a polynomial of low degree.

By introducing new variables for negative literals and negating our functions, it su�ces to
handle monotone t-way disjunctions, which can conveniently be specified by bit strings y 2 {0, 1}d:

qy(w) =
_

i:yi=1

wi , w 2 X . (6)

For a t-way disjunction, y has Hamming weight t, and the value of qy(w) is determined by the value
of
P

t

i=1wiyi 2 {0, . . . , t}. Specifically

qy(w) =

(
1

P
t

i=1wiyi 2 {1, . . . , t},
0

P
t

i=1wiyi = 0.
(7)

Given a dataset x, we are interested in producing a (di↵erentially private) approximation to
the function fx(·) defined as

fx(y) = qy(x) =
1

n

nX

i=1

qy(xi) =
1

n

nX

i=1

fxi(y).

We will approximate fx by a low-degree polynomial by approximating each fxi by a low-degree
polynomial. We do the latter using a standard technique based on Chebychev polynomials:

Fact 7.6. For all t 2 N and ↵ > 0, there exists a univariate (real) polynomial g of degree at most
s = O

�p
t log(1/↵)

�
such that g(0) = 0 and for all i 2 {1, . . . , t}, 1�↵  g(i)  1+↵. Moreover, g

can be constructed in time poly(t, log(1/↵)) and all of the coe�cients of g have magnitude at most
2s.

Given g as in the fact and a row w 2 X, consider the following function:

hw(y) = g

0

@
dX

j=1

wjyj

1

A , (8)

where g is from Fact 7.6. hw is a multivariate polynomial of degree O(
p
t · log(1/↵)). It has at

most C = dO(
p
t·log(1/↵)) coe�cients of magnitude at most M = dO(

p
t·log(1/↵)).

By construction, we have that, for all w 2 X and all y 2 X of Hamming weight at most t,

|hw(y)� fw(y)|  ↵ .

Thus, if we define

hx =
1

n

nX

i=1

hxi ,

we have that
|hx(y)� fx(y)|  ↵.
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To obtain di↵erential privacy, we can now add Laplace noise to each coe�cient of hx. Each
coe�cient is an average of the corresponding coe�cients of the hxi ’s, so has global sensitivity at most
2M/n. By the Laplace mechanism and basic composition, it su�ces to add noise Lap(2MC/"n)
to each of the C coe�cients for the resulting vector of coe�cients to be di↵erentially private. With
high probability, none of the coe�cients will have noise more than (logC) · 2MC/"n, which will

add up to an error of at most C · logC · 2MC/"n = dO(
p
t)/("n) when evaluating on any input

y.

Now we turn to a di↵erent approach, which runs in polynomial time and can answer nearly n4

low-order marginals.

Theorem 7.7 (Marginals via SDP projection [46]). Let t 2 N be an even constant. For all
n, d 2 N, ", � > 0, there is a polynomial-time (", �)-di↵erentially private algorithm that takes a
dataset x 2 ({0, 1}d)n and answers all counting queries in Q

conj
t

(d) on x to within additive error

↵ =
⇣
Õ(dt/4) ·

p
log(1/�)/"n

⌘1/2
.

The most interesting case of this theorem is t = 2, when the error is (Õ(
p
d) ·

p
log(1/�)/"n )1/2,

matching the lower bound of Theorem 5.23 up to a factor of poly(log d, log(1/�)) [21].

Proof sketch. The starting point for the algorithm is a beautiful geometric approach of Nikolov,
Talwar, and Zhang [85] that was used to prove the hereditary discrepancy upper bound (Theo-
rem 5.10). We will use an instantiation of their algorithm that provides near-optimal error bounds
in terms of |Q|, like the private multiplicative weights algorithm, but for `2 or `1 error rather than
`1.

We know that adding independent noise of magnitude O(
p
|Q|/"n) to the answers to all the

counting queries in a family Q provides privacy, but gives useless results (that lie outside [0, 1]) when
|Q| > n2. Remarkably, it turns out that simply projecting these answers back to be consistent with
some dataset yields highly accurate results.

To formalize this, recall the convex body K used in the packing characterization of sample
complexity (Theorem 5.15). That is, K = ConvexHull({aw : w 2 X}), where aw = (q(w))q2Q is the
vector in RQ giving all the query answers on row w 2 X. Recall that, for every dataset x 2 X, the
tuple of answers on x is ax = (1/n)

P
n

i=1 axi 2 K.
This leads to the following algorithm M(x,Q):

1. Calculate the exact answers
y = ax = (q(x))q2Q 2 K.

2. Add Gaussian noise to the coordinates of y:

ỹ = y +
O(

p
|Q| · log(1/�))

"n
·N(0, 1)|Q|.

(This can be shown to achieve (", �)-di↵erential privacy, and is more convenient than Laplace
noise for the geometric arguments we are about to make.)

3. Project back to K: Let
ŷ = argminz2K kz � ỹk2.

This step maintains (", �)-di↵erential privacy by postprocessing.
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Let us analyze the error introduced by this algorithm. Consider the line ` through y and ŷ, and
let p be the orthogonal projection of ỹ onto `. On `, p must be on the ray from ŷ to infinity. (If p
were on the segment between y and ŷ, then p would be a point in K closer to ỹ than ŷ. If p were
on the ray from y to infinity, then y would be a point in K closer to ỹ than ŷ.)

ky � ŷk22 = hŷ � y, ŷ � yi
 hŷ � y, p� yi (because p is on the ray from ŷ to infinity)

= hŷ � y, ỹ � yi (because ỹ � p is orthogonal to ŷ � y)

 (|hŷ, ỹ � yi|+ |hy, ỹ � yi|) (triangle inequality)

 2max
z2K

|hz, ỹ � yi|.

Taking expectations, and writing ỹ � y = O(
p
|Q| · log(1/�)/"n) · g for g ⇠ N(0, 1)|Q|, we have

E
⇥
ky � ŷk22

⇤


O
⇣p

|Q| · log(1/�)
⌘

"n
· E
g


max
z2K

|hz, gi|
�
.

The quantity

`⇤(K)
def
= E

g

max
z2K

|hz, gi|

is known as the Gaussian mean width of the polytope K, an important and well-studied quantity
in convex geometry.

Let us upper bound it for K defined by an arbitrary set Q of counting queries. For every choice
of g, the maximum of |hz, gi| over z 2 K will be obtained at one of the vertices of K. Recalling the
definition of K, we have

max
z2K

|hz, gi| = max
w2X

|haw, gi|.

By rotational symmetry of Gaussians, the random variable haw, gi is distributed as N(0, kawk2).
We have kawk2 

p
|Q| since aw is a {0, 1} vector. Thus, with probability at least 1� � over g, we

have |haw, gi|  O(
p
|Q| · log(1/�)). Taking a union bound over w 2 X, we have

max
w2X

|haw, gi|  O
⇣p

|Q| · log(|X|/�)
⌘
.

with probability at least 1� �, for every � > 0. This implies that

E
g


max
z2K

|hz, gi|
�
= E

g


max
w2X

|haw, gi|
�
 O

⇣p
|Q| · log |X|

⌘
.

Putting it all together, we have

E
⇥
ky � ŷk22

⇤


|Q| ·O(
p
log |X| · log(1/�))

"n
.

63



So if we look at the average error (averaged over the |Q| queries), we have

E
coins of M, q 2 Q

[|yq � ŷq|] 
✓

E
coins of M, q 2 Q

|yq � ŷq|2
◆1/2

=

✓
E

coins of M


1

|Q| · ky � ŷk22
�◆1/2

= O

 p
log(1/�)p
|Q| · "n

· `⇤(K)

!1/2

 O

 p
log |X| · log(1/�)

"n

!1/2

.

This exactly matches the (optimal) bound from the private multiplicative weights algorithm, except
that we only achieve small error on average for a random query from Q. However, it can be
generalized to obtain small average-case error on any given distribution of queries (just weight the
coordinates in RQ according to the distribution), and then combined with a di↵erentially private
algorithm for “boosting” [42] to obtain small error on all queries with high probability (paying a
factor of polylog(|Q|) in the error).

Our interest in this algorithm, however, is that it does not appear to generate synthetic data,
and thus is not subject to the computational complexity lower bounds of Theorem 6.12. Converting
the output ŷ to synthetic data would amount to decomposing ŷ into a convex combination of the
|X| vertices of K, which could take time proportional to |X|. Unfortunately, this same reason means
that the “Project back to K” step might take time proportional to |X|, as the given description of
K is in terms of its |X| vertices. Indeed, projection onto a convex set is known to be polynomially
equivalent to optimizing linear functions on the set, and as we will see below, optimizing over K is
NP-hard for the cases we are interested in.

Let us see how to make this process more e�cient for the case of 2-way marginals. For t-way
marginals with t > 2, the theorem follows by reduction to 2-way marginals. (Create

�
d

t/2

�
 dt/2

variables representing the conjunctions on every subset of t/2 variables; and then every t-way
conjunction in the original variables can be written as a 2-way conjunction in the new variables.)

Actually, releasing conjunctions of width at most 2 is equivalent to releasing parities of width
at most 2, so let us focus on the latter problem. It will also be useful to work in ±1 notation, so
the parity function qij : {±1}d ! {±1} on variables i and j is given by qij(v) = vivj . Thus we see
that

K = ConvexHull({v ⌦ v : v 2 {±1}d}).

Unfortunately, projecting onto and optimizing over K is known to be NP-hard, so we will take a
cue from approximation algorithms and look at a semidefinite programming relaxation.

It is NP-hard to do this optimally. So instead, we will find a nicer L “close” to K (where K ✓ L)
and optimize over L. We need to ensure that the Gaussian mean width of L is comparable to that
of K (or at least the bound we used on the Gaussian mean width of K).

First, we will relax to:

L0 = ConvexHull({v ⌦ v0 : v, v0 2 {±1}d}).
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To bound the Gaussian mean width of K, we only used the fact that K is the convex hull of |X| = 2d

vectors whose entries have magnitude at most 1, and the bound was linear in
p
log |X| =

p
d. L0

is now the convex hull of 22d such vectors, so we only lose a constant factor in our bound.
Optimizing over L0 is still NP-hard, but it has polynomial-time approximation algorithms.

Indeed, if we relax L0 to

L = {V 2 Rd
2
: 9{ui}di=1, {u0j}dj=1 unit vectors with Vij = hui, u0ji},

then we can optimize linear functions on L by semidefinite programming, and consequently we can
project onto L. Moreover, Grothendieck’s inequality (see [71]) says that the maximum of any linear
objective function on L is at most a factor of KG < 1.783 larger than on L0, which implies that

`⇤(L)  KG · `⇤(L0) = O(
p
|Q| · d).

To summarize, the algorithm for the set Q of 2-way parities operates as follows:

1. Calculate the exact answers

y = ax = (q(x))q2Q 2 K ✓ Rd
2
.

2. Add Gaussian noise to the coordinates of y:

ỹ = y +
O(

p
|Q| · log(1/�))

"n
·N(0, 1)|Q|.

3. Project back to L: Let
ŷ = argminz2L kz � ỹk2.

By the analysis we did earlier, the average error per query we obtain is at most

E
coins of M, q 2 Q

[|yq � ŷq|]  O

 p
log(1/�)p
|Q| · "n

· `⇤(L)
!1/2

 O

 p
d · log(1/�)

"n

!1/2

,

as desired.

The theorems above show that we can bypass the intractability of producing di↵erentially private
summaries by focusing on specific, structured query classes, and by avoiding synthetic data. We
summarize the state of knowledge about t-way marginals in Table 7.1. (Results for all marginals,
i.e., Qconj(d), roughly correspond to the case t = d, but in some cases will be o↵ by a logarithmic
factor, and we do not include the result based on the hereditary partial discrepancy of Qconj(d)
being ⇥̃((2/

p
3 )d) [77].)

As can be seen from the table, there are still important gaps in our state of knowledge, such as:

Open Problem 7.8. Is there a polynomial-time di↵erentially private algorithm for estimating all
(higher-order) marginals with vanishing error ↵ = o(1) on a dataset with n = poly(d) rows from
data universe X = {0, 1}d? Or at least all t-way marginals for some t = !(1)?
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Table 7.1: Error bounds for Qconj
t

(d) when t⌧ d with (", �)-di↵erential privacy on a dataset of size n.
Computational lower bounds hold under plausible cryptographic assumptions (e.g., exponentially
secure digital signatures with linear-time verification). “Synth?” indicates whether the entry refers
to algorithms that generate synthetic data.

Type Bound Constraints Runtime Synth? Ref.

Upper O

✓
d
t/2·
p

log(1/�)·log log d
"n

◆
poly(n, dt) no Thm. 2.7

Upper O

✓
t log d
p

d log(1/�)
"n

◆1/2

poly(n, 2d) yes Thm. 4.3

Upper ↵ n � dc
p
t·log(1/↵)/" poly(n) no Thm. 7.5

Upper
⇣
Õ(dt/4) ·

p
log(1/�)/"n

⌘1/2
t even poly(n, dt) no Thm. 7.7

Lower min

⇢
⌦̃(dt/2)

n
, ⌦̃

⇣
1p
n

⌘�
t = O(1) any no [66]

Lower ⌦
⇣
min

n
t log(d/t)

n
, 1
o⌘

any no [14]

Lower min

⇢
⌦̃
⇣
t
p
d

"n

⌘1/2
,⌦(1)

�
n  dO(1)/" any no Thm. 5.23

Lower ⌦(1) t � 2  2d
1�o(1)

yes Thm. 6.12

Open Problem 7.9. Is there a polynomial-time di↵erentially private algorithm for estimating all
3-way marginals with vanishing error ↵ = o(1) on a dataset with n = o(d) rows from data universe
X = {0, 1}d?

Open Problem 7.10. For what other classes of queries can one bypass the intractability of
generating di↵erentially private synthetic data and answer more than n2 queries with polynomial-
or subexponential-time algorithms?

8 Private PAC Learning

We now examine the possibility of machine learning in Valiant’s PAC model [106], under di↵erential
privacy. (See [70] for background on the PAC model.)

8.1 PAC Learning vs. Private PAC Learning

Recall that PAC learning considers, for each input length d, two sets of functions:

• A concept class C = Cd = {c : {0, 1}d ! {0, 1}}, from which the unknown concept c we are
trying to learn comes.

• A hypothesis class H = Hd = {h : {0, 1}d ! {0, 1}}, which contains the functions we will use
to try to represent our learned approximation of c.

Definition 8.1 (PAC learning). A concept class C is PAC-learnable if there exist an algorithm
L (called the learner) and a number n polynomial in d (called the sample complexity) such that,
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for every distribution D on {0, 1}d and every c 2 C, if we sample points x1, . . . , xn, xn+1 chosen
independently according to D, with high probability L(x1, c(x1), · · · , xn, c(xn)) returns a function
h 2 H such that h(xn+1) = c(xn+1).

If H = C, we call L a proper learner and say that C is properly PAC-learnable. If L is poly-time
computable as are the functions in H (given a poly(d)-bit description of a function h 2 H as output
by L and an input w 2 {0, 1}d, we can evaluate h(d) in time poly(d)), then we say that L is an
e�cient learner and say that C is e�ciently PAC-learnable.

Definition 8.2 (Private PAC learning). Private PAC learning is defined in the same way as
PAC learning, but with the additional requirement that L is di↵erentially private. That is, for
all sequences (x1, y1), . . . , (xn, yn) and (x01, y

0
1), . . . , (x

0
n, y
0
n) that di↵er in one coordinate i 2 [n],

L((x1, y1), . . . , (xn, yn)) and L((x01, y
0
1), . . . , (x

0
n, y
0
n)) are (", �)-indistinguishable for some constant

" (e.g., " = 1) and � negligible in n and d.

Taking " to be a constant is without loss of generality due to a generic reduction for improving
" (increase the sample size by a factor of "/"0, and run the original learner on random subsample
of the dataset). The success probability of the learner can also be amplified via “boosting”, which
has a di↵erentially private analogue [42].

Note that, while the definition of PAC learning only speaks of inputs that consist of i.i.d. samples
from an unknown distribution that is consistent with some concept c 2 C, we require privacy on all
(worst-case) pairs of neighboring input sequences. Indeed, if our modeling assumptions about the
world are wrong, we naturally expect that our learner might fail, but we do not want the privacy
promises to the data subjects to be broken. Also note that we consider the output of the learner
to be the entire description of the hypothesis h, not just its prediction h(xn+1) on the challenge
point.

Amazingly, there is no gap between PAC learning and Private PAC learning, if we do not care
about computation time:

Theorem 8.3 (Generic private learner [67]). If C is (nonprivately) PAC-learnable (equivalently,
VC(C)  poly(d)), then it is privately and properly PAC-learnable with sample complexity O(log |C|) 
O(d ·VC(C)) = poly(d).

The relation log |C|  d ·VC(C) is the Perles–Sauer–Shelah lemma. (See [70].)

Proof. We use the exponential mechanism (Proposition 4.2). LetH = C. On input (x1, y1) · · · (xn, yn),
we

output h 2 H with probability / e�"·|{i:h(xi) 6=yi}| .

Since score(x, h) = �|{i : h(xi) 6= yi}| has sensitivity 1 as a function of the dataset x, Proposition 4.2
tells us that this mechanism is 2"-di↵erentially private.

To prove that the learner succeeds with high probability, consider x1, · · · , xn that are taken
according to some unknown distribution D, and let yi = c(xi).

If n � O(VC(C) · log(1/↵)/↵2), then Occam’s razor from learning theory (cf. [70]) tells us that
with high probability over x1 · · ·xn, we have

8h 2 C

����
#{i : h(xi) = c(xi)}

n
� Pr

w⇠D
[h(w) = c(w)]

����  ↵.
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Combining this with Proposition 4.2, we know that with high probability the hypothesis h we
output satisfies

Pr
w⇠D

[h(w) = c(w)] � #{i : h(xi) = c(xi)}
n

� ↵

� argmaxh⇤#{i : h⇤(xi) = c(xi)}�O(log |C|)/"
n

� ↵

=
n�O(log |C|)/"

n
� ↵

� 1� 2↵,

provided n � O(log |C|)/"↵.
We are done when taking

n = O

✓
max

⇢
log |C|
"↵

,
VC(C) · log(1/↵)

↵2

�◆
⌧ 1.

8.2 Computationally E�cient Private PAC Learning

Unfortunately, as is often the case with the exponential mechanism, Theorem 8.3 does not pro-
duce computationally e�cient private learners. Thus, we now investigate what can be learned in
polynomial time under di↵erential privacy.

Nonprivately, most examples of computationally e�cient PAC learners are learners in the sta-
tistical query model of Kearns [69]. This is a model where the learner does not get direct access
to labeled samples (xi, c(xi)), but is allowed to obtain additive approximations to the expecta-
tion of any (e�ciently computable) function f : {0, 1}d ⇥ {0, 1} ! [0, 1] on the labeled distri-
bution. That is, on specifying statistical query f , the learner obtains an answer in the range

Ew D[f(w, c(w))] ± 1/ poly(n). E�cient statistical query learners can be simulated by e�cient
PAC learners because expectations Ew D[f(w, c(w))] can be estimated to within ±1/ poly(n) by
taking the average of f(xi, c(xi)) over m = poly(n) random samples xi  D. Such estimations
are also easily done with di↵erential privacy, as an average of f(xi, yi) over m samples (xi, yi) has
global sensitivity at most 2/m as a function of the dataset, and thus can be estimated via the
Laplace mechanism. Thus, we have the following:

Theorem 8.4 (Private SQ learning [13]). Every concept class that is e�ciently PAC learnable in
the statistical query model (which includes Q

pt, Q
thr, and Q

conj) is e�ciently and privately PAC
learnable.

In fact, Kasiviswanathan et al. [67] showed that (e�cient) statistical query learners are equiva-
lent to (e�cient) private learners in the “local model” of privacy (which will be discussed more in
the next section).

However, there are some concept classes that are e�ciently PAC learnable that are provably
not learnable in the statistical query model, most notably the class of parity functions, that is, the
class of functions {0, 1}d ! {0, 1} of the form x 7! c · x, where c · x is taken modulo 2. It turns
out that there is an elegant, e�cient private learner for this class, showing that e�cient private
learning goes beyond the statistical query model:

Theorem 8.5 (Private learning of parities [67]). The class Q
par = Q

par(d) of parity functions on
{0, 1}d is e�ciently and privately PAC learnable, with sample complexity n = O(d/") for (", 0)-
di↵erential privacy.
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Since the class of parity functions on {0, 1}d has VC dimension d, the sample complexity for
private learning is within a constant factor of the sample complexity for nonprivate learning.

Proof. We have a dataset (x, y) with n rows (xi, yi), where xi 2 {0, 1}d and yi 2 {0, 1}. Assume that
x1, . . . , xn are drawn independently from some distribution D, and that there is some c 2 {0, 1}d
such that yi = c · xi for all 1  i  n. We wish to determine a hypothesis h 2 {0, 1}d such that, if
x is drawn from D, then h · x = c · x with probability at least 0.99.

A simple (nonprivate) algorithm is to take any h such that yi = h ·xi for all i. We can do this by
using Gaussian elimination to solve the system of linear equations y = h · x. Standard calculations
show that this succeeds with n = O(d) samples.

Now let us consider private learning, keeping in mind that we need to ensure privacy even when
the data is inconsistent with the concept class. Indeed, we need to make sure that we do not leak
information by revealing whether or not the data is consistent! For instance, we need to make sure
that the algorithm’s output distribution only changes by " (multiplicatively) if we add a single row
(xi, yi) such that yi 6= c · xi.

Our mechanism M works as follows; we use ? to denote failure. We will start by succeeding
with probability about 1/2, and amplify this probability later.

1. Take n = O(d/") samples.

2. With probability 1/2, output ?.

3. For each 1  i  n, set x̂i, ŷi independently as follows:

(x̂i, ŷi) =

(
(0d, 0) with probability 1� " ,

(xi, yi) with probability " .

Call the resulting dataset (x̂, ŷ). This is e↵ectively a random sample of the original dataset,
containing an expected fraction " of the rows. The zero entries (x̂i, ŷi) = (0d, 0) will have no
e↵ect on what follows.

4. Using Gaussian elimination, determine the a�ne subspace V of hypotheses h that are con-
sistent with (x̂, ŷ), i.e.,

V = {h | 8i : ŷi = h · x̂i} .

Output an h chosen uniformly from V . If V = ? (i.e., if no consistent h exists), then output
?.

Since the nonprivate algorithm described above succeeds with probability 0.99, if the data is
consistent then M succeeds with probability at least 0.49. We can amplify by repeating this t times,
in which case the sample complexity is n = O(td/").

Now we analyze M’s privacy. We willfully identify 1± " with e±", neglecting O("2) terms.

Claim 8.6. M is (2", 0)-di↵erentially private.

Proof of claim. Let x ⇠ x0 be two neighboring datasets that di↵er at one row i. Assume that
(x0

i
, y0

i
) = (0d, 0). Since we can get from any x to any x00 by going through such an x0, if we can

show that M(x) and M(x0) are (", 0)-indistinguishable, then M will be (2", 0)-di↵erentially private.
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With probability 1� ", we replace (xi, yi) with (0d, 0) in step 3 (assuming we make it past step
2). In that case, (x̂, ŷ) = (x̂0, ŷ0), and the output probabilities are the same. Thus for all possible
outputs z,

Pr[M(x) = z] � (1� ") Pr[M(x0) = z] . (9)

But we are not done. The problem is that x0 is special (by our assumption) so the reverse inequality
does not automatically hold. We also need to prove

Pr[M(x) = z]  (1 + ") Pr[M(x0) = z] . (10)

To prove (10), start by fixing (x̂j , ŷj) = (x̂0
j
, ŷ0

j
) for all j 6= i. (Thus, we are coupling the

algorithm’s random choices on the two datasets.) Let V�i be the a�ne subspace consistent with
these rows:

V�i = {h | 8j 6= i : ŷj = h · x̂j} .
As before, if we fail or if we set (x̂i, ŷi) = (0d, 0) = (x̂0

i
, ŷ0

i
), the output probabilities are the same.

On the other hand, with probability "/2 we pass step 2 and set (x̂i, ŷi) = (xi, yi) in step 3. In that
case, M(x0) is uniform in V�i (or M(x0) =? if V�i = ?), while M(x) is uniform in

V = V�i \ {h | yi = h · xi}

(or M(x) =? if V = ?).
Let us compare the probabilities thatM(x) andM(x0) fail. If V�i = ?, thenM(x) = M(x0) = ?.

But if V�i 6= ? but V = ?, the probability that M(x) fails is at most 1/2 + "/2; and since M(x0)
fails with probability at least 1/2, we have

Pr[M(x) =?]  1 + "

2
 (1 + ") · Pr[M(x0) =?] .

Finally, we come to the most interesting case: comparing the probabilities that M(x) and M(x0)
output some hypothesis h, where both V�i and V are nonempty and contain h. Since V is obtained
by adding one linear constraint to V�i, we have

|V | � 1

2
|V�i| .

Since M(x) and M(x0) are uniform in V and V�i, respectively, for every h 2 V�i we have

Pr[M(x) = h]  1

2

✓
1� "

|V�i|
+

"

|V |

◆
 1

2
· 1 + "

|V�i|
= (1 + ") Pr[M(x0) = h] ,

which completes the proof.

Since linear algebra was essentially the only known technique for e�cient private learning outside
the statistical query model, this result suggested that perhaps every concept that is e�ciently PAC
learnable is also e�ciently and privately PAC learnable. Bun and Zhandry [20] recently gave
evidence that this is not the case.

Theorem 8.7 (Hardness of private learning [20]). If “indistinguishability obfuscation” and “per-
fectly sound noninteractive zero-knowledge proofs for NP” exist, then there is a concept class that
is e�ciently PAC learnable but not e�ciently PAC learnable with di↵erential privacy.
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8.3 The Sample Complexity of Private PAC Learning

Another gap between PAC learning and private PAC learning is in sample complexity. The sample
complexity of nonprivate learning is characterized by ⇥(VC(C)), whereas for private learning we
have the upper bound O(log |C|) from Theorem 8.5, which can be as large as d ·VC(C) on a domain
of size 2d. Two classes that illustrate this gap are the classes of point functions and threshold
functions (Qpt and Q

thr). In both cases, we have VC(C) = 1 but log |C| = d.
For the class C = Q

pt(d) of point functions on {0, 1}d and (", 0)-di↵erentially private proper
learners, Beimel, Brenner, Kasiviswanathan, and Nissim [10] showed that the best possible sample
complexity is ⇥(d), similarly to the situation with releasing approximate answers to all point
functions (Proposition 2.8 and Theorem 5.14). If we relax the requirement to either improper
learning or approximate di↵erential privacy, then, similarly to Theorem 3.5, the sample complexity
becomes independent of d, namely O(1) or O(log(1/�)), respectively [10, 9].

For the class C = Q
thr([2d]) of threshold functions on {1, . . . , 2d}, again it is known that ⇥(d)

sample complexity is the best possible sample complexity for (", 0)-di↵erentially private proper
learners [10], similarly to Theorem 7.2. In contrast to point functions, however, it is known that
relaxing to either (", �)-di↵erential privacy or to improper learning is not enough to achieve sam-
ple complexity O(1). For (", �)-di↵erentially private proper learners, the sample complexity is
somewhere between 2(1+o(1)) log⇤ d) · log(1/�) and ⌦(log⇤ d), similarly to Theorem 7.3. For (", 0)-
di↵erentially private learners, the sample complexity was recently shown to be ⌦(d) by Feldman
and Xiao [50]. We present the proof of this result, because it uses beautiful connections between
VC dimension, private learning, and communication complexity.

Every concept class C defines a one-way communication problem as follows: Alice has a function
c 2 C, Bob has a string w 2 {0, 1}d, and together they want to compute c(w). The one-way
communication complexity of this problem is the length of the shortest message m that Alice
needs to send to Bob that lets him compute c(w). We will consider randomized, distributional
communication complexity, where the inputs are chosen according to some distribution µ on C ⇥
{0, 1}d, and Bob should compute c(w) correctly with high probability over the choice of the inputs
and the (shared) randomness between Alice and Bob. We write CC!,pub

µ,↵ (C) to denote the minimum
message length over all protocols where Bob computes c(w) with probability at least 1� ↵.

It was known that maximizing this communication complexity over all product distributions
characterizes the sample complexity of nonprivate learning (i.e., VC dimension):

Theorem 8.8 (CC characterization of nonprivate learning [73]). For every constant ↵ 2 (0, 1/8),

VC(C) = ⇥

✓
max
µA,µB

CC!,pub
µA⌦µB ,↵(C)

◆
,

where µA and µB are distributions on C and {0, 1}d, respectively.

Building on Beimel et al. [8], Feldman and Xiao [50] showed that the sample complexity of learn-
ing C with pure di↵erential privacy is related to the one-way communication complexity maximized
over all joint distributions on C⇥ {0, 1}d.

Theorem 8.9 (CC characterization of learning with pure di↵erential privacy [50]). For all constants
" > 0, ↵ 2 (0, 1/2), the smallest sample complexity for learning C under (", 0)-di↵erential privacy
is ⇥(maxµCC

!,pub
µ,↵ (C)).
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We note that, by Yao’s minimax principle, maxµCC
!,pub
µ,↵ (C) is simply equal to the worst-

case randomized communication complexity of C, where we want a protocol such that, on every
input, Bob computes the correct answer with probability at least 1 � ↵ over the public coins
of the protocol. Returning to threshold functions, computing cy(w) is equivalent to computing
the “greater than” function. Miltersen et al. [80] showed that for this problem the randomized
communication complexity is ⌦(d), proving that learning thresholds with pure di↵erential privacy
requires sample complexity ⌦(d).

Proof sketch of Theorem 8.9. We begin by showing that the communication complexity is upper-
bounded by the sample complexity of private learning. Let L be an (", 0)-di↵erentially private
learner for C with a given sample complexity n; we will use L to construct a communication
protocol. Using their shared randomness, Alice and Bob both run L on the all-zeroes dataset x(0).
They do this M times for M to be determined in a moment, giving a list of shared functions
h1, . . . , hM 2 H.

Since L is (", 0)-di↵erentially private, by group privacy, the distribution of functions returned
by L “covers” the distribution on every other dataset x 2 X

n, in the sense that, for each h 2 H,

Pr[L(x(0)) = h] � e�"n Pr[L(x) = h] .

Thus with M = eO("n) samples, Alice and Bob can ensure that, with high probability, at least one
hi in their shared list is a good hypothesis for any particular dataset.

In particular, let µ be a distribution on pairs (c, w), and let c0 2 C be Alice’s function. Then
there is some 1  i M such that hi is a good hypothesis for the dataset x we would get by sampling
the rows of x from the conditional distribution µ(w | c = c0): that is, hi(w) = c0(w) with high
probability in w. Alice can send Bob this index i with communication complexity logM = O("n).

Conversely, suppose that we have a randomized, public-coin protocol for C with communication
complexity at most n. Every setting r of the public randomness and message m from Alice defines
a hypothesis hr,m which Bob uses to compute the output of the protocol (by applying it to his input
w). Given a dataset (x1, y1), . . . , (xn, yn), our di↵erentially private learner will choose r uniformly
at random, and then use the exponential mechanism to select an m approximately maximizing
|{i : hr,m(xi) = yi}|, similarly to the use of the exponential mechanism in the proof of Theorem 8.3.
The sample complexity n required by the exponential mechanism is logarithmic in the size of the
hypothesis class Hr = {hr,m}, so we have n = O(|m|).

While this provides a tight characterization of the sample complexity of learning with pure
di↵erential privacy, the case of approximate di↵erential privacy is still very much open.

Open Problem 8.10. Does every concept class C over {0, 1}d have an (", �)-di↵erentially private
learner with sample complexity n = O(VC(C) · polylog(1/�)) (for � negligible in n and d)? Or are
there concept classes where the sample complexity must be n = ⌦(d ·VC(C))?

These questions are open for both proper and improper learning. In the case of proper learning,
there are concept classes known where the sample complexity is at least ⌦(log⇤ d ·VC(C) · log(1/�)),
such as threshold functions [22], but this does not rule out an upper bound of n = O(VC(C) ·
polylog(1/�)) when � is negligible in n and d.
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9 Multiparty Di↵erential Privacy

9.1 The Definition

We now consider an extension of di↵erential privacy to a multiparty setting, where the data is
divided among some m parties P1, . . . , Pm. For simplicity, we will assume that m divides n and each
party Pk has exactly n/m rows of the dataset, which we will denote by xk = (xk,1, xk,2, . . . , xk,n/m).
(Note the change in notation; now xk is a subdataset, not an individual row.) We consider the case
that Pk wants to ensure the privacy of the rows in xk against an adversary who may control the
other parties.

As in the studies of secure multiparty computation (cf. [52]), there are many variants of the
adversary model that we can consider:

• Passive versus active: for simplicity, we will restrict to passive adversaries — ones that follow
the specified protocol — but try to extract information from the communication seen (also
known as “honest-but-curious” adversaries). Since our emphasis is on lower bounds, this only
strengthens the results. However, all of the upper bounds we mention are also known to hold
for active adversaries.

• Threshold adversaries: we can restrict the adversary to control at most t parties for some
t  m � 1. For simplicity, we will only consider the case t = m � 1. Consequently we may
assume without loss of generality that all communication occurs on a broadcast channel, as
the adversary would anyhow see all communication on point-to-point channels.

• Computationally bounded versus unbounded: as in the basic definition of di↵erential privacy,
we will (implicitly) consider computationally unbounded adversaries. In the next section, we
will discuss computationally bounded adversaries.

A protocol proceeds in a sequence of rounds until all honest parties terminate. Informally, in
each round, each party Pk selects a message to be broadcast based on its input x(k), internal coin
tosses, and all messages received in previous rounds. The output of the protocol is specified by a
deterministic function of the transcript of messages exchanged. (As in secure multiparty computa-
tion, one can also consider individual outputs computed by the parties Pk, which may depend on
their private input and coin tosses, but we do not do that for simplicity.) Given a particular ad-
versary strategy A, we write ViewA((A$ (P1, . . . , Pm))(x)) for the random variable that includes
everything that A sees when participating in the protocol (P1, . . . , Pm) on input x. In the case
we consider, where A is a passive adversary controlling P�k = (P1, P2, . . . , Pk�1, Pk+1, . . . , Pm),
ViewA(A$ (P1, . . . , Pm)(x)) is determined by the inputs and coin tosses of all parties other than
Pk as well as the messages sent by Pk.

Definition 9.1 (Multiparty di↵erential privacy [7]). For a protocol P = (P1, . . . , Pm) taking as
input datasets (x1, . . . , xm) 2 (Xn/m)m, we say that P is (", �)-di↵erentially private (for passive
adversaries) if, for every k 2 [m] and every two datasets x, x0 2 (Xn/m)m that di↵er on one row of
Pk’s input (and are equal otherwise), the following holds for every set T :

Pr[ViewP�k(P�k $ (P1, . . . , Pm)(x)) 2 T ]

 e" · Pr[ViewP�k(P�k $ (P1, . . . , Pm)(x0)) 2 T ] + �.
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9.2 The Local Model

Constructing useful di↵erentially private multiparty protocols for m � 2 parties is harder than
constructing them in the standard centralized model (corresponding to m = 1), as a trusted curator
could just simulate the entire protocol and provide only the output. An extreme case is whenm = n,
in which case the individual data subjects need not trust anyone else, because they can just play the
role of a party in the protocol. This is the local model that we’ve alluded to several times in earlier
sections. While this is the hardest model of distributed di↵erential privacy, there are nontrivial
protocols in it, namely randomized response (as in Section 1.5):

Theorem 9.2 (Randomized response). For every counting query q : X! {0, 1}, n 2 N, and " > 0,
there is an (", 0)-di↵erentially private n-party protocol in the local model for computing q to within
error ↵ = O(1/("

p
n)) with high probability.

This can be extended to estimating statistical queries q : X ! [0, 1] over the dataset—first
randomly round q(xk) to a bit bk 2 {0, 1} with expectation q(xk) (i.e., set bk = 1 with probability
q(xk)), and then apply randomized response to bk. This gives some intuition for why everything that
is PAC learnable in the statistical query model is PAC learnable in the local model, as mentioned
in Section 8.

Note that the error in Theorem 9.2 is significantly worse than the error O(1/"n) we get with
a centralized curator. Building on [7, 78], Chan et al. [25] proved that the 1/

p
n decay is in fact

optimal:

Theorem 9.3 (Randomized response is optimal in the local model [25]). For every nonconstant
counting query q : X ! {0, 1}, n 2 N, and (1, 0)-di↵erentially private n-party protocol P for
approximating q, there is an input dataset x 2 X

n on which P has error ↵ = ⌦(1/
p
n) with high

probability.

Proof sketch. We first prove it for X = {0, 1}, and q being the identity function (i.e., we are comput-
ing the average of the input bits). Consider a uniformly random input dataset X = (X1, . . . , Xn) 
{0, 1}n, let R = (R1, . . . , Rn) denote the randomness of the n parties, and let T = T (X,R) be the
random variable denoting the transcript of the protocol. Let t 2 Supp(T ) be any value of T . We
claim that, conditioned on T = t:

1. The n random variables (X1, R1), . . . , (Xn, Rn) are independent, and in particular X1, . . . , Xn

are independent.

2. Each Pr[Xi = 1] 2 (1/4, 3/4).

Item 1 is a general fact about interactive protocols—if the parties’ inputs start independent, they
remain independent conditioned on the transcript—and can be proven by induction on the number
of rounds of the protocol. Item 2 uses (" = 1, 0)-di↵erential privacy and Bayes’ rule:

Pr[Xi = 1|T = t]

Pr[Xi = 0|T = t]
=

Pr[T = t|Xi = 1] · Pr[Xi = 1]/Pr[T = t]

Pr[T = t|Xi = 0] · Pr[Xi = 0]/Pr[T = t]

=
Pr[T = t|Xi = 1]

Pr[T = t|Xi = 0]

2
⇥
e�", e"

⇤
.
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This implies that

Pr[Xi = 1|T = t] 2


1

e" + 1
,

e"

e" + 1

�
⇢ (1/4, 3/4)

for " = 1.
Consequently, conditioned on T = t, (1/n) · (

P
i
Xi) is the average of n independent {0, 1}

random variables with bounded bias. In particular, the standard deviation of
P

i
Xi is ⌦(1/

p
n),

and by anticoncentration bounds, with high probability we will have
�����(1/n)

X

i

Xi � output(t)

����� = ⌦(1/
p
n),

where output(·) is the output function of the protocol. Since the protocol has error ⌦(1/
p
n) on a

random dataset with high probability, there is some fixed dataset on which it has error ⌦(1/
p
n)

with high probability.
To obtain the result for general nonconstant counting queries q : X ! {0, 1}, fix two inputs

w0, w1 2 X such that q(wb) = b, and restrict to datasets of the form (wb1 , . . . , wbn) for b1, . . . , bn 2
{0, 1}. Estimating the counting query q on such datasets with di↵erential privacy is equivalent to
estimating the average function on datasets of the form (b1, . . . , bn) with di↵erential privacy.

E↵ectively, what the above proof is using is a “randomness extraction” property of the SUM
function. Specifically, for every source Y consisting of n independent bits Y = (Y1, . . . , Yn) that
are not too biased,

P
i
Yi has a lot of “randomness”—it is not concentrated in any interval of

width O(
p
n). (In the proof, Yi = Xi|T=t.) In fact, a stronger statement is true:

P
i
Yi mod k

can be shown to be almost uniformly distributed in Zk for some k = ⌦(
p
n). In the language

of randomness extractors (see [94, 105]), we would say that “the sum modulo k function is a
(deterministic) randomness extractor for the class of sources consisting of n independent bits with
bounded bias.”

9.3 Two-Party Di↵erential Privacy

Now let us look at the case of m = 2 parties each holding n/2 rows of the dataset, which seems
closer to the trusted curator case than to the local model. Indeed, in this model, any counting
query can be computed with error O(1/"n): each party just adds Lap(1/(" · (n/2))) noise to the
counting query on her own dataset and announces the result; we average the two results to estimate
the overall counting query. However, there are other simple queries where again there is a quadratic
gap between the single curator (m = 1) and two-party case, namely the (normalized) inner product
function IP : {0, 1}n/2⇥{0, 1}n/2 ! [0, 1] given by IP(x, y) = hx, yi/(n/2). IP has global sensitivity
2/n, and hence can be computed by a single trusted curator with error O(1/n)). But for two parties
(one given x and one given y), the best possible error is again ⇥̃(1/

p
n):

Theorem 9.4 (Two-party DP protocols for inner product [81, 78]). 1. There is a two-party dif-
ferentially private protocol that estimates IP to within error O(1/" ·

p
n) with high probability,

and

2. Every two party (1, 0)-di↵erentially private protocol for IP incurs error ⌦̃(1/
p
n) with high

probability on some dataset.
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Proof sketch. For the upper bound, we again use randomized response:

1. On input x 2 {0, 1}n/2, Alice uses randomized response to send a noisy version x̂ of x to Bob.

2. Upon receiving x̂ and his input y 2 {0, 1}n/2, Bob computes

z =
2

n

n/2X

i=1

yi
"
·
✓
x̂i �

(1� ")

2

◆
,

which will approximate IP(x, y) to within O(1/"
p
n).

3. Bob sends the output z + Lap(O(1/"2n)) to Alice, where this Laplace noise is to protect the
privacy of y, since z has global sensitivity O(1/"n) as a function of y.

For the lower bound, we follow the same outline as Theorem 9.3. Let X = (X1, . . . , Xn/2) and

Y = (Y1, . . . , Yn/2) each be uniformly distributed over {0, 1}n/2 and independent of each other.
Then, conditioned on a transcript t of an (", 0)-di↵erentially private protocol, we have:

1. X and Y are independent, and

2. For every i 2 [n/2], x1, . . . , xi�1, xi+1, . . . , xn,

Pr[Xi = 1|X1 = x1, . . . , Xi�1 = xi�1, Xi+1 = xi+1, . . . , Xn = xn] 2 (1/4, 3/4),

and similarly for Y .

Item 2 again follows from di↵erential privacy and Bayes’ rule. (Consider the two neighboring
datasets (x1, . . . , xi�1, 0, xi+1, . . . , xn) and (x1, . . . , xi�1, 1, xi+1, . . . , xn).) In the literature on ran-
domness extractors, sources satisfying item 2 are known as “Santha-Vazirani sources” or “unpredictable-
bit sources”, because no bit can be predicted with high probability given the others. (Actually, the
usual definition only requires that item 2 hold when conditioning on past bits X1 = x1, . . . , Xi�1 =
xi�1, so the sources we have are a special case.)

One of the early results in randomness extractors is that the (nonnormalized) inner product
modulo 2 function is an extractor for Santha–Vazirani sources [107]. This result can be generalized
to the inner product modulo k = ⌦̃(

p
n), so we know that hX,Y i mod k is almost uniformly

distributed in Zk (even conditioned on the transcript t). In particular, it cannot be concentrated
in an interval of width o(k) around output(t). Thus the protocol must have error ⌦(k) with high
probability.

The above theorems show there can be a ⇥̃(
p
n) factor gap between the worst-case error achiev-

able with a centralized curator (which is captured by global sensitivity) and multiparty (even two-
party) di↵erential privacy. Both lower bounds extend to (", �)-di↵erential privacy when � = o(1/n).
When � = 0, the largest possible gap, namely ⌦(n), can be proven using a connection to infor-
mation complexity. Before defining information-complexity, let us look at an information-theoretic
consequence of di↵erential privacy.

Theorem 9.5 (Di↵erential privacy implies low mutual information [78]). Let M : Xn ! Y be an
(", 0)-di↵erentially private mechanism. Then for every random variable X distributed on X

n, we
have

I(X;M(X))  1.5"n,

where I(·; ·) denotes mutual information.
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Note that, without the DP constraint, the largest the mutual information could be is when X
is the uniform distribution and M is the identity function, in which case I(X;M(X)) = n · log2 |X|,
so the above bound can be much smaller. We remark that, for approximate di↵erential privacy,
one can bound the mutual information I(X;M(X)) in case the rows of X are independent [78, 92],
but these bounds do not hold for general correlated distributions [29].

Proof. The mutual information between X and M(X) is the expectation over (x, y) (X,M(X))
of the following quantity:

log2

✓
Pr[M(X) = y|X = x]

Pr[M(X) = y]

◆
.

By group privacy (Lemma 2.2), the quantity inside the logarithm is always at most e"n, so the
mutual information is at most (log2 e) · "n < 1.5"n.

To apply this to two-party protocols, we can consider the mechanism M that takes both parties’
inputs and outputs the transcript of the protocol, in which case the mutual information is known
as external information cost. Or we can fix one party’s input x, and consider the mechanism Mx(y)
that takes the other party’s input y and outputs the former party’s view of the protocol, yielding
a bound on internal information cost. The information cost of two-party protocols has been very
widely studied in recent years (with initial motivations from communication complexity), and there
are a number of known, explicit Boolean functions f and input distributions (X,Y ) such that any
protocol computing f on (X,Y ) has information cost ⌦(n). These can be leveraged to construct a
low-sensitivity function g such that any two-party di↵erentially private protocol for g incurs error
⌦(n · GSg) [78]. This is within a constant factor of the largest possible gap, since the range of g
has size at most n ·GSg. It is open to obtain a similar gap for approximate di↵erential privacy:

Open Problem 9.6. Is there a function f : Xn ! R such that any multiparty (", �)-di↵erentially
private protocol (with constant " and � = neg(n)) for f incurs error !(

p
n · GSf ) with high

probability on some dataset? What about ⌦(n · GSf )? These are open in both the two-party
and local models.

More generally, it would be good to develop our understanding of multiparty di↵erential privacy
computation of specific functions such as IP and towards a more general classification.

Open Problem 9.7. Characterize the optimal privacy–accuracy tradeo↵s for estimating a wide
class of functions (more generally, solving a wide set of data analysis tasks) in two-party or multi-
party di↵erential privacy.

As the results of Section 9.2 suggest, we have a better understanding of the local model than
for a smaller number of parties, such as m = 2. (See also [4] and the references therein.) However,
it still lags quite far behind our understanding of the single-curator model, for example, when we
want to answer a set Q of queries (as opposed to a single query).

10 Computational Di↵erential Privacy

10.1 The Definition

The basic definition of di↵erential privacy provides protection even against adversaries with unlim-
ited computational power. It is natural to ask whether one can gain from restricting to computation-
ally bounded adversaries, given the amazing e↵ects of such a restriction in modern cryptography.
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To obtain a computational analogue of di↵erential privacy, we can simply take the inequalities
defining di↵erential privacy, namely

8T ✓ Y, Pr[M(x) 2 T ]  e" · Pr[M(x0) 2 T ] + �

and restrict our attention to tests T defined by feasible algorithms.

Definition 10.1 (Computational di↵erential privacy [7]). Let M = {Mn : Xn
n ! Yn}n2N be a

sequence of randomized algorithms, where elements in Xn and Yn can be represented by poly(n)-
bit strings. We say that M is computationally "-di↵erentially private if there is a superpolynomial
function s(n) = n!(1) and a negligible function �(n) = n�!(1) such that, for all n, all pairs of
datasets x, x0 2 X

n di↵ering on one row, and all Boolean circuits T : Xn ! {0, 1} of size at most
s(n), we have

Pr[T (M(x)) = 1]  e" · Pr[T (M(x0)) = 1] + �(n).

We make a few remarks on the definition:

• We always allow for a nonzero � = �(n) term in the definition of computational di↵eren-
tial privacy. If we did not do so, then the definition would collapse to that of ordinary
(information-theoretic) (", 0)-di↵erential privacy, because the latter is equivalent to requiring
(", 0)-di↵erential privacy for sets T of size 1, which are computable by Boolean circuits of size
poly(n).

• We generally are only interested in computationally di↵erentially private mechanisms M that
are themselves computable by randomized polynomial-time algorithms, as we should allow
the adversary T to invest more computation time than the privacy mechanism.

• For simplicity, we have used the number n of rows as a security parameter, but it is often
preferable to decouple these two parameters. We will often drop the index of n from the
notation, and make the asymptotics implicit, for sake of readability.

10.2 Constructions via Secure Multiparty Computation

The most significant gains we know how to get from computational di↵erential privacy are in the
multiparty case. Indeed, by using powerful results on secure multiparty computation, everything
that is achievable by a di↵erentially private centralized curator can also be emulated by a multiparty
protocol with computational di↵erential privacy.

Theorem 10.2 (Computational di↵erential privacy via cryptography [38, 7]). Assume that oblivi-
ous transfer protocols exist. Let M : Xn ! Y be computationally "-di↵erentially private for "  1 and
computable in time poly(n). Then for every m|n, there is an m-party protocol P = (P1, . . . , Pm) :
(Xn/m)m ! Y such that:

1. P is computationally "-di↵erentially private,

2. For every input x 2 X
n, the output distribution of P (x) is the same as that of M : (Xn/m)m !

Y,

3. P is computable in time poly(n).
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Proof sketch. By classic results on secure multiparty computation [109, 53], there exists an m-party
protocol P for evaluating M that is secure against passive adversaries, assuming the existence of
oblivious transfer protocols. (See [74, 52] for full definitions and constructions of secure multiparty
computation.) Items 2 and 3 are immediately guaranteed by the properties of secure multiparty
computation protocols. For item 1, we recall that each party learns nothing from a secure multiparty
computation protocol other than what is implied by their own input and the output of the function
being evaluated (in this case M). More precisely, for every poly(n)-size adversary A, controlling all
parties other than Pk, there is a poly(n)-size simulator S such that ViewA(A$ (P1, . . . , Pm(x)) is
computationally indistinguishable from S(M(x), x1, . . . , xk�1, xk+1, . . . , xm). Thus, for every x and
x0 that di↵er only by changing one row of the input to party j, and every poly(n)-size T , we have

Pr[T (ViewA(A$ (P1, . . . , Pm)(x))) = 1]

 Pr[T (S(M(x), x1, . . . , xk�1, xk+1, . . . , xm)) = 1] + neg(n)

=
�
e" · Pr[T (S(M(x0), x01, . . . , x

0
k�1, x

0
k+1, . . . , x

0
m)) = 1] + neg(n)

�
+ neg(n)

 e" ·
�
Pr[T (ViewA(A$ (P1, . . . , Pm)(x0))) = 1] + neg(n)

�
+ neg(n) + neg(n)

= e" · Pr[T (ViewA(A$ (P1, . . . , Pm)(x0))) = 1] + neg(n).

In particular, with computational di↵erential privacy, we have n-party protocols for computing
any counting query or the normalized inner product function with error O(1/"n), significantly
better than the ⇥̃(1/

p
n) error achievable with information-theoretic di↵erential privacy. It is

interesting to understand to what extent general secure multiparty computation (whose existence
is equivalent to oblivious transfer) is necessary for such separations between information-theoretic
and computational di↵erential privacy. Haitner et al. [57] showed that black-box use of one-way
functions does not su�ce to construct two-party protocols for the inner product function with error
smaller than ⇥̃(1/

p
n), but a tight characterization remains open.

Open Problem 10.3. What is the minimal complexity assumption needed to construct a compu-
tational task that can be solved by a computationally di↵erentially private protocol but is impossible
to solve by an information-theoretically di↵erentially private protocol?

Recent works have made progress on understanding this question for computing Boolean func-
tions with di↵erential privacy, for example showing that achieving near-optimal accuracy requires
oblivious transfer in some cases [54], but it remains open whether there can be a separation based
on a weaker assumption, and whether oblivious transfer is needed to have an asymptotic separa-
tion in accuracy for a more natural statistical task (e.g., estimating a function with bounded global
sensitivity, such as normalized inner product).

10.3 Usefulness with a Trusted Curator?

For the single-curator case (m = 1), computational and information-theoretic di↵erential privacy
seem closer in power. Indeed, Groce et al. [56] showed that, in the case of real-valued outputs, we
can often convert computational di↵erentially private mechanisms into information-theoretically
di↵erentially private mechanisms.
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Theorem 10.4 (From computational to information-theoretic di↵erential privacy [56]). Let M :
X
n ! R be an "-computationally di↵erentially private mechanism with the property that, for every

dataset x 2 X
n, there is an interval Ix of width at most w(n) such that Pr[M(x) /2 Ix]  neg(n),

and the endpoints of Ix are rational numbers with poly(n) bits of precision. Define M
0(x) to be the

mechanism that runs M(x) and rounds the result to the nearest multiple of ↵(n) = w(n)/nc, for
any desired constant c. Then M

0 is (", neg(n))-di↵erentially private.

Thus, the error incurred is an arbitrary polynomial small fraction of the “spread” ofM’s outputs.

Proof. Let I 0x denote the rounding of all points in Ix to the nearest multiple of ↵(n); notice that
|I 0x|  w(n)/↵(n) + 1  nc + 1. M

0 is computationally di↵erentially private because M is, and
we will use this to show that it is actually information-theoretically di↵erential private: For every
x, x0 2 X

n that di↵er on one row and every T ✓ R, we have

Pr[M0(x) 2 T ] 

0

@
X

y2I0x\T
Pr[M0(x) = y]

1

A+ Pr[M0(x) /2 I 0x]



0

@
X

y2I0x\T

�
e" · Pr[M0(x0) = y] + neg(n)

�
1

A+ neg(n)

 e" · Pr[M0(x0) 2 T ] + (nc + 1) · neg(n) + neg(n)

= e" · Pr[M0(x0) 2 T ] + neg(n),

where the second inequality uses the fact that testing equality with a fixed value y or testing
membership in an interval can be done by polynomial-sized circuits, provided the numbers have
only poly(n) bits of precision.

This proof technique extends to low-dimensional outputs (e.g., answering a logarithmic number
of real-valued queries) as well as outputs in polynomial-sized discrete sets [56, 23]. So to get
a separation between computational and information-theoretic di↵erential privacy with a single
curator, we need to use large or high-dimensional output spaces, or measure utility in a di↵erent
way (not by a low-dimensional metric). Such a separation was recently obtained by Bun et al. [23]:

Theorem 10.5 (Separating computational and information-theoretic di↵erentially private cura-
tors [23]). Assuming the existence of subexponentially secure one-way functions and “exponentially
extractable noninteractive witness indistinguishable (NIWI) proofs for NP”, there exists an e�-
ciently computable utility function u : Xn ⇥ Y! {0, 1} such that

1. There exists a polynomial-time CDP mechanism M
CDP such that, for every dataset x 2 X

n,
we have Pr[u(x,MCDP(x)) = 1] � 2/3.

2. There exists a computationally unbounded di↵erentially private mechanism M
unb such that,

for every dataset x 2 X
n, we have Pr[u(x,Munb(x)) = 1] � 2/3.

3. For every polynomial-time di↵erentially private M, there exists a dataset x 2 X
n such that

Pr[u(x,M(x)) = 1]  1/3.

Note that this theorem provides a task where achieving information-theoretic di↵erential privacy
is infeasible—not impossible. Moreover, it is for a rather unnatural, cryptographic utility function
u. It would be interesting to overcome either of these limitations:
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Open Problem 10.6. Is there a computational task that is solvable by a single curator with
computational di↵erential privacy but is impossible to solve with information-theoretic di↵erential
privacy?

Open Problem 10.7. Can an analogue of Theorem 10.5 be proven for a more “natural” utility
function u, such as one that measures the error in answering or summarizing the answers to a set
of counting queries?

10.4 Relation to Pseudodensity

The definition of computational di↵erential privacy is related to concepts studied in the literature
on pseudorandomness. For random variables Y, Z taking values in Y and ⇢ 2 [0, 1], we say that Y
has density at least ⇢ in Z if, for every event T ✓ Y, we have

⇢ · Pr[Y 2 T ]  Pr[Z 2 T ].

For intuition, suppose that Y and Z are uniform on their supports. Then this definition says that
Supp(Y ) ✓ Supp(Z) and | Supp(Y )| � ⇢ · | Supp(Z)|. Additionally, if Z is the uniform distribution
on Y, then Y having density at least ⇢ in Z is equivalent to Y having “min-entropy” at least
log(⇢|Y|). Notice that a mechanism M is (", 0)-di↵erentially private i↵, for every two neighboring
datasets x ⇠ x0, M(x) has density at least e�" in M(x0).

Just like computational analogues of statistical distance (namely, computational indistinguisha-
bility and pseudorandomness) have proven to be powerful concepts in computational complexity
and cryptography, computational analogues of density and min-entropy have also turned out to be
quite useful, with applications including additive number theory [55], leakage-resilient cryptogra-
phy [49], and constructions of cryptographic primitives from one-way functions [62].

One of the computational analogues of density that has been studied, called pseudodensity (or
sometimes metric entropy when Z is uniform on Y) [3, 90], is precisely the one used in the definition
of computational di↵erential privacy, namely that, for every polynomial-sized Boolean circuit T ,
we have

⇢ · Pr[T (Y ) = 1]  Pr[T (Z) = 1] + neg(n).

When considering a single pair of random variables (Y, Z), the dense model theorem of [55, 100,
90] says that pseudodensity is equivalent to Y being computationally indistinguishable from a
random variable Ỹ that truly has density at least ⇢ in Z. Mironov et al. [81] asked whether
something similar can be said about (computationally) di↵erentially private mechanisms, which
require (pseudo)density simultaneously for all pairs M(x), M(x0) where x ⇠ x0:

Open Problem 10.8. For every "-computationally di↵erentially private and polynomial-time
computable mechanism M : Xn ! Y, is there an (O("), neg(n))-di↵erentially private mechanism
M̃ : Xn ! Y such that, for all datasets x 2 X

n, M(x) is computationally indistinguishable from
M̃(x)?

A positive answer to this question would imply a negative answer to Open Problem 10.6.

11 Conclusions

We have illustrated rich connections between the theory of di↵erential privacy and numerous top-
ics in theoretical computer science and mathematics, such as learning theory, convex geometry
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and optimization, cryptographic tools for preventing piracy, probabilistically checkable proofs and
approximability, randomness extractors, information complexity, secure multiparty computation,
and notions of pseudoentropy. There have also been very fruitful interactions with other areas. In
particular, in both game theory and in statistics, di↵erential privacy has proved to be a powerful
tool for some applications where privacy is not the goal—such as designing approximately truthful
mechanisms [79, 87] and preventing false discovery in adaptive data analysis [44]. Remarkably,
both positive and negative results for di↵erential privacy (including both information-theoretic and
computational lower bounds as we have seen in this tutorial) have found analogues for the false
discovery problem [44, 60, 98, 6], suggesting that it will also be a very fertile area for complexity-
theoretic investigation.

We now mention some more directions for future work in di↵erential privacy, beyond the many
open problems stated in earlier sections. As illustrated in previous sections, there has been a thor-
ough investigation of the complexity of answering counting queries under di↵erential privacy, with
many algorithms and lower bounds that provide nearly matching results. While there remain nu-
merous important open questions, it would also be good to develop a similar kind of understanding
for other types of computations. There is now a wide literature on di↵erentially private algorithms
for many types of data analysis tasks, but what is missing are negative results to delineate the
border between possible and impossible.

Open Problem 11.1. Classify large classes of problems (other than counting queries) in di↵eren-
tial privacy according to their privacy–utility tradeo↵s and their computational tractability.

Two areas of particular interest, both in theory and in practice, are:

Statistical inference and machine learning. In this tutorial, we have mostly been measuring
accuracy relative to the particular (worst-case) dataset that is given as input to our di↵er-
entially private algorithm. However, in statistical inference and machine learning, the goal
is usually to infer properties of the population from which the dataset is (randomly) drawn.
The PAC model studied in Section 8 is a theoretically appealing framework in which to study
how such tasks can be done with di↵erential privacy, but there are many inference and learn-
ing problems outside the PAC model that are also of great interest. These problems include
tasks like hypothesis testing, parameter estimation, regression, and distribution learning, and
a variety of utility measures such as convergence rates, p values, risk minimization, and sizes
of confidence intervals. Moreover, the data distributions are often assumed to have a signifi-
cant amount of structure (or enough samples are taken for central limit theorems to provide
such structure), in contrast to the worst-case distributions considered in the PAC model.
Some broad positive results are provided in Smith [95] and Bassily et al. [5] and some neg-
ative results in [32, 21, 5], but our understanding of these types of problems is still quite
incomplete.

Graph privacy. As mentioned in Section 3, there has been some very interesting work on di↵eren-
tially private graph analysis, where our dataset is a graph and we are interested in protecting
either relationships (edge-level privacy) or everything about an individual/vertex (node-level
privacy). We refer to Raskhodnikova and Smith [88] for a broader survey of the area. Again,
most of the work to date has been algorithmic, and we still lack a systematic understanding
of impossibility and intractability.

If the existing study of di↵erential privacy is any indication, these studies are likely to uncover a
rich theoretical landscape, with even more connections to the rest of theoretical computer science.
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