Tianging Zhu
Gang Li
Wanlei Zhou
Philip S. Yu

Differential
Privacy and
Applications

N Springer

Advances in Information Security

Volume 69

Series editor
Sushil Jajodia, George Mason University, Fairfax, VA, USA

More information about this series at http://www.springer.com/series/5576

http://www.springer.com/series/5576

Tianqing Zhu ¢ Gang Li * Wanlei Zhou
Philip S. Yu

Differential Privacy
and Applications

@ Springer

Tianqing Zhu Gang Li

Deakin University Deakin University

Melbourne, Australia Melbourne, Australia

Wanlei Zhou Philip S. Yu

Deakin University University of Illinois at Chicago
Melbourne, Australia Chicago, IL, USA

ISSN 1568-2633

Advances in Information Security

ISBN 978-3-319-62002-2 ISBN 978-3-319-62004-6 (eBook)
DOI 10.1007/978-3-319-62004-6

Library of Congress Control Number: 2017946488

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1583-641X

Preface

Corporations, organizations, and governments have collected, digitized, and stored
information in digital forms since the invention of computers, and the speed of such
data collection and volumes of stored data have increased dramatically over the
past few years, thanks to the pervasiveness of computing devices and the associated
applications that are closely linked to our daily lives. For example, hospitals collect
records of patients, search engines collect online behaviors of users, social network
sites collect connected friends of people, e-commerce sites collect shopping habits
of customers, and toll road authorities collect travel details of vehicles. Such huge
amounts of datasets provide excellent opportunities for businesses and governments
to improve their services and to bring economic and social benefits, especially
through the use of technologies dealing with big data, including data mining,
machine learning, artificial intelligence, data visualization, and data analytics. For
example, by releasing some statistics of hospital records may help medical research
to combat diseases. However, as most of the collected datasets are personally related
and contain private or sensitive information, data releasing may also provide a fertile
ground for adversaries to obtain certain private and sensitive information, even
though simple anonymization techniques are used to hide such information. Privacy
preserving has, therefore, become an urgent issue that needs to be addressed in the
digital age.

Differential privacy is a new and promising privacy framework and has become
a popular research topic in both academia and industry. It is one of the most
prevalent privacy models as it provides a rigorous and provable privacy notion that
can be applied in various research areas, and can be potentially implemented in
various application scenarios. The goal of this book is to summarize and analyze
the state-of-the-art research and investigations in the field of differential privacy
and its applications in privacy-preserving data publishing and releasing, so as to
provide an approachable strategy for researchers and engineers to implement this
new framework in real world applications.

This is the first book with a balanced view on differential privacy theory and
its applications, as most existing books related to privacy preserving either do not

vi Preface

touch the topic of differential privacy or only focus on the theoretical analysis
of differential privacy. Instead of using abstract and complex notions to describe
the concepts, methods, algorithms, and analysis on differential privacy, this book
presents these difficult topics in a combination of applications, in order to help
students, researchers, and engineers with less mathematical background understand
the new concepts and framework, enabling a wider adoption and implementation of
differential privacy in the real world. The striking features of the book, differs from
others, can be illustrated from three basic aspects:

* A detailed coverage on differential privacy in the perspective of engineering,
rather than computing theory. The most difficult part in comprehending differ-
ential privacy is the complexity and the level of abstract of the theory. This
book presents the theory of differential privacy in a more natural and easy to
understand way.

* Arrich set of state-of-the-art examples on various application areas helps readers
to understand how to implement differential privacy in real world scenarios.
Each application example includes a brief introduction to the problem and
its challenges, a detailed implementation of differential privacy to solve the
problem, and an analysis on the privacy and utility.

e A comprehensive collection of contemporary research results and issues in
differential privacy. Apart from the basic theory, most of the contents of the book
are from the recent publications in the last 5 years, reflecting the state-of-the-art
of research and development in the area of differential privacy.

This book intends to enable readers, especially postgraduate and senior under-
graduate students, to study up-to-date concepts, methods, algorithms, and analytic
skills for building modern privacy-preserving applications through differential
privacy. It enables students not only to master the concepts and theories in relation to
differential privacy but also to readily use the material introduced into implementa-
tion practices. Therefore, the book is divided into two parts: theory and applications.
In the theory part, after an introduction of the differential privacy preliminaries,
the book presents detailed descriptions from an engineering viewpoint on areas
of differentially private data publishing and differentially private data analysis
where research on differential privacy has been conducted. In the applications
part, after a summary on the steps to follow when solving the privacy-preserving
problem in a particular application, the book then presents a number of state-of-the-
art application areas of differential privacy, including differentially private social
network data publishing, differentially private recommender system, differential
location privacy, spatial crowdsourcing with differential privacy preservation, and
correlated differential privacy for non-IID datasets. The book also includes a final
chapter on the future direction of differential privacy and its applications.

Preface vii
Acknowledgments

We are grateful to many research students and colleagues at Deakin University
in Melbourne and University of Illinois at Chicago, who have made a lot of
comments to our presentations as their comments inspire us to write this book. We
would like to acknowledge some support from research grants we have received, in
particular, the Australian Research Council Grant no. DP1095498, LP120200266,
and DP140103649, NSF through grants IIS-1526499, and CNS-1626432, and
NSFC (Nos. 61672313, 61502362). Some interesting research results presented
in the book are taken from our research papers that indeed (partially) supported
through these grants. We also would like to express our appreciations to the
editors in Springer, especially Susan Lagerstrom-Fife, for the excellent professional
support. Finally we are grateful to the family of each of us for their consistent
and persistent supports. Without their support, the book may just become some
unpublished discussions.

Melbourne, Australia Tianging Zhu
Melbourne, Australia Wanlei Zhou
Melbourne, Australia Gang Li
Chicago, IL, USA Philip S. Yu

May 2017

Contents

1 Introduction

1.1 Privacy Preserving Data Publishing and Analysis

1.2 Privacy VIOIationsuveeeieiiie i

1.3 Privacy Modelsooonniiiiiiiii

1.4 Differential Privacy.........cccooviiiiiiiiii e

1.5 Outline and Book OVerviewcccoviiiiiiiiiiiiiiieeennn.

2 Preliminary of Differential Privacy.......................................
220 B [0 15 (o) 11

2.2 Differential Privacy Definition...............oooooiiiiiiiiiiiiian
2.2.1 The Privacy Budget...........cccooiiiiiiiiiiiiiiiiia

2.3 The Sensitivity.....ooouuuuieeteii e
2.3.1 The Global Sensitivity........ccoevviiiiiieiiiiiiieeennnn.

2.3.2 The Local Sensitivityceeeeviiiiieeiiniiiieeeannn.

2.4 The Principle Differential Privacy Mechanisms
2.4.1 The Laplace Mechanismoooeeeiiiiiiiiieannn.

2.4.2 The Exponential Mechanism.................oooeeeieann.

2.5 Utility Measurement of Differential Privacy

3 Differentially Private Data Publishing: Settings and Mechanisms....
3.1 Interactive and Non-interactive Settingsc.ooeuuen

3.2 Publishing Mechanism.................ccoiiiiiiiiiii,

4 Differentially Private Data Publishing: Interactive Setting............
4.1 Transaction Data Publishingoooiiiiiiiiiiiiiiiin,
411 Laplace .ovveeeiiiiiiiii e

4.1.2 Transformation...........ccceiiiiiiiiiiiiiiiiiiiiiinenn...

4.13 Query Separationoooeeeeiiiiiiiiiiiieiiiiiae...

414 TErationeeeeiiieiiiiii e

4.1.5 DISCUSSION tttiittiitiiiiiitteteeeeeeeees

O N3 N W ==

ix

Contents

4.2 Histogram Publishingoooooiiiiii i 26
421 Laplaceooviiiiii e 27
4.2.2 Partition of Datasetc.coceiiiiiiiiiiiiiiiin... 27
4.2.3 Consistency of Histogram.............oooeeeeiviiiiee.... 28
4.3 Stream Data Publishingcoooiiiiiii i, 29
431 Laplaceooviiii e 30
4.3.2 Partition of Datasetc.cooeiiiiiiiiiiiiiii . 30
433 TEerationoooieeiiiiiiiiiiiiiiii i 30
4.3.4 DISCUSSION ..uuuuiiiiiiiiiiiit it 31
4.4 GraphData Publishingooooiiiiiiiiiiiiiii, 31
4.4.1 Edge Differential Privacyoooooiiiiiit. 32
442 Node Differential Privacyoooooeiiiiiiii... 33
4.4.3 DISCUSSION ..uuutiiiniiiiiitit it 34
4.5 Summary on Interactive Settingcc.oovvieiiiiiiiiiiiieennn. 34
Differentially Private Data Publishing: Non-interactive Setting 35
5.1 Batch Queries Publishingccoooiiiiiiiiiiiiiiiii 35
5010 Laplace ..oooenniiiiii i 36
5.1.2 Transformation..............ccooeiiiiiiiiiiiiiiieiineenn, 36
5.1.3 Partition of Datasetcooviiiiiiiiiiiiiiii.. 38
S04 THerationooviiiiiiiiiiii i 38
S5.1.5 DISCUSSION .uuviiiniiiiiii i 38
5.2 Contingency Table Publishingoooooiiiiiiiiiiin 39
521 Laplace ..coovinniiiiiiiiii 39
522 Terationcoooeeiiiiiiiiiiiiiiiii i 40
5.2.3 Transformation..............ccoooeiiiiiiiiiiiiiiiiiii e, 40
5.3 Anonymized Dataset Publishing......................oiiii 41
5.4 Synthetic Dataset Publishingcoooiiiiiiii, 43
5.4.1 Synthetic Dataset Publishing Based
on Learning Theory............oooiiiiiiiiiiiiiiiiiee.., 43
5.4.2 High Dimensional Synthetic Dataset Publishing.......... 47
5.5 Summary on Non-interactive Setting...........ccoovveieeeeninnnn.. 48
Differentially Private Data Analysis.....................ccooiiiiiiiine. 49
6.1 Laplace/Exponential Frameworkoooooii. 49
6.1.1 SuLQand PINQ Interface.............ccoooviiiiiiiiaaa... 50
6.1.2 Specific Algorithms in the Laplace/Exponential
Framework ... 51
6.1.3 Summary on Laplace/Exponential Framework 57
6.2 Private Learning Framework...................oooooiiii 57
6.2.1 Foundationof ERMcciiiiiiiiiiin 58
6.2.2 Private Learningin ERM................oooo 59
6.2.3 Sample Complexity Analysiscceviiiiiieeeennnn. 62
6.2.4 Summary on Private Learning Framework 64
6.3 Summary of Differentially Private Data Analysis 65

Contents xi

7 Differentially Private Deep Learning 67
7.1 IntrodUCtiONo.uuiiit it 67
7.2 PreliMinaryoooooneineeeiiii e 69

7.2.1 Deep Learning Structureccoevviiiiiieeennnn. 69
7.2.2 Stochastic Gradient Descentcooovviie.. 71
7.3 Differentially Private Deep Learning..................ooooeeeeenn. 73
7.3.1 Basic Laplace Methodc.oooiiiiiiiiiiiiiininan 74
7.3.2 Private SGDMethodcoiiiiiiiii 75
7.3.3 Deep Private Auto-Encoder Method....................... 77
7.3.4 Distributed Private SGD..........c..oooiiiiiiiiin. 79
7.4 Experimental Methodscoooiiiiiiiiiiiiiiii 81
7.4.1 Benchmark Datasets.............ccoooviiiiiiiiiiiin.n. 81
7.4.2 Learning ObjJectiVeso.uvviiiieiiiiieiiiiieeen 81
7.4.3 Computing Frameworks................coooiiiiiii 82
7.5 SUMMATY oottt et e e e e 82

8 Differentially Private Applications: Where to Start?................... 83
8.1 Solving a Privacy Problem in an Application....................... 83
8.2 Challenges in Differentially Private Applications 85

8.2.1 High Sensitivity Challenge.............cccooviiiiieinnn. 85
8.2.2 Dataset Sparsity Challenge.................ooooiieiiinn. 85
8.2.3 Large Query Set Challengeccoooeieeieiiiinnnn. 86
8.2.4 Correlated Data Challengeccoooeieeiiiiiinnn. 86
8.2.5 Computational Complexity Challenge..................... 87
8.2.6 SUMMALY ...uutttiit it e 87
8.3 Useful Public Datasets in Applicationsccceeevvinnnns 88
8.3.1 Recommender System Datasets..............oeeeeeiinnnn. 88
8.3.2 Online Social Network Datasets 89
8.3.3 Location Based Datasetsc.ccevviiiiiiiiiian. 89
8.3.4 Other Datasetsccoviiiiiiiiiiiiiiiiiiiiiiieenas 89
8.4 Applications Settings.oovuuuiieeeiiii i 90

9 Differentially Private Social Network Data Publishing 91
9.1 INtroduCtion.........oiiuiiiiiii i 91
9.2 Preliminaries.........ooouiiiiiiiiii i 92
9.3 Basic Differentially Private Social Network Data Publishing

MeEthodS .. .oueeii e 93
9.3.1 Node Differential Privacyccooiiiiiiiian. 93
9.3.2 Edge Differential Privacyccocoeiiiiiiiiiiann. 97
9.4 Graph Update Methodcciiiiiiiiiiiiiiiiiiii s 98
9.4.1 Overview of Graph Update..............ccoooiiieinn. 98
9.4.2 Graph Update Method..........ccoooiiiiiiiiiiiiinnan. 100
9.43 Update FUNCtioncceiiiiiiiiiiiiiiiiiiiiiieean. 101
9.4.4 Privacy and Utility Analysiscccoevviiiiieeannn. 101
9.4.5 Experimental Evaluationoooiiiea. 103

0.5 SUMMAIY . ..ottt 105

xii Contents
10 Differentially Private Recommender System 107
10.1 Introduction......co.ueiinit it 107
10.2 Preliminaries.........oovvuuiiiiiiiiiiii i 109
10.2.1 Collaborative Filteringcccovviiiiiiiiiiiiee... 109
10.2.2 Neighborhood-Based Methods: k Nearest Neighbors 109
10.2.3 Model-Based Methods: Matrix Factorization 111
10.3 Basic Differentially Private Recommender Systems 112
10.3.1 Differentially Private Untrustworthy Recommender
] 1S5 11 113
10.3.2 Differentially Private Trustworthy
Recommender System...........ccooviiiiiiiiiiiiiien... 114
10.4 Private Neighborhood-Based Collaborative Filtering Method 117
10.4.1 KNN Attack to Collaborative Filtering 117
10.4.2 The Private Neighbor Collaborative Filtering
Algorithm ... 118
10.4.3 Privacy and Utility Analysisoooeeiiiiiiiine... 123
10.4.4 Experiment Analysiscuveeieiiiiiiiiiieniiiinen... 126
105 SUMMATY . nnee et e 129
11 Privacy Preserving for Tagging Recommender Systems 131
111 Introduction......oo.ueiinii it 131
11.2 Preliminaries.........ooviuuiiiiniiiiiiii i 133
T1.2.1 0 NOtAtIONS c.eeetee et 133
11.2.2 Tagging Recommender Systemsoouveee... 133
11.2.3 Related Work ... 134
11.3 Private Tagging Publishing Methodooooii. 134
11.3.1 UserProfiles ... 134
11.3.2 Private Tagging Release Algorithm Overview 136
11.3.3 Private Topic Model Generationooueee... 137
11.3.4 Topic Weight Perturbationoiiiiiet. 139
11.3.5 Private Tag Selectionccoeviiiiiiiiiiiiiiiien... 141
11.3.6 Privacy and Utility Analysisocoeeeiiiiiiie... 143
11.3.7 Experimental Evaluationcoooiiiiii... 146
114 SUMMATY ..ottt e 149
12 Differentially Location Privacyo 151
12,1 Introduction.....oooueeiinit it 151
122 Preliminaryooeeenninii et 152
12.3 Basic Location Privacy Methodsooocoiiiiiiiiiian. 153
12.3.1 Snapshot Location Privacy: Geo-Indistinguishability 154
12.3.2 Trajectory Privacyooovieiiiiiiiiiiiiniiiiien... 157
12.4 Hierarchical Snapshot Location Publishing......................... 160
12.4.1 Hierarchical Sensitivitycccoviiiiiiiiiiiinee... 160
12.4.2 Overview of Private Location Release..................... 162
12.4.3 Private Location Release Algorithm 163
12.4.4 Utility and Privacyooooiiiiiiiiiiiiiiiiiee . 167
12.4.5 Experimental Evaluationooooiiiii... 170

12,5 SUMMATY . nne et 172

Contents xiii

13 Differentially Private Spatial Crowdsourcing 173
131 INtroduction.......o.ueeiniiii e 173

13.2 BasicMethodccooiiiiiiiiii 174
13.2.1 Background of Crowdsourcingcccoovuvveee... 174

13.2.2 Differentially Private Crowdsourcing Methods 175

13.3 Differential Privacy in Reward-Based Crowdsourcing 177
13.3.1 Problem Statementcceviiiiiiiiiiiiiiiiin... 178

13.3.2 Building a Contour Plot with DP Guarantee 178

13.3.3 Task ASSINMENt......coviiiuiiiiiiiiiiieeeiiiieeenn. 181

13.3.4 Experimental Evaluationcooiiiiiie... 186

134 SUMMATY . one et e 189

14 Correlated Differential Privacy for Non-IID Datasets.................. 191
14.1 IntroduCtion.........eeeiniiiiiie i 191

14.2 An Example: Correlated Records in a Dataset...................... 192

143 Basic Methodsooouiiiiiiiiiii i 194
14.3.1 Pufferfish.......ccooiiiiiiiiiiii 194

14.3.2 Blowfish....ooiuiiiiii i 195

14.4 Correlated Differential Privacy ..o, 196
14.4.1 Correlated Differential Privacy Problem 196

14.4.2 Research Issues and Challengesoeee. 197

14.4.3 Correlated Dataset Analysis........c..ovvveeeiiiiiinnee... 198

14.4.4 Correlated Sensitivityeeeveiiiiiiiiiieniiiniaee... 199

14.4.5 Correlated Iteration Mechanism 201

14.4.6 Mechanism Analysiscvveeieiiiiiiiiiiiniiiinen... 206

14.4.7 Experiment and Analysis.........ccccovvviiiiiiiiiiiiee... 208

145 SUMMATY . oneet ettt e 214

15 Future Directions and Conclusiono 215
15.1 Adaptive Data Analysis: Generalization in Machine Learning 215

15.2 Personalized Privacyc.ccooiiiiiiiiiiiiiiiiiiiiiiiiiiee e, 216

15.3 Secure Multiparty Computations with Differential Privacy 216

15.4 Differential Privacy and Mechanism Design........................ 217

15.5 Differential Privacy in Genetic Dataooooeiia. 217

15.6 Local Differential Privacy............cccoviiiiiiiiiiiiiiiiinnnn, 218

15.7 Learning Model Publishingoooiiiiiiiiiiiiiiin, 220

15.8 COnCIUSIONttt 222
References.ooiuiiiii i 223

Chapter 1
Introduction

1.1 Privacy Preserving Data Publishing and Analysis

Over the past two decades, digital information collected by corporations, organi-
zations and governments has resulted in huge number of datasets, and the speed
of such data collection has increased dramatically over the last a few years. A
data collector, also known as a curator, is in charge of publishing data for further
analysis [8].

Figure 1.1 illustrates the data publishing and analysis process, in which there
are roughly two stages. In the first stage, data collection stage, individuals submit
their personal information to a dataset. Amount of data are collected in their relative
area, such as medical data, data from banks, social network data, etc. The curator
has the full management of this dataset. The second stage is the data publishing or
analysis stage. Data publishing aims to share datasets or some query results to public
users. In some literature, this scenario is known as data sharing or data release. Data
analysis provides data models to the public users. It may be associated with some
particular machine learning or data mining algorithms. Both data publishing and
analysis bring social benefits, such as providing better services, publishing official
statistics, providing data mining or machine learning tasks, etc.

As shown in Fig. 1.1, most of the collected datasets are personally related
and contain private or sensitive information. The privacy violation may occur in
both stages. If curators are not trustworthy, personal information will be disclosed
directly in data collection stage. Even though curators can be trusted and apply sev-
eral simple anonymization techniques, when he/she publishes aggregate information
to the public, personal information may be disclosed as the public is normally not
trustworthy [50, 109, 236]. Privacy-preserving has therefore become an urgent issue
that needs to be addressed [84].

© Springer International Publishing AG 2017 1
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_1

2 1 Introduction

(J
S -
- Personal Original | Aggregate Hser
Bob Information | PDataset | Information
»
Curator \%,
User
[[
Data Collection Data Publishing/Analysis

Fig. 1.1 Privacy preserving data publishing and analysis

1.2 Privacy Violations

In 1998, Latanya Sweeney provided a famous example about de anonymization
on a published medical dataset [197, 211]. She shows that even with removing
all explicit identifiers, individuals in the medical dataset still can be re-identified
by linking with a public voter list through the combination of zip code, date of
birth and gender. The information that the adversary can link with is defined as
background information [211]. According to Sweeny, 87% of the U.S. population
in the censorship dataset are likely to be figured out by the combination of some
attributes, which is defined as Quasi-Identifers [211]. Narayanan [167] provides
another example on partly de-anoymization of Netfix dataset.

In 2007, Netfix offered a 1,000,000 prize for a 10% improvement in its
recommendation system and released a training dataset with 500,000 anonymous
movie ratings by subscribers. To protect the subscribers, all personal information
has been removed and all subscribers’ IDs have been replaced by randomly-assigned
numbers. However, by linking it with the International Movie DataBase (IMDB)
dataset, another online movie rating portal with users information, Narayanan
et al. [166] partly de-anonymized Netflix anonymized training dataset.

With the rising of new technologies, there are more privacy violations on data
publishing or analysis. For example, Mudhakar et al. [205] deanonymized mobility
traces by using social networks as a side-channel. Stevens et al. [131] exploited
skype, a famous P2P communications software to invade users’ location and sharing
information. De Montjoye [54] showed that in a dataset where the location of an
individual is specified hourly, four location points are sufficient to uniquely identify
95% of the individuals.

In addition, the curators may not trustworthy. They may sell individual’s personal
information in purpose, or be hacked by adversaries. For example, Bose, a manu-
facturer of audio equipment, spied on its wireless headphone customers by using
an app that tracks the music, podcasts and other audio they listen to, and violates
their privacy rights by selling the information without permission [2]. Information
associated with at least 500 million user accounts was stolen from Yahoo’s network
in 2014 by what it believed was a “state-sponsored actor” [4]. And Telstra, an

1.3 Privacy Models 3

Australia telecom company, breached the privacy of 15,775 customers when their
information was made publicly available on the internet between February 2012 and
May 2013 [3].

All of these example’s shows that simple anonymization is insufficient for
privacy preserving. The adversary with background information on an individual
can still has chance to identify the individual’s records. People need to seek more
rigorous way to guarantee personal sensitive information.

1.3 Privacy Models

Research communities have proposed various methods to preserve privacy [8, 148],
and have designed a number of metrics to evaluate the privacy level of these
methods. The methods and their privacy criteria are defined as the privacy model. To
preserve privacy in the data collection stage, the privacy model is inserted between
curators and individuals who submitted their personal information. The privacy
model processes the personal information before submitting to the untrusted curator.
To preserve privacy in the data publishing and analysis stage, the privacy model is
placed between curator and public users. All data go through the privacy model
should satisfy the requirements of the model. Figure 1.2 shows different placement
of privacy models.

The most popular privacy model is the k-anonymity [197, 211], which requires
that an individual should not be identifiable from a group of size smaller than k.
Also, there are a number of other privacy models, such as [-diversity [151],
t-closeness [142, 143], and §-presence [169].

However, the vulnerability of these models lies in the fact that they can be
easily compromised by uncontrolled background information [231]. From the
published dataset, users, including the adversary, can possibly figure out the privacy
requirement and anonymization operations the curator used. Wong et al. [231] show
that such additional background information can lead to extra information that
facilitates the privacy compromising. For example, when a dataset is generalized

Alice
Bob
i Curator \m’,
User
[[
Data Collection Data Publishing/Analysis

Fig. 1.2 Privacy model

4 1 Introduction

until it minimally meets the k-anonymity requirement, the attacker would exploit
this minimality equivalence groups to reverse the anonymization and explore
the possible version of the original table. This process is called the minimality
attack [50, 109, 236], a special method in the record linkage attack.

Furthermore, several other new attacks are emerging to against traditional privacy
models. Composition attack [86] refers to the scenario that the adversary gleans
from other channels such as the Web, public records or domain knowledge to obtain
the background information. They explore how published dataset is at risk in the
face of rich, realistic sources of background information. Kifer presents the deFinetti
attack [125] by attacking a popular data anonymous schemes. The attacker only
needs to know the insensitive attributes of an individual in the dataset, and can then
carry out this attack by building a machine learning model over the sanitized dataset.
The attack exploits a subtle flaw in the way that prior work computes the probability
of disclosure of a sensitive attribute [125]. Moreover, Wong et al. [232] propose
a new attack named the foreground knowledge attack. If dataset is not properly
anonymized, patterns can be generated from the published dataset and be utilized
by the adversary to breach individual privacy. This kind of attack is referred as
foreground knowledge attack, on a contrary to the background information.

In general, researchers assume that the attacker has limited background infor-
mation and tries to profile this information when designing privacy models, which
makes these models tightly coupling with background information. However,
background information is hardly to predict or model. it is impractical to know what
kind of background information exactly the adversary might has. So people have
few opportunity to depict or control the information that adversary has. Difficulty in
modeling the background information is the inherent weakness in those traditional
privacy models. Consequently, Researchers have considered a solid privacy model
that is robust enough to provide a provable privacy guarantee against the background
information.

1.4 Differential Privacy

There comes the differential privacy model, which is a solid privacy model that
provides a provable privacy guarantee for individuals. It assumes that even if an
adversary knows all the other records in a dataset except one record, he/she still
cannot infer the information contained in that unknown record. In another word,
even the adversary get to know maximum background information except the
record he/she wants to know, he/she cannot identify the specific record. Under this
assumption, differential privacy theoretically proves that there is a low probability
of the adversary figuring out the unknown record. Compared to the previous privacy
models, differential privacy can successfully resist background attack and provide a
provable privacy guarantee.

The first steps toward differential privacy were taken in 2003. But it was
not until 2006 that Dwork et al. discussed the technology in its present form.

1.5 Outline and Book Overview 5

{ Differential Privacy }

C Research directions\ e N N
e Data Publishing e Research theory e Application domain

Q e Data Analysis) e Machine learning e Social network

/o R i Y e Data mining e Location privacy
.e;eatrc 15511165 T e Statistics e Recommender system
ature o! wnpHt Laia e [earning theory e Healthcare Data release
° °

e Nature of Output Data
® Mechanism
K ® Mechanism Setting j

Fig. 1.3 Key components associated with differential privacy

Since then, a significant body of work has been developed by scientists around
the world. Differential privacy is catching the attention of academics. In 2012,
Microsoft releases a whitepaper titled Differential Privacy for Everyone [1], striving
to translate this research into new privacy-enhancing technologies.

Differential privacy has recently been considered a promising privacy-preserving
model. The interest in this area is very high and the notion is spanning in a
range of research areas, ranging from the privacy community, to the data science
communities including machine learning, data mining, statistics and learning
theory. Figure 1.3 shows the key components associated with differential privacy
research. There are roughly two major directions on differential privacy research,
data publishing and data analysis. In both direction, the main research issues
include the nature of input and output data, mechanism design and settings. The
research methods and theories involve machine learning, data mining, statistics,
and cryptograph. Much work has been conducted in a number of application
domains, including social network, location privacy, recommender systems and
other applications.

This book provides a structured and comprehensive overview of the extensive
research on differential privacy, spanning multiple research areas and application
domains. It will facilitate better understanding on areas of data publishing and data
analysis in which research on differential privacy has been conducted, and how
techniques developed in one area can be applied in other domains.

1.5 Outline and Book Overview

The initial work on differential privacy was pioneered by Dwork et al. [61] in 2006.
The basic idea can be found in a series of works [62-64, 72, 75, 198].

6 1 Introduction

1. The first survey by Dwork et al. [62] recalled the definition of differential privacy
and two principle mechanisms. The survey aimed to show how to apply these
techniques in data publishing.

2. The report [63] exploited the difficulties that arose when data publishing
encountered prospective solutions in the context of statistics analysis. It identified
several research issues on data analysis that had not been adequately explored at
that time.

3. In the review [64], Dwork et al. provided an overview of the principal motivating
scenarios, together with a summary of future research directions.

4. Sarwate et al. [198] focused on privacy preserving for continuous data to solve
the problems of signal processing.

5. Recently, a survey of attacks on private data has been proposed Dwork et al. [75],
who summarize possible attacks that compromise personal privacy.

6. A book by Dwork et al. [72] presented an accessible starting place for anyone
looking to learn about the theory of differential privacy.

Those surveys and the book focus on the concepts and theories of differential
privacy; however, the mathematical theories are not easily implemented into
applications directly. Yet, after more than 10 years of theoretical development, a
significant number of new technologies and applications have appeared in this area.
We believe that now is a good time to summarize the new technologies and address
the gap between theory and application.

Here we attempt to find a clearer way to present the concepts and practical aspects
of differential privacy for the data mining research community.

* We avoid detailed theoretical analysis of related differentially private algorithms
and instead place more focus on its practical aspects which may benefit applica-
tions in the real world.

e We try to avoid repeating many references that have already been analyzed
extensively in the above well-cited surveys.

* Even though differential privacy covers multiple research directions, we restrict
our observations to data publishing and data analysis scenarios, which are the
most popular scenarios in the data mining community.

Table 1.1 defines the scope of these two major research directions in differential
privacy. Mechanism design for data publishing is normally independent from its
publishing targets, as the goals of publishing is to release query answers or a dataset
for further usage and, hence, is unknown to the curator. The mechanism design
for data analysis aims to preserve privacy during the analysis process. The curator
already knows the details of the analysis algorithm, so the mechanism is associated
with the analysis algorithm.

Table 1.1 Comparison between differentially private data publishing and analysis

Differentially private data publishing | Differentially private data analysis
Mechanism | Independent mechanism Coupled with a particular algorithm
Input Various data types Transaction dataset (training samples)
Output Query answers or datasets Various models

Chapter 2
Preliminary of Differential Privacy

2.1 Notations

Figure 2.1 shows a basic attack model. Suppose a curator would like to preserve
privacy for n records in a dataset D. However, an attacker has all information about
n— 1 records in dataset D except the n” record. These n— 1 records can be defined as
background information. He/she can make a query on the dataset D to get aggregate
information about n records in D. After compare the difference between query result
with the background information, the attacker can easily identify the information of
record n.

Differential privacy aims to resist the attack. Differential privacy acquires the
intuition that releasing an aggregated result should not reveal too much information
about any individual record in the dataset. Figure 2.2 shows how differential privacy
resists the attack. We define a dataset D’ that differs with D with only one record,
say, x,. When the attacker make the query f on both datasets, he/she has a very
high probability to get the same result s. Based on the results, he/she cannot identify
whether x,, is in D or not. When the attacker cannot tell the difference between the

X Attacker Query result
i Query on (x4, ...,Xn) differentiates with
Xz o000 background
information to get xn
Xn-1
Xn
§1 Background information
2 on (X1,...Xn1)
Xn-1
Fig. 2.1 Attacker model
© Springer International Publishing AG 2017 7

T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_2

8 2 Preliminary of Differential Privacy

D
XA | am not sure if Xn in
the D
X2 f(D)=s
in i ° Why does it work?
Neighbouring L ———
Datasets D’
X1 Attacker
X2 f(D')=s If the attacker cannot tell
— the difference between the
output of D and D', then X
Xn-1 is safe.
X

Fig. 2.2 Differential privacy

D

X4 Probability

X2 f(D) DP Answer
— f(D)=s

Xn-1

Xn ~ >

7
True Answer S

Fig. 2.3 Query answer distribution

outputs of D and D', then x, is safe. If the property is applicable for all records in
D, the dataset D can preserve privacy for all records.

In differential privacy, curator will not publish a dataset directly, instead, public
users submit their statistical queries to the curator, and curator replies them with
query answers. For a particular query, its true answer is unique, but its differentially
private answer is a distribution, as shown in Fig. 2.3, dataset D and D’ have very
high probability to output same results.

To present the definition of differential privacy formally, we use the following
key notations in the book. We consider a finite data universe 2~ with the size |.Z"|.
Let r represent a record with d attributes, a dataset D is an unordered set of n records
sampled from the universe 2 . Two datasets D and D’ are defined as neighboring
datasets if differing in one record. A query f is a function that maps dataset D to an
abstract range R: f : D — R. A group of queries is denoted as F. Normally, we use
symbol m to denote the number of queries in F. There are various types of queries,
such as count, sum, mean and range queries.

The target of differential privacy is to mask the difference of query f between
the neighboring datasets [64]. The maximal difference on the results of query
f is defined as the sensitivity Af, which determines how much perturbation is
required for the private preserving answer. To achieve the perturbation target,
differential privacy provides a mechanism M accesses the dataset and implements

2.2 Differential Privacy Definition 9

Table 2.1 Notations

Notations | Explanation Notations | Explanation

z Universe D Dataset; training sample set

D’ Neighboring dataset 9 Dataset distribution

rx Record in dataset; training sample| d Dataset dimension

n The size of dataset N The size of a histogram

f Query F Query set

m The number of queries in F M Mechanism

? Noisy output k Represent some small value of constant
€ Privacy budget Af Sensitivity

G Graph data t, T Time, time sequence, or iterative round
w Output model, or weight VC(-) VC dimension

140) Loss function o, 8,8 | Accuracy parameter

some functionality. The perturbed output is denoted by a ‘hat’ over the notation.
For example,f(D) denotes the randomized answer of querying f on D. Table 2.1
summarizes some major notations used in the book. There are some other Greek
symbols such as 8, n will be used temporarily in different chapters.

2.2 Differential Privacy Definition

A formal definition of differential privacy is shown below:

Definition 2.1 ((¢, §)-Differential Privacy [67]) A randomized mechanism M
gives (e, §)-differential privacy for every set of outputs S, and for any neighbouring
datasets of D and D/, if M satisfies:

Pr[M(D) € S] < exp(e) - PriM(D’) € §] + 6. 2.1

Figure 2.4 shows mechanism on neighbouring datasets. For a particular output,
the ratio on two probabilities is bounded by e€. If § = 0, the randomized mechanism
M gives e-differential privacy by its strictest definition. (e, §)-differential privacy
provides freedom to violate strict e-differential privacy for some low probability
events. e-differential privacy is usually called pure differential privacy, while (e, §)-
differential privacy with § > 0 is called approximate differential privacy [20].

2.2.1 The Privacy Budget

In Definition 2.1, parameter € is defined as the privacy budget [89], which controls
the privacy guarantee level of mechanism M. A smaller € represents a stronger
privacy. In practice, € is usually set as less than 1, such as 0.1 or In 2. Two privacy

10 2 Preliminary of Differential Privacy

Fig. 2.4 Query answer

\
distribution Probability

____[Ratio bounded by e€

v

composition theorems are widely used in the design of mechanisms: sequential
composition [157] and parallel composition [155], as defined in Theorem 2.1 and
Theorem 2.2, respectively.

Theorem 2.1 (Parallel Composition) Suppose we have a set of privacy mecha-
nisms M = {My,...M,}, if each M; provides ¢€; privacy guarantee on a disjointed
subset of the entire dataset, M will provide (max{ey, ..., €,})-differential privacy.
The parallel composition corresponds to a case where each M; is applied on
disjointed subsets of the dataset. The ultimate privacy guarantee only depends on
the largest privacy budget allocated to M;.

Theorem 2.2 (Sequential Composition) Suppose a set of privacy mechanisms
M = {M,,...M,} are sequentially performed on a dataset, and each M; provides
€ privacy guarantee, M will provide ()"~ €)-differential privacy.

The sequential composition undertakes the privacy guarantee for a sequence of
differentially private computations. When a set of randomized mechanisms has been
performed sequentially on a dataset, the final privacy guarantee is determined by the
summation of total privacy budgets.

These two composition theorems bound the degradation of privacy when com-
posing several differentially private mechanisms. Figure 2.5 shows their differences.
Based on them, Kairouz [112] and Murtagh [164] provided optimal bounds when
m mechanisms are adaptive, which means that M; will be designed based on
the result of M;_;. They claimed that the privacy budgets will be consumed less
when the mechanisms are adaptive. Currently, however, the parallel and sequential
composition are most prevalent and straightforward way to analysis the privacy
budget consuming of a privacy preserving algorithm.

2.3 The Sensitivity

Sensitivity determines how much perturbation is required in the mechanism. For
example, when we publish a specified query f of dataset D, the sensitivity will
calibrate the volume of noise for f(D). Two types of sensitivity are employed in
differential privacy: the global sensitivity and the local sensitivity.

2.3 The Sensitivity 11

D
X4
Xo Mjy: g1-dp
:'_ Max(gq,...,eqm)-dp
Xn-1
Xn '— Mm: em-dp
Parallel Composition
D Mm(D)
X4 X4
X2 Ms, ..., M Xo
———————————— > 2€i-dp
Xn-1 Xn-1
Xn Xn

Sequential Composition

Fig. 2.5 Privacy budget composition

2.3.1 The Global Sensitivity

The global sensitivity is only related to the type of query f. It considers the
maximum difference between query results on neighboring datasets. The formal
definition is as below:

Definition 2.2 (Global Sensitivity) For a query f : D — R, the global sensitivity
of f is defined as

Afes = max |[f(D) — (D)1 (2.2)
D.D

Global sensitivity works well when queries have relative lower sensitivity values,
such as count or sum queries. For example, the count query normally has
Afgs = 1. When the true answer is over hundreds or thousands, the sensitivity
is much lower than the true answer. But for queries such as median, average,
the global sensitivity yields high values comparing with true answers. We will then
resort to local sensitivity for those queries [172].

2.3.2 The Local Sensitivity

Local sensitivity calibrates the record-based difference between query results on
neighboring datasets [172]. Comparing with the global sensitivity, it takes both the
record and query into consideration. The local sensitivity is defined as below:

12

Fig. 2.6 Local sensitivity
and smooth bound

2 Preliminary of Differential Privacy
A

Global Sensitivity

Smooth Bound

\
\

\

\

\

\

\ [}
\ \
\ \
\ \
\ \
\ [}
1 \
\ \
\ \

/

\

[y
\

Definition 2.3 (Local Sensitivity) For query f : D — R, local sensitivity is
defined as

Afis = max | [f(D) = F(D)].

(2.3)
For many queries, such as the median, the local sensitivity is much smaller than

the global sensitivity. However, as the changing of local sensitivity may result in
information disclosure, it cannot be used in mechanisms directly. The value of local
sensitivity should be changed smoothly, so that a smooth bound should be added.

Definition 2.4 (Smooth Bound) For § > 0, a function B : D — R is a f-smooth

upper bound on the local sensitivity of f if it satisfies the following requirements,

VD e X : B(D) > fi5(D)

2.4)
VD,D' € X : B(D) < ¢’S(D). (2.5)
Figure 2.6 shows the relationship between the local sensitivity, smooth bound
and the global sensitivity. For some queries, the local sensitivity is lower than global
sensitivity. For queries such as count or range, the local sensitivity is identical
to global sensitivity. Because most literatures were concerned with the global
sensitivity, without specification, sensitivity refers to global sensitivity in this book.

2.4 The Principle Differential Privacy Mechanisms

Any mechanism meeting Definition 2.1 can be considered as differentially private.
Currently, three basic mechanisms are widely used to guarantee differential privacy:
the Laplace mechanism [68], the Gaussian mechanism [72] and the exponential

2.4 The Principle Differential Privacy Mechanisms 13

mechanism [157]. The Laplace and Gaussian mechanisms are suitable for numeric
queries and the exponential mechanism is suitable for non-numeric queries.

2.4.1 The Laplace Mechanism

The Laplace mechanism relies on adding controlled Laplace noise to the query result
before returning it to the user. The noise is sampled from the Laplace distribution,
which is centered at 0 with scaling b. The noise is presented by Lap(b), in which a
larger b indicates a higher noise. The corresponding probability density function is:

1 | x|

L = — ——). 2.6
ap(x) = 2 exp(—1-) 2.6)
The mechanism is defined as follows:

Definition 2.5 (Laplace Mechanism) Given a function f : D — R over a dataset
D, mechanism M provides the e-differential privacy if it follows Eq. (2.5)

M(D) = f(D) + Lap(g). 2.7

The mechanism shows that the size of noise is related to the sensitivity of query f
and the privacy budget €. A larger sensitivity leads to a higher volume of noise.

2.4.1.1 The Gaussian Mechanism

To achieve (¢, §)-differential privacy, one can use Gaussian noise [72]. In this case,
rather than scaling the noise to the £; sensitivity, one instead scales to the £,
sensitivity as follow Definition 2.6:

Definition 2.6 ({,-Sensitivity) For a query f : D — R, the {,-sensitivity of f is
defined as
Aof = max|[[f(D) = f(D)]a. (2.8)

The Gaussian mechanism with parameter o adds zero-mean Gaussian noise with
variance 0.

Definition 2.7 (Gaussian Mechanism) Given a functionf : D — R over a dataset
D, if 0 = Ayf+/2in(2/8)/€ and A4 (0,0?) are i.i.d. Gaussian random variable,
mechanism M provides the €, §-differential privacy when it follows Eq. (2.7)

M(D) = f(D) + .4 (0,52). (2.9)

14 2 Preliminary of Differential Privacy

The Gaussian mechanism follows the same privacy composition to the Laplace
mechanism.

2.4.2 The Exponential Mechanism

For non-numeric queries, differential privacy uses an exponential mechanism to
randomize the results, and this is paired with a score function g(D,¢) that
represents how good an output ¢ is for dataset D. The choice of score function
is application dependent and different applications lead to various score functions.
The Exponential mechanism is formally defined as below:

Definition 2.8 (Exponential Mechanism) Let ¢(D,¢) be a score function of
dataset D that measures the quality of output ¢ € &. Then an Exponential
mechanism M is e-differential privacy if

€q(D, ¢)

M(D) = {return ¢ with the probability o< exp(A
q

). (2.10)

where Agq represents the sensitivity of score function g.

2.4.2.1 Mechanism Example

An example is presented below to illustrate some fundamental concepts of the
sensitivity, privacy budget and mechanisms. Suppose Table 2.2 shows a medical
dataset D of a district, and differential privacy mechanism M will guarantee the
privacy of each individual in D.

Suppose query f; asks: how many people in this table have HIV? Because the
query result is numeric, we can use Laplace mechanism to guarantee differential
privacy. First, we analyse the sensitivity of f;. According to Definition 2.2, deleting
a record in this D will affect the query result maximally by 1. The sensitivity of
fiis Afi = 1. Second, we choose a privacy budget € for the Laplace mechanism.
Suppose we set € = 1.0. According to Definition 2.5, the noise that sample from

Table 2.2 Medical record Name |Job Gender | Age | Disease

Alen | Engineer | Male 25 Flu

Bob Engineer | Male 29 HIV
Cathy |[Lawyer |Female |35 Hepatitis
David | Writer Male 41 HIV
Emily | Writer Female |56 | Diabetes

Emma | Dancer Female |21 Flu

2.5 Utility Measurement of Differential Privacy 15

Table 2.3 Medical record exponential mechanism output

Options Number of people e=0 € =0.1 e=1
Diabetes 24 0.25 0.32 0.12
Hepatitis 8 0.25 0.15 4x107°
Flu 28 0.25 0.40 0.88

HIV 5 0.25 0.13 8.9%x 107°

Lap(1) will be added to the true answer fj (D). Lastly, the mechanism M will output
a noisy answer M(D) = f1(D) + Lap(1). If the true answer is 10, the noisy answer
might be 11.

Suppose we have another query f,: what is the most common disease in
this district? This query will generate non-numeric result and we can apply the
exponential mechanism. Table 2.3 lists all the diseases and their true numbers in
the first two columns. We first define the score function of f,. We adopt the number
of people on each disease as the score function g. As deleting a person will have
a maximum impact of 1 on the result of g, the sensitivity of g is Ag = 1. The
probability of the output can then be calculated by Definition 2.8. Table 2.3 lists the
results whene = 0,¢ = 0.1 ande = 1.

In the third column of Table 2.3, ¢ = 0 means that the mechanism chooses an
answer uniformly from those four options. The output probabilities are equal in
these options. Obviously, € = 0 provides the highest privacy level, however it loses
almost all the utility. When € = 0.1, Flu has the highest probability of being chosen
and HIV has the lowest probability. The gap is not very large, which indicates that it
can provide acceptable privacy and utility levels. When € = 1, the probability gap
between HIV and other diseases is significant, which means that the mechanism can
retain a high utility, but have a lower privacy level.

2.5 Utility Measurement of Differential Privacy

When privacy level is fixed to €, several utility measurements have been used in
both data publishing and analysis to evaluate the performance of differential privacy
mechanisms.

* Noise size measurement: the easiest way is calibrating how much noise has been
added to the query results. A smaller noise indicates higher utility. This utility
measurement has been widely used in data publishing.

» Error measurement: utility can be evaluated by the difference between the non-
private output and the private output. For example, the utility of single query
publishing can be measured by |f(D) —]?(D)l. A smaller distance shows higher
utility. The error measurement is normally represented by a bound with accuracy
parameters [29]:

2 Preliminary of Differential Privacy

Definition 2.9 ((«,8)-Useful) A set of query F is («,f)-utility if

Pr(max |[F(D) —F(D)| <a) > 1 — B, @2.11)
fer

where o is the accuracy parameter that bounds the error.

For different publishing scenarios, the error measurement can be interpreted
in various ways. For synthetic dataset publishing, Eq.(2.11) can be interpreted
to:

Pr(max|F(D) - F(D)| <a)>1-B. (2.12)

For data analysis, the utility normally depends on the analysis algorithms.
Suppose the algorithm is denoted by M and the private algorithm is denoted by
M, Eq.(2.11) can be interpreted to

Pr(IM(D) —M(D)| < @) > 1 — B. (2.13)

Equation (2.13) has several implementations in data analysis, such as risk bound
and sample complexity.

Chapter 3
Differentially Private Data Publishing: Settings
and Mechanisms

3.1 Interactive and Non-interactive Settings

Differentially private data publishing aims to output aggregate information to the
public without disclosing any individual’s record. This problem can be presented as
follows: if a curator has a dataset D and receives a query set F' = {fj, ..., fn}, he/she
is required to answer each query f; € F subject to the constraints of differential
privacy. Two settings, interactive and non-interactive, are involved in this publishing
scenario: in the interactive setting, a query f; can not be issued until the answer to
the previous query f;—; has been published. In the non-interactive setting, all queries
are given to the curator at one time. The curator can provide answers with full
knowledge of the query set. Figure 3.1 shows both interactive and non-interactive
settings.

An example is presented in Tables 3.1 and 3.2 to show the difference between
the two settings. Suppose a curator has a medical dataset D, queries to the curator
may presented as follows:

e fi: How many patients have diabetes at the age of 40-79?
* f>: How many patients have diabetes at the age of 40-59?

Suppose the privacy budget € is fixed for each query. In the interactive setting,
the curator will first get fi, then counts the number of patients who have diabetes
with the age from 40 to 79 and adds an independent Laplace noise with sensitivity
equal to 1, Lap(1/¢), to the number. When f, is then submitted to the curator, f>
will be answered with sensitivity equal to 2, as changing one person in the table will
maximize change results of both queries. The total noise added to the query set is
Lap(1/€) + Lap(2/e¢).

In the non-interactive setting, both queries will be submitted to the curator at
the same time. The sensitivity measured for both queries is 2. The total noise
added to the query set is 2 % Lap(2/¢€), which is larger than the interactive setting.

© Springer International Publishing AG 2017 17
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_3

18 3 Differentially Private Data Publishing: Settings and Mechanisms

Fig. 3.1 Interactive and D f
non-interactive settings X < £
1 fi(D)
Xo >
— f"l \-l‘
Xn-1 < ~
Xn f.(D) , User
Interactive setting
D

X4
X T S 3
.).(:_1) j,"(lD) - f(D) ‘

Xn User

Non-Interactive setting

Table 3.1 Medical table Name | Age | Diabetes
Alen 25 |N
Bob 29 |N
Cathy | 35 |Y
David | 41 |Y
Emily | 56 |N
Emma | 21 |Y

Table 3.2 Frequent table Age | Diabetes number | Variable
60-79 |41 X1
40-59 |32 X
20-39 |8 X3
0-19 |1 X4

The correlation between queries leads to a higher sensitivity. Therefore, the non-
interactive setting normally incurs more noise than the interactive setting.

The above example presents the difference between two settings, and shows the
size of noise increasing dramatically when queries are correlated to each other.
In addition, for a dataset with size n, the Laplace mechanism can only answer,
at most, sub-linear in » number of queries to a certain level of accuracy [59]. To
simplify the problem, most papers on interactive setting assume that those queries
are independent to each other. These weaknesses make the Laplace mechanism
impractical in the scenarios that require answering large amounts of queries. New
mechanisms are required.

To fix the weaknesses of the Laplace mechanism, researchers are concerned
with new mechanisms design, aiming to publish various types of data with limited
noise. Table 3.3 summarizes the problem characteristics of differentiallyprivate data

3.2 Publishing Mechanism 19

Table 3.3 Differentially private data publishing problem characteristics

Differentially private data publishing

The nature of input data | Transaction, histogram, graph, stream

The nature of output data | Query result, synthetic dataset

Publishing setting Interactive, non-interactive

Publishing mechanism Laplace/exponential, query separation, transformation, iteration,
partition of dataset

Challenges Query number, accuracy, computational efficiency
Transf ti
D ransformation
X1 A4))
X2 Az f(4) Ju(4) G
ror —) > @
Xn Az User

Fig. 3.2 Transformation

publishing, in which mechanisms design is focusing on the number of queries, the
accuracy of the output, and the computational efficiency. Among them, the number
of queries means the maximum number of queries the mechanism can answer,
indicating the capacity of the mechanism. The accuracy of the publishing output
is measured by the expected error between the randomized answer and the true
answer. Furthermore, if the running time of answering a query is polynomial in n
and d, the publishing mechanism is considered to be efficient.

3.2 Publishing Mechanism

We categorize the existing mechanisms into several types: transformation, partition-
ing of dataset, query separation and iteration. Tables 3.1 and 3.2 are used again to
show the key idea of those types.

» Transformation: The transformation mechanism maps the original dataset to a
new structure to adjust the sensitivity or noise. The key issue in the transforma-
tion mechanism is to find a suitable structure that minimizes the error of query
answers. Figure 3.2 shows the basic process.

In the above example, the original dataset can be transferred to a frequent
dataset as shown in Fig. 3.2.

20

3 Differentially Private Data Publishing: Settings and Mechanisms

Table 3.4 Differentially private data publishing mechanism comparison

Mechanism
Laplace

Transformation

Dataset partitioning

Iteration

Query separation

Description

Add Laplace noise
directly to the query

Transfers original
dataset to a new
structure. The
sensitivity of the query
set will be adjusted
Divides dataset into
several parts and adds
noise to each part
separately

Updates datasets or
query answers
recursively to
approximate the noisy
answer

Only need to add noise
to small numbers of
queries

Advantage

Easy to implement; can
answer all types of
real-value queries

Noise can be reduced,;
consistency of results can
be maintained

Sensitivity can be
decreased which results
in less error in the output

Only some updates will
consume privacy budget,
S0 more queries can be
answered (linear to n or
exponential number of n)
in a fixed privacy budget

Some queries do not
consume privacy budget,
so the mechanism can
answer more queries with
a fixed privacy budget

Challenge

Answer a sub-linear
in n number of
queries; introduce
large volume of noise
Not easy to find a
new structure that
suits for queries

Partition strategy is
not easy when
answering multiple
queries

Most iteration
mechanisms are
computationally
inefficient; unsuitable
parameters can result
in inferior
performance
Separating queries is
a difficult problem

In the new structure, f, can be answered by the second row with the sensitivity

equals to 1. And we can get the result of diabetes from age 60 to 79 independently
from the first row in Table 3.2. As both results are independent to each other, the
result of f; can be answered by the result of fz and the first row. The total noise
of two queries will be 3 % Lap(1/€), which is lower than the non-interactive
Laplace mechanism. In this example, the new structure is used to decompose
the correlation between queries, so the sensitivity can be decreased as well.
The challenge is to find a new structure. In this example, the new structure
is a meaningful frequent table; however, in most cases, the new structure is
meaningless, only used to decrease the sensitivity.

Fartition of dataset: the original dataset is divided into several parts to decrease
noise. In the above example, suppose we need to answer f; with Table 3.2, the
noise Lap(1/€) needs to be added twice: one is added to the first row, another
is added to the second row. The total added noise will be 2 x Lap(1/¢). If we
partition the dataset by another way, for example, arranging the age range to 40—
79, the total noise will be decreased to Lap(1/¢). The challenge is how to design
the partition strategy with multiple queries.

Query separation: query separation assumes that a query set can be separated into
several groups, and that some queries can be answered in the sense of reusing

3.2 Publishing Mechanism 21

noise. In the above example, if f, has been answered, f; can be approximately
answered by doubling the answer of f, as the age range is doubled. Query
separation is a strategy to break limitations on the number of queries.

 [teration: iteration is a mechanism that updates a dataset recursively to approx-
imate the noisy answers for a set of queries. For example, we can manually
define an initial dataset Dy, in which the number of diabetes in Table 3.2 at
different age ranges are equal, and then perform f; on Dy and compare the noise
resultfl (D) with fi(Dy). If the distance between the two answers is smaller than
a pre-defined threshold, fi(Dy) can be published, and Dy will be used in the
next round. Otherwise,]?1 (D) will be published and Dy will be updated by a
particular strategy into D;. As publishing f; (Dy) does not consume any privacy
budget, the iteration mechanism can achieve a higher utility and can answer more
queries than the Laplace mechanism. The challenges are how to design the update
strategy and how to set related parameters such as threshold.

Table 3.4 compares the various publishing mechanisms. In following sub-
sections, we present how those mechanisms work in both interactive and non-
interactive settings.

Chapter 4
Differentially Private Data Publishing:
Interactive Setting

Interactive settings operate on various aspects of the input data, including transac-
tions, histograms, streams and graph datasets. In the following sections, we discuss
publishing scenarios involving these types of input data.

4.1 Transaction Data Publishing

The most popular representation on D is the transaction dataset, in which every
record represents an individual with d attributes. Table 4.1 shows a typical trans-
action dataset with d = 3. Diabetes is considered to be sensitivity information
that needs to be preserved. The transaction dataset is the most prevalent nature of
data and attracts significant attention. Several mechanisms are proposed in this area,
including Laplace, transformation, query separation and iteration.

4.1.1 Laplace

Dwork et al. [68] proposed the Laplace mechanism to publish the transaction dataset
in their initial work. As mentioned earlier, this mechanism can efficiently answer all
types of real-values queries, but the maximum number of queries is limited by the
sub-linear size of the dataset. Dinur et al. [59] proved that answering substantially
more than a linear number of subset sum queries with error o(n'/?) yields blatant
non-privacy. This lower bound implied that for a dataset with size n, the Laplace
mechanism can only answer maximum sub-linear of n queries in a certain level of
accuracy. Otherwise, adversaries can reconstruct a 1 — o(1) fraction of the original
database.

© Springer International Publishing AG 2017 23
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_4

24 4 Differentially Private Data Publishing: Interactive Setting

Table 4.1 Transaction Name | Age | Has diabetes?

dataset -
Alice |35 1
Bob 50 1
Cathy (12 |0
Eva 35 0

The accuracy of the Laplace mechanism output can easily be estimated by
analyzing the property of Laplace distribution. For every sequence of m queries
with sensitivity Af, the accuracy is bounded by O(M).

Because of the weaknesses of the query number limitation and inferior accuracy
on large sets of queries, the Laplace mechanism is now regarded as a baseline
mechanism in transaction data release and new mechanisms need to be proposed.

4.1.2 Transformation

Transformation changes or projects the current transaction data to another struc-
ture on the assumption that sensitivity can be diminished in the new structure.
Hardt et al. [93] proposed the k-norm method, which considers a dataset to be a unit
ball and linear queries to be a set of linear mappings. The query result is transformed
into a convex polytope and the exponential mechanism is used by k-norm to sample
points in this convex polytope as query results. K-norm measures the bounded
error to O(min{%, \/mlog(:-)/€}) per answer, which is an improvement over the
Laplace mechanism. However, because k-norm uses an exponential mechanism and
samples random points from high-dimensional convex bodies, the computation time
is inefficient.

4.1.3 Query Separation

The goal of query separation is to design a separation strategy for given types of
queries to decrease noise. Roth [195] presented the median mechanism and found
that, among any set of m queries, there are O(logmlog|Z'|) queries that can
determine the answers of all other queries. Based on this observation, all queries
are separated into hard and easy queries. Hard queries can be answered directly
by the Laplace mechanism, while easy queries are answered by the median values
of hard query results. Therefore, easy queries do not consume any privacy budget.
By separating the queries, the median mechanism can answer exponentially many
more queries with acceptable accuracy; however, it is inefficient and comes with an
exponential time complexity corresponding to the dataset size n.

4.1 Transaction Data Publishing 25

Muthukrishnan et al. [165] particularly considered range queries and decom-
posed the range space into logarithmic number of smaller distinct ranges. They
exploited the balance between the number of distinct ranges and the maximum range
size using discrepancy theory. Ultimately, they improved the mean squared error of
range queries to O(log n)' =00,

4.1.4 Iteration

Hardt et al. [92] proposed private multiplicative weights (PMW), which considers
datasets as a histogram with positive weight on each bin. By updating the weights,
PMW constructs a histogram sequence to answer a set of queries. Specifically, the
initial histogram xy was set as a uniform distribution over the domain. The mech-
anism then maintained a sequence of histogram xy, x1,. .., X; in # iterations, which
gave increasing approximation to the original histogram x. After the parameters
have been calibrated for complexity and accuracy, this mechanism is able to answer
each query with a sampling error approximately to O((logm)/+/n). This means that
the sampling error grows logarithmically with an increase in the number of queries
being answered, while the Laplace mechanism’s error is linear, increasing by m. In
addition, PMW can accurately answer an exponential number of queries.

Similarly, Gupta et al. [88] presented a general iteration framework termed
iterative database construct (IDC), which implements other release mechanisms
by using the framework. In each round of iteration, when a significant difference
between the current dataset and the original dataset is witnessed for a given query,
the mechanism updates the current dataset for the next update. The update function
was defined by the Frieze/Kannan low-rank matrix decomposition algorithm. The
effectiveness of the framework is evaluated by cut queries in a social network graph
dataset. IDC is a more general framework that can be incorporated into various other
mechanisms, including the PMW and median.

4.1.5 Discussion

The transformation and query separation mechanisms can answer more queries
than the Laplace mechanism in a fixed privacy budget. They however have some
very restrict criteria on the dataset or queries. For example, the transformation
mechanism requires the dataset has some special properties and the query separation
mechanism assumes the query can be divided into distinct types. These criteria make
these mechanisms impractical.

The iteration mechanism has little assumption on the dataset and has several
advantages over the various publishing mechanisms mentioned above, such as
decreasing noise when confronted with many queries; it has a lower running time
in practice for low-dimensional datasets; it can be easily implemented and perform

26 4 Differentially Private Data Publishing: Interactive Setting

parallel on datasets. Many subsequent works therefore followed this mechanism. For
example, Ullman [222] extended PMW to convex minimization to exponentially
answer many convex minimization queries. Based on IDC, Huang et al. [103]
presented an efficient query on distance defined over an arbitrary metric. However,
since the iteration mechanism utilizes histogram to represent the dataset, it can not
be applied on complex or high-dimensional datasets.

Even most mechanisms focused on count query, there has also been significant
attention paid to the specific type of queries, such as conjunctions query, cut query,
distance query [103], range query, and halfspace queries. It shows that excluding
the Laplace mechanism, the other mechanisms can answer large numbers of queries
(exponential to n) with acceptable accuracy.

However, there is a serious problem in computational efficiency for those
mechanisms. Most works have an exponential running time, which implies that
the computational efficiency needs to be sacrificed for acceptable accuracy. This
conclusion was confirmed by Dwork et al. [66], who claimed that computationally
inefficient mechanism can accurately answer an exponential number of adaptively
chosen statistical queries. Ullman [221] quantitatively analyzed the bound and
showed that a differential privacy algorithm will require exponential running time to
answer n>T°() statistical queries. Hardt et al. [94] improved the bound and showed
that there is no computationally efficient algorithm that can give valid answers to
n*T°M) (cube) adaptively chosen statistical queries from an unknown distribution.

4.2 Histogram Publishing

It is often convenient to regard transaction data in terms of their histogram
representations. Suppose a histogram has N bins, a differential privacy mechanism
aims to hide the frequency of each bin. The advantage of histogram representation
is that limits the sensitivity to noise [62]. For example, when the histogram serves to
support the range or count queries, adding or removing a single record will affect,
at most, one bin. Hence, range or count queries on the histogram have a sensitivity
equal to 1, and the volume of added noise to each bin will be relatively small.

A transaction dataset can be mapped to a histogram over the domain 2. Each
bin represents the combination of single or several attributes. The frequency of each
bin is the fraction of its count in the original dataset.

Formally, we define the histogram representation as below:

Definition 4.1 (Histogram Representation) A dataset D can be represented by
a histogram x in a domain 2°: x € N#I where N consists of all possible
combinations of attributes.

4.2 Histogram Publishing 27
4.2.1 Laplace

This is a direct mechanism which adds Laplace noise to the frequency of each bin
that a query covered. When a count of range query covers only small number of
bins, this mechanism retains high utility for the query result; however, if the original
dataset contains multiple attributes, the combination of these attributes and their
related range of values will lead to a large number of bins. The answer of queries
are meaningless due to the large amount of error accumulated.

4.2.2 Partition of Dataset

The most popular mechanism for histogram release is the partition of the dataset,
except for the traditional Laplace mechanism. As the number of bins is derived
from the partition of attribute values, one method for decreasing error is to optimize
the partition strategy. Figure 4.1 shows the histogram example. Figure 4.1a is an
histogram example. When publish the histogram in the constraint of differential
privacy, as shown in Fig.4.1b, the noise is estimated as n = Lap(1/¢€), which has
to be added to each bin. Multiple bins lead to large noise. Figure 4.1c illustrates
that if bins can be re-partitioned, for example, range of age can be merged from
[0-20], [20—40] to [0-40], noise will be diminished. After that, original frequency
of bin [0-20] can be estimated by dividing the frequency of bin [0—40], as shown in
Fig.4.1d. However, splitting the large bin into smaller bins leads to more Laplace
noise, while estimating the proportion of the large bin’s frequency may introduce
estimation error. Therefore, optimizing the partition strategy to obtain a trade-off
between splitting and merging bins is a challenge that needs to be addressed.

Xiao et al. [240] provided a kd-tree based partition method to generate nearly
uniform partitions to decrease the average error. Their idea is to partition the original
histogram and merge bins with similar frequencies. The average frequency will then
be close to those original frequencies, and will reduce the average error. Xiao et al.
apply the kd-tree to identify bins which have similar frequencies when answering
queries. A kd-tree is a binary tree that every non-leaf node can be considered as a
splitting hyperplane to divide the space into two half-spaces. Generating a balanced
kd-tree on the histogram frequency can help to divide the original histogram into
a small number of almost uniform structures. The authors achieved more accurate
result than Laplace mechanism.

In their subsequent work [239], Xiao et al. extended the two-dimensional
histogram into a d-dimensional (d > 2) one by using an algorithm DPCube. The
authors implemented a set of query matrices to generate an optimal query strategy
on a d-dimensional histogram to test performance. When the parameters (frequency
closeness threshold, partition times) are estimated properly, the DPCube achieves a
good balance between the maximum number of queries and the introduced errors.

28 4 Differentially Private Data Publishing: Interactive Setting

a A bA
Frequency ni=Lap(1/¢)
Ve

"/ ne=Lap(1/)

D_l—\ ,

r

AR Y 20 40 Age
Bins
Ca da
n=Lap(1/e) ni=1/2Lap(1/¢)
. o ¥ N2=1/2Lap(1/¢)

\ ||—|ﬁ...Age= | —‘ |_|—|ﬁ.; ;

40 40

Fig. 4.1 Histogram publishing. (a) Histogram. (b) Noisy histogram. (c) Bin partition. (d) Estimate
frequency

Xu [243] provided two partition strategies by minimizing the sum of squared
error (SSE) of a set of queries. Both strategies set each attribute as a single bin at an
initial state and partition the attribute value to create more bins. The first strategy,
NoiseFirst, injects Laplace noise into each bin before partitioning the attribute
values. Another strategy, StructureFirst, uses an exponential mechanism to select
optimal splitting values of attributes by adopting the SSE as the score function.

Qardaji et al. [185] partitioned the attribute values in a hierarchical way. They
also focus on range queries and allocate ranges into a tree. The root of the tree is
the full range of values of an attribute or several attributes. Each node in the tree is
associated with the union of the ranges of its children. Several unit-length ranges
are defined as leaves. On each branch of the tree, a factor controls the accuracy of
the query result. These factors are further studied with a mean squared error (MSE)
when answering range queries, and the results are optimized by tuning these factors.

4.2.3 Consistency of Histogram

When noise is added to bins, the consistency of the query results may be destroyed.
For example, the sum of two bins A + B may less than the frequency of one
bin A. To maintain consistency of the histogram release, Hay et al. [96] defined
a constrained inference to adjust the released output. Two types of consistency
constraints were explored. The first, sorted constraints, requires query results to

4.3 Stream Data Publishing 29

satisfy a particular sequence. The second, hierarchical constraints, predefines the
sequence of a hierarchical interval set. Their proposed approach provides a noisy
answer set to respond to the query set by using a standard differential privacy
mechanism. The constrained inference step applies the linear combination method
to estimate a set of approximate answers that are close to noisy answers, which
satisfy the consistency constraints. An approximate answer for the query set F
is ultimately released, which can preserve the differential privacy and retain the
consistency between results.

There are some other ways to improve the consistency of histogram. For example,
Lin et al. [146] applied a Bayesian approach to estimate sorted histograms and
pointed out that substantial improvements in accuracy can be obtained if the
estimation procedure makes use of knowledge on the noise distribution, proposed an
estimation algorithm that views sorted histograms as a Markov chain and imposes
ordering constraints on the estimates. Lee et al. [135] added a post-processing
step before the histogram releasing. The post-processing step is formulated as
a constrained maximum likelihood estimation problem, which is equivalent to
constrained L; minimization.

4.3 Stream Data Publishing

In a real world scenario, it is practical for release information to be continuously
updated as new data arriving. For example, the search log, recommender system,
or location datasets increase continuously over time. These types of data can be
modeled as stream data, which can be simplified as a bit string {0, 1}" and each 1
in the stream represents the occurrence of an event [70]. The bit stream normally
associates with the continual release scenario, in which a differentially private
mechanism releases one bit at every time step.

Figure 4.2 illustrates this continual release scenario. Suppose there is a binary
bit stream D € {0, 1}7, where T represents a time sequence T = {t; : k = 0,...}.
The bit o(#;) € {0, 1} denotes whether an event has occurred at time #;, and D(t;)
represents the prefix of a stream at time #;,. At each time step #, the number count
of 1s is denoted as ¢(#;) and the mechanism outputs the noisy count is 7(#). Hence,
the research issue is how to increase the accuracy of the released count under the
constraint of differential privacy.

Fig. 4.2 Stream dataset Release the Count of bit 1
Event 1 0 il ! 0 T

t 1 t2 t3 tm

30 4 Differentially Private Data Publishing: Interactive Setting
4.3.1 Laplace

Works on continual data publishing define two private levels in terms of differential
privacy, namely event-level and user-level privacy [69]. The former hides a single
event while the latter masks all events of a user. It appears that the user-level privacy
leads to more error than the event-level privacy because a user may have several
events to hide. In practice, most of the work focus on event-level privacy.

There are two ways the Laplace mechanism can be directly utilized for continual
release. The first method divides the privacy budget into several pieces €’ = ¢/T,
and allocates them to each time step . The mechanism samples fresh independent
random noise {, ~ Lap(1/€’) at each time step, and releases a noise count by using
i = 1(¢) + ;. Here, the total volume of noise is T-Lap(T/€), which is a dramatically
large volume of noise that results in inferior utility.

The second method adds independent Laplace noise y; ~ Lap(1/¢€) to each bit
in the stream and at each time step ¢, computes a; = o (¢) + ;. The final noisy count
ist, = Zi a;. In a fixed total time step 7, the introduced noise is Zi 7 ¢i, which is
bounded by O(w). This result is better than that can be achieved by the first
method, but the volume of noise is still too large.

4.3.2 Partition of Dataset

Chan et al. [34] presented a p-sums mechanism which computes the partial sum of
consecutive bits in a stream. The results can be considered as intermediate results
from which an observer can estimate the count at every time step. Laplace noise

is added to a p-sum result rather than an individual count answer. This guarantees
10g3/ 2T

an error bound of O(==

complexity.

), which decreases the linear complexity of noise to log

4.3.3 Iteration

Dwork et al. [69] proposed a continual output transformation algorithm, which
developed an iterative release mechanism to output count. The error is decreased
to 02T,

Georgios et al. [123] argued that event-level privacy will disclose sensitive
information while user-level privacy will destroy the utility of the data in the long
run. They provided a notion of w-event privacy to achieve a balanced privacy target.
They formulated the iteration mechanism by using a sliding window methodology
with two privacy budget allocation schemes. This w-event privacy protects any event
sequence from occurring within any window of w time steps.

4.4 Graph Data Publishing 31
4.3.4 Discussion

Even though continual data publishing is a popular topic in the data mining or
machine learning community, there is still little research work that focuses on the
privacy-preserving perspective. In fact, there are lots of unsolved problems in this
area. For example, the issues of how to release a multiple dimensional dataset
periodically and how to deal with other statistical queries in the continual release
need further exploration.

4.4 Graph Data Publishing

With the significant growth of Online Social Networks (OSNs), the increasing
volumes of data collected in those OSNs have become a rich source of insight into
fundamental societal phenomena, such as epidemiology, information dissemination,
marketing, etc. Most of OSN data are in the form of graphs, which represent
information such as the relationships between individuals. We follow the convention
to model an input OSNs dataset as a simple undirected graph G = (V, E), where
V is the set of nodes and E € V x V is the set of edges. The time of connection
between nodes are defined as the degree. Figure 4.3 shows a graph.

Analyzing those graph data has enormous potential social benefits, but the fact
that the same graph data in OSNs might be used to infer sensitive information
about a particular individual [13] has raised concern among OSN participants. The
analysis of OSNs is a rapidly growing field, and many models require the operation
of subgraph counting, which counts the number of occurrences of a query subgraph
in an input graph. For example, the subgraph counts of k-star and triangle, as well
as the number of edges, are sufficient statistics for several popular exponential
random graph models. Moreover, many descriptive statistics of graphs are functions
of subgraph counts [113].

The privacy issue is more serious for graph data. For transaction dataset records,
at least the attributes are given. While in graph data, the attributes are derived, not
given. For example, given a graph, what are the important attributes to hide? The

Fig. 4.3 Graph data

32 4 Differentially Private Data Publishing: Interactive Setting

Neighboring Graph G’

Fig. 4.5 Node differential privacy

node degree is an obvious attribute. But there can be many others, such as degree
pair of a link, common neighbors between each pair of nodes, etc. These attributes
are all derived. It is unclear what are the attributes the attackers can use to make the
attack. It is extremely difficult to decide what graph attributes can be derived and
need to be hidden.

In this case, two notions of neighboring graph can be defined in the context
of differential privacy for graph data: edge neighboring and node neighboring.
Accordingly, there are two concepts of differential privacy for graph: (a) Edge
differential privacy means adding or deleting a single edge between two nodes in
the graph makes negligible difference to the result of the query. Figure 4.4 shows
the edge differential privacy. (b) Node differential privacy ensures the privacy of a
query over two neighbouring graphs where two neighbouring graphs can differ up
to all edges connected to one node. Figure 4.5 shows the node differential privacy. If
the differential privacy mechanism is adopted in graph data, the research problem is
then to design efficient algorithms to release statistics about graph while satisfying
the definition of differential privacy.

4.4.1 Edge Differential Privacy

The first differential privacy research over graph data was conducted by Nis-
sim et al., who showed how to estimate the number of triangles in a graph with
edge differential privacy [172]. They introduced the idea of instance-dependent

4.4 Graph Data Publishing 33

noise, and utilized the smooth sensitivity, which upper bounds the local sensitivity
tightly, especially when the number of triangles varies smoothly in a neighborhood
of the input graph. They showed how to efficiently calibrate noise in the context of
subgraph counts, based on the smooth sensitivity of the number of triangles. The
results of this technique were further extended by Karwa et al. [113] to release the
counting on k-triangles and k-stars. They achieved e-differential privacy for k-star
counting, and (e, t)-differential privacy for k-triangle counting.

Rastogi et al. [190] studied the release of more general subgraph counts
under edge adversarial privacy, They considered a Bayesian adversary whose prior
knowledge is drawn from a specified family of distributions. By assuming that the
presence of an edge does not make the presence of other edges, they computed a high
probability upper bound on the local sensitivity, and then added noise proportional
to that bound. Rastogi et al.’s method can release more general graph statistics, but
their privacy guarantee protects only against a specific class of adversaries, and the
magnitude of noise grows exponentially with the number of edges in the subgraph.

Hay et al. [95] considered publishing the degree distributions. They showed
that the global sensitivity approach can still be useful when combined with post-
processing of the released output to remove some added noise, and constructed an
algorithm for releasing the degree distribution of a graph, with the edge differential
privacy. They also proposed the notion of node differential privacy and highlighted
the challenges in achieving it.

Zhang et al. [249] claimed that if one can find a isomorphic graph with proper
statistical properties that similar to original graph, the isomorphic graph can be used
to generate accurate query answers. Give a subgraph S, they adopted an exponential
mechanism to search a number of isomorphic copies of S to answer subgraph
queries.

4.4.2 Node Differential Privacy

Node differential privacy is a strictly stronger guarantee, but it is difficult to achieve
because for many natural statistics, the sensitivities resulting from the change of one
node are comparable to graph size.

With the observation that many useful statistics have low global sensitivities on
graphs Gy with small degree 6, the common approach to node differential privacy is
to project the graph G on the degree-bounded graph G,,, and evaluate the statistics
on the G, [27, 117].

One straightforward method is to trunk the graph G by discarding nodes with
degree > 6. Given a query f defined on the trunked graph G, Kasiviswanathan et al.
showed that the smooth sensitivity is bounded by a function of local sensitivity, and
any algorithm that is differentially private on G can then be transformed into one
that is suitable for all graphs [117]. A more efficient method is based on Lipschitz
extension. A function f” is a Lipschitz extension of f from Gy to G if f’ agrees with f
on Gy, and the global sensitivity of f” on G is equal to the global sensitivity of f on

34 4 Differentially Private Data Publishing: Interactive Setting

G, . Blocki et al. [27] proceeded with a similar intuition. They showed that Lipschitz
extensions exist for all real-valued functions, and give a specific projection from
any graph to a particular degree-bounded graph, along with smooth upper bound on
its local sensitivity. Kasiviswanathan et al. [117] proposed efficient constructions for
such extensions for degree distribution as well as subgraph counts such as triangles,
k-cycles and k-stars. These techniques can generate statistics with better accuracy
for graphs that satisfy an expected condition, but may yield poor results on other
graphs. This makes the setting of the degree d a difficult task.

4.4.3 Discussion

Existing methods work reasonably well with edge differential privacy or even node
differential privacy guarantee for basic graph statistics. However, releasing specific
statistics such as cuts, pairwise distances between nodes, or on hyper-graphs, still
remain open issues.

4.5 Summary on Interactive Setting

In interactive settings, the privacy mechanism receives a user’s query and replies
with a noisy answer to preserve privacy. Traditional Laplace mechanisms can only
answer sublinear of n queries, which is insufficient in many scenarios. Researchers
have to provide different mechanisms to fix this essential weakness.

The proposed interactive publishing mechanisms improve performance in terms
of query type, the maximum number of queries, accuracy and computational
efficiency. Upon analysis, we conclude that these measurements in interactive
publishings are associated with one another. For example, given a fixed privacy
budget, a higher accuracy usually results in a smaller number of queries. On the
other hand, with a fixed accuracy, a larger number of queries normally leads to
computationally inefficient mechanisms. Therefore, the goal of data publishing
mechanism design is to achieve a better result that can balance the above mentioned
measurements. In practice, the choice of mechanism depends on the requirement of
the application.

Chapter 5
Differentially Private Data Publishing:
Non-interactive Setting

Non-interactive settings mean all queries are given to the curator at one time.
The key challenge for non-interactive publishing is the sensitivity measurement.
Correlation between queries will dramatically increase the sensitivity. Two possible
methods are proposed to fix this problem: one is decomposing the correlation
between batch queries, which is presented in Sect.5.1, another is publishing a
synthetic dataset with the constraint of differential privacy to answer those proposed
queries. Related methods are presented in the synthetic dataset publishing Sections.

5.1 Batch Queries Publishing

Batch queries publishing refers to the most common non-interactive scenario, in
which a fixed set of m queries F(D) = {fi(D),...,fn(D)} are answered in a
batch [138]. In this scenario, queries may be correlated to one another, so deleting
one record may affect multiple query answers. According to the definition of
sensitivity, correlation among m batch queries leads to a higher sensitivity than
independent queries.

Table 5.1 shows a frequency dataset D with four variables, and Table 5.2 contains
all possible range queries F = {fi,...,fio} that a mechanism will answer.
Deleting any record in D will change at most six query results (column containing x,
in Table 5.1) in F. According to the sensitivity definition in Chap. 2, the sensitivity
of F is 6, which is much higher than the sensitivity of a single query. Therefore,
most researches focus on how to decrease the sensitivity of F.

© Springer International Publishing AG 2017 35
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_5

36 5 Differentially Private Data Publishing: Non-interactive Setting

Table 5.1 Frequency table D Grade | Count | Variable

90-100 |12 X
80-89 |24 X2

70-79 |6 X3
60-69 |7 X4
Table 5.2 m range queries Range query
f X1 |+ x|+ x3 |+ x4
S x|+ x|+ x
f + x|+ x|+ |x
Ja X |+ X
fs + [x |+ x3
Jo X3 |+ | X
S X1
Js X
Jo X3
Jio X4

5.1.1 Laplace

In this situation, Laplace noise can be added in two different ways but both will
introduce high volume of noise. The first method directly adds noise to each query
result. The sensitivity of F is O(n?) and the variance of the noise per answer is
O(n*/€?). The second method adds noise to the frequency table, and then generates
the range query results accordingly. In this case, the sensitivity is 1, but the noise
in F will accumulate more quickly than in the first method. Hence, both methods
introduce a large volume of noise and will lead to inaccurate results, while how fo
reduce noise remains a challenge in batch queries release.

5.1.2 Transformation

One possible means of decreasing noise is to re-calibrate the sensitivity. The
transformation mechanism maps the original dataset to a new structure, in which
the sensitivity of the query set will be adjusted. Noise will be sampled from Laplace
distribution according to the adjusted sensitivity. After adding noise, the noisy
structure is inverted to generate a new dataset, which is ready to answer the query
set. The key issue in the transformation mechanism is to find a suitable structure
which has lower sensitivity.

Xiao et al. [237] proposed a wavelet transformation, called Privelet, on the
dataset to decrease the sensitivity. Privelet applies a wavelet transformation on the

5.1 Batch Queries Publishing 37

Table 5.3 m range queries

Range query

f 1 X |+ x|+ X3 |+ X4
f X1 |+ (X |— X3 [— |x
S X | — |2

Ja X3 | — | X4

frequency dataset D to generate a wavelet coefficient matrix &, in which each entry
pi € & is considered as a linear combination of entries in D. Privelet adds weighted
Laplace noise to each coefficient to create &?*, which is then applied to answer
basic queries in F. Other range queries can be generated by the linear combination
of these basic queries. Table 5.3 shows the basic queries &7* could answer. If we
provide the query of range(x,x3) = x, + x3, the true answer can be generated by
range(xz,x3) = 0.5f; — 0.5f; — 0.5f; and the sensitivity will decrease from 6 to 3.
In this way, the sensitivity of the wavelet coefficient is estimated as 1 4 log, n and
the variance of noise per answer is O((log, n)*/€?), which is much smaller results
than that in the Laplace mechanism.

Li et al. [138-140] proposed the Matrix mechanism which can answer sets of
linear counting queries. The set of queries is represented by a matrix A called
workload, in which each row contains the coefficients of a linear query. Given a
set of queries, the Matrix mechanism defines a workload A accordingly and obtains
noisy answers by implementing the Laplace mechanism. The estimates are then
used on the A to generate estimates of the submitted queries.

The essential element of the Matrix mechanism is to select A to represent the
set of queries. Based on the selection of A, Matrix can be extended to a variety
of approaches. For example, if A is an identity matrix, Matrix can be considered
as a normal Laplace mechanism for batch queries. If A is selected by using Haar
wavelet, it can be extended as Privelet [237].

In their recent paper, Li et al. [137] extended the Matrix framework in a data
aware way. They first partitioned the domain according to the data distribution, then
applied the matrix method in the partitioned domain to generate a noisy estimation
on dataset. The range query could then be answered using the noisy estimation. This
release mechanism diminishes the variation in the query answers. The lower bound
on the error of the Matrix mechanism is analyzed by their subsequent paper [141],
in which they proved that the minimum error achievable for a set of queries is
determined by the spectral properties of the queries when they are represented in
matrix form.

Similarly, Huang et al. [102] transformed the query sets to a set of orthogonal
queries to reduce the correlation between queries. The correlation reduction helps
to decrease the sensitivity of query set. Yuan et al. [245] presented a low-rank
mechanism (LRM), an optimization framework that minimizes the overall error of
the results for a batch of linear queries.

38 5 Differentially Private Data Publishing: Non-interactive Setting
5.1.3 Partition of Dataset

There are other mechanisms of pubishing batch queries, such as partition and
iteration. Kellaris et al. [122] decomposed the dataset columns into disjoint groups
and added Laplace noise to smooth each group’s average count, setting the result as
the new count of every column in the group. The final result is generated using the
new column’s count. Because the maximum number of original counts in a group
affects by a user is limited, the sensitivity of each group is decreased and the Laplace
noise required for e-differential privacy is also diminishes. The advantage of this
mechanism is that it can limit the sensitivity in the numerical dataset.

5.1.4 Iteration

By recursively approximating the true answer, the noise in the output can be
effectively diminished. Xiao et al. [235] aimed to decrease the error of the released
output. They argued that the Laplace mechanism adds noise with a fixed scale to
every query answer regardless value of the answer. Thus, queries with small answers
have much higher expected error, which defined as relative error. In practice, larger
answers can tolerate more noise and for some applications, relative errors are more
important than absolute errors.

To decrease the relative error, Xiao et al. proposed a mechanism named iReduct,
which initially obtains rough error estimations of query answers and subsequently
utilizes this information to iteratively refine these error evaluations. The algorithm
consists of three stages: (1) divides € into two parts and utilizes the first part
to perform Laplace mechanism to answer those queries; (2) estimates new noise
according to the noise answers; (3) identifies query answers with small but relatively
large reduced noise iteratively until errors can be diminished no further. In general,
iReduct takes advantage of parallel composition, which decreases the errors of the
query answers.

5.1.5 Discussion

The key problem in batch query publishing is how to decrease the sensitivity
between correlated queries. Currently, transformation is the most popular way to
tackle the problem. Current works mainly focused on range queries, and developed
appropriate structures to answer linear combination of those queries. More types of
structures need to be developed to answer various types of queries. Iteration and
partition of dataset may not be effective on the correlation decomposition, but they
have the potential to answer more types of queries.

5.2 Contingency Table Publishing 39
5.2 Contingency Table Publishing

Contingency table is a popular data structure for data analysis in the medical science,
and social sciences fields [80]. It displays the frequencies of the combined attributes
in a dataset. Suppose D is a frequency dataset of 2¢ possible combinations of
these attributes. The curator does not normally release the entire contingency table
because when d is large, the contingency table is likely to be sparse and noise
may outweigh the true answers of queries. Instead, the curator will release subsets
containing parts of attributes that are defined as the k-way marginal frequency table
(k < d). One contingency table may contain several overlapping marginal frequency
tables. Privately answering marginal queries is a special case of counting queries.
For example, it may have the form, “What fraction of individual records in D
satisfies certain properties of dy and dy?”

Table 5.4 shows a contingency table with d = 4. Each record ; has a combination
of these four attributes, and there are 2* = 16 possible combinations. When k = 2,
as shown in the gray area in Table 5.4, the differential privacy mechanism only needs
to release 2> = 4 combination of attributes. The chosen of two attributes might
be {dy, d>}, {d»,d3}, {d3,ds} and {d4, d;}. The contingency table release not only
requires the privacy of k-way marginal frequency tables, but also the consistency
of these tables. For example, the counts of the same attributes in different marginal
frequency tables should be equal and should not violate common senses.

5.2.1 Laplace

Two methods exist to release k-way marginal frequency tables, both of which
involve the direct implementation of the Laplace mechanism. The most intuitive
method adds noise into the frequency of the whole contingency table [118]. Users
can create any k-way marginal frequency table from the noisy contingency table
and maintain the consistency of all tables. However, this method leads to noise
magnitude of O(29). When d is large, the noise will increase dramatically and
renders the perturbation results unrealistic.

The other method is to extract the marginal frequency tables from the original
dataset and add the noise to the marginal frequencies. This method achieves
excellent accuracy when n is large compared to the number of marginal tables,

Table 5.4 Contingency table ndex |di |dy |ds |ds | Count

with 2-way marginal -

frequency index;y [0 0 |0 |0 |4
index, |0 1 0 1 3

index; |1 0 1 0 3

indexis | 0 1 1 1 1

40 5 Differentially Private Data Publishing: Non-interactive Setting

but it can lead to the violation of consistency. For example, after adding noise, the
maximum score may be lower than the average score. Based on the weaknesses of
the traditional Laplace mechanism, researchers have attempted to find new solutions
to the accuracy and consistency problems. The most popular solutions are using the
iteration and transformation mechanisms.

5.2.2 Iteration

Ding et al. [58] proposed a differentially private data cubes to generate marginal
tables. The proposed method first organize all possible marginal frequency tables
in a lattice. With a d-dimensional binary dataset, there are 2¢ 2-ways marginal
frequency tables in the lattice. The method then iteratively selects which tables
should be released. In each iteration, it traverses all 2¢ tables in the lattice and
greedily selects one. Obviously, this method requires time polynomial in 2¢ and
is impractical. Qardaji et al. [186] improved the above method in a practical way.
Instead of generating 2¢ tables, they choose sets of attributes and use them as a
synopsis from which one can reconstruct any desired k-way marginal frequency
tables.

To improve accuracy, Chandrasekaran et al. [35] proposed an iterative dataset
construction mechanism, which maintains a sequence of queries, f; (D), /2(D), ...,
that give increasingly improved approximations to the F(D). The algorithm is
capable of answering marginal queries with a worst-case accuracy guarantee for
dataset containing poly(d, k) records in time exp(o(d)).

5.2.3 Transformation

Similar to histogram publishing, contingency table publishing also meets with
the problem of inconsistency. Barak et al. [14] proposed an algorithm to retain
consistency by transforming the contingency table into a Fourier domain. This
transformation serves as a non-redundant information encoding method for marginal
tables. Since any set of Fourier coefficients corresponds to a contingency table,
adding noise in this domain does not violate the consistency. Linear programming
is applied to obtain a non-negative, integrated marginal frequency table with the
given Fourier coefficients. Without compromising the differential privacy, a set of
consistent marginal frequency tables was produced.

5.3 Anonymized Dataset Publishing 41
5.3 Anonymized Dataset Publishing

The anonymized dataset publishing retains the format of the original records. This
is an attractive property as in some scenarios, people need to know the details
of attributes to determine further analysis methods. Data release can not achieve
this goal as users are only allowed to access the dataset by submitting queries.
The anonymized dataset publishing can guarantee that the published records have
the same attributes with the original records. The problem of anonymized dataset
publishing can be stated as follows: suppose the input dataset is D with d attribute
d;, the curator would like to publish a D with the same attributes.

The anonymized dataset publishing has a long research history and has been
investigated heavily in the privacy-preserving community. Differentially private
anonymized dataset publishing, however, is a tough problem as publishing a specific
record is considered to be the violation of differential privacy. Researchers meet with
the difficulty that on the one hand, they have to release specific records. On the other
hand, they should meet the requirement of differential privacy.

To address the difficulty, Mohammed et al. [161] observed that if the anonymiza-
tion process follows the requirement of differential privacy at each step, the result
will satisfy with differential privacy. Based on the observation, they proposed an
anonymized algorithm DiffGen to preserve privacy for data mining purpose. The
anonymized procedure consists of two major steps: partition and perturbation.
Every attribute of the original dataset is generalized to its topmost state. The
partition step then splits these attributes into more specific groups according to
attribute taxonomy trees. It applies an exponential mechanism to select a candidate
for specialization. After that, the perturbation step adds noise to the true count of
each records group.

Table 5.5 shows an example on a transaction dataset. To release this dataset,
DiffGen generalize each attribute to its topmost according to pre-defined taxonomy
trees, which are shown in Fig. 5.1. Specifically, for the attribute Job, Fig. 5.2 shows
that all types of jobs are generalized to Any__Job and then partitioned according
to the job taxonomy tree. Similarly, all ages are generalized to [18—60) and then
are split into [18—40) and [40-65). In Fig.5.2, the root of the partition tree is
the count of full generalized records (Age = [18-65), Job = Any__Job). Let the

Table 5.5 Transaction Job Age | Class

dataset :
Engineer |34 Y
Lawyer |50 |N
Engineer |38 N
Lawyer |33 Y
Dancer 20 Y
Writer 37 N
Writer 32 Y
Dancer 25 N

42 5 Differentially Private Data Publishing: Non-interactive Setting

Job
Any Job
Age
Professional Artist [18-65)
Engineer =~ Lawyer Dancer Writer [18-40) [40-65)
(a) (b)
Fig. 5.1 Taxonomy tree examples. (a) Taxonomy tree of job. (b) Taxonomy tree of age
[Job [Age Class | Count |
[Any Job [[18-65 | 4YaN | 8 |
Any_Job> {Professional, Artist}
[
[Professional | [18-65) [2Y2N 4]
[18, 65)> {[18, 40), [40, 65)} [18, 65)>{[18, 40), [40, 65)}
[1
[Professional | [18-40) [2YIN[3] [Professional | [40-65) [OYIN] 1] [Artist [[18-40)[2Y2NT4] [Artist [[40-65) [0YON][0]
[Professional | [18-40) [Y[2+1=3] [Professional | [40-65) [Y[0+0=0] [Artist [[18-40)[Y[2-2=0] [Artist [[40-65) [Y]0+2=2]
[Professional [[18-40) [N[1-1=0] [Professional | [40-65) [N]1+2=3] [Artist [[18-40) [N[2+1=3] [Artist | [40-65) [N]0+0=0]

Fig. 5.2 Anonymized dataset example

Table 5.6 Set-value dataset TID | Ttems
1 {h. I, I, 14}
5} {L, L}
f3 {L}
ty {1, b}
Is {L}
15 {3

t7 . b, I3, 1}
I b, L, 14}

first specialization be Any__Job— Professional, Artist, the DiffGen creates two new
partitions under the root and splits data records between them. The partition is
repeated until records are specified to a predefined level. Laplace noise is then added
to the count of each records group.

The DiffGen is the initial work that bridges the gap between anonymization
and the differential privacy. It is an efficient algorithm with the time complexity
of O(nlogn). In addition, because the publishing is for data mining purpose, the
accuracy is measured by the performance of the decision tree.

Similarly, Chen et al. [43] follows the same strategy to deal with another type
of transaction dataset, set-value data. It refers to the data in which each record is
associated with a set of items drawn from a universe of items. Table 5.6 illustrates
an example of set-value data.

5.4 Synthetic Dataset Publishing 43

Hierarchy Cut Records
Liosa t, b, b, by, b, t, U, tg

[1
LoTho [totetste | Llsa o] L oo Tpad | tibatnts |

Expend I3 4
I 1 I 1
| {L} | tg |1H {I} | G, ts |3H L) |t |2] | HEP S |Q)H 111;2:,13:I4|| tl>t7;t8| I:|.2¢,14| t |
/
,,,,,,, [| 1
Noise Size [L L} [o] 0] L L1 [& [0][{l, LI, L} | 6t [3]
Fig. 5.3 Anonymized set-value dataset example
Fig. 5.4 Taxonomy tree L, 23,4
examples
Ly, I(|3,4}
l1 lz l3 l4

Chen et al. proposed DiffPart to publish the set-value data. The difference
between DiffPart and DiffGen is that the DiffPart partitions the dataset based on
a context-free taxonomy tree while DiffGen utilizes the taxonomy tree based on the
underground dataset. Figure 5.3 shows an example of DiffPart, and Fig. 5.4 is the
taxonomy tree of the itemset.

The DiffPart has the computational time complexity of O(n - |I|). It publishes
dataset for frequent mining purpose, so the accuracy is measured based on the
accuracy of frequent mining.

5.4 Synthetic Dataset Publishing

The synthetic dataset follows the distribution of the original dataset but not
necessary share the same format. It was considered as a difficult problem for a
long time due to the large noise introduced. It leads to an inaccurate output. In this
perspective, publishing a synthetic dataset by using Laplace mechanism is hard.

5.4.1 Synthetic Dataset Publishing Based on Learning Theory
5.4.1.1 Learning Theory in Differential Privacy

Learning theory is one of the main tools used in differential privacy. The most
prevalent concept is Probably Approximately Correct (PAC) learning. It helps to
measure the lower bound on sample complexity and accuracy, both of which are
widely used in differential privacy to evaluate the performance of private algorithms.

44 5 Differentially Private Data Publishing: Non-interactive Setting

Suppose a set of samples D drawn from a universe 2 . The samples are labeled
according to a concept ¢ : Z — {0, 1} from a concept class . The goal of the
learning process is to find a hypothesis & : 2~ — {0, 1} which agrees with ¢ on
almost the entire universe. To quantify the accuracy guarantee o of the learning
algorithm, a lower bound of sample complexity is provided to evaluate how many
samples in r are needed to guarantee an accuracy of «.

A concept ¢ : 27 — {0, 1} is a predicate that labels samples by either 0 or
1. A group of concepts is defined as a concept class €. The learning algorithm is
successful when it outputs a hypothesis 4 that approximates the target concept ¢
over samples from D. More formally,

Definition 5.1 (PAC Learning) Algorithm <7 is a PAC learner for a concept class
¢ over Z using hypothesis class H if for all concepts ¢ € ¥, all distributions 2
on 2, given an input of n samples and given that each 7; is drawn i.i.d. from D,
algorithm .7 outputs a hypothesis 4 € H satisfying

Prlerrorp(c,h) <a] > 1— 8. 5.1

The probability is taken over the random choice of the samples in D.

The concept quantifies the guarantee of an algorithm in terms of a lower bound
on the dataset size. The bound on the dataset size is the sample complexity of
an algorithm and « is the accuracy. These two measurements on algorithms are
corresponding to each other and are considered to be basic utility measurements in
differentially private data release, publishing and analysis.

Kasiviswanathan et al. [115] defined a private PAC learning as a combination
of PAC learning and differential privacy. Wang et al. [225] confirms the result that
a problem is privately learnable if there is a private algorithm that asymptotically
minimizes the empirical risk. These theories build a bridge between learning theory
and differential privacy, so that these traditional learning theories can be applied in
data release, publishing and analysis.

5.4.1.2 Synthetic Publishing

With the theoretical development in differential privacy, the inaccuracy problem
can be partly solved by introducing learning theory to the synthetic dataset release.
The findings of the principal paper by Kasiviswanathan et al. [115] ensured that
almost anything learnable can be learned privately. In addition, Blum et al. [29]
subsequently claimed that the main purpose of analyzing a dataset is to obtain
information about a certain concept. If the query on a published dataset is limited
to a particular concept, the learning process can ensure the accuracy of the query
output.

Kasiviswanathan et al. and Blum et al.’s results linked the synthetic dataset
with the learning process. The query set F on synthetic dataset are associated with
Boolean predictions of a concept set 4. A synthetic D is considered as a hypothesis

5.4 Synthetic Dataset Publishing 45

Data Universe

Fig. 5.5 Synthetic dataset release

that satisfies %’. For every concept ¢ derived from %, we consider it as a query
and the distance between the query result in D and D is limited by an accuracy
parameter «. The release target is to search for a good hypothesis D fitting for €.
The publishing objects are (1) to find a tight bound on the accuracy «, and (2) to
release the result efficiently.

Accuracy

Kasiviswanathan et al. [115] proposed an exponential based mechanism to search a
synthetic dataset from the data universe that can accurately answer 4. The search
process is based on the assumption that the original dataset and the synthetic dataset
are sampled from a same universe 2. Figure 5.5 shows that after creating multiple
candidate datasets from the data universe, the mechanism will search the most
suitable D based on the exponential mechanism. The authors claimed that for any
class of % and any dataset D > {0, 1}¢, if the size of the dataset satisfies

1 1
o (dvccg) log(1) . log 3) |
- €’ €x
a accuracy can be successfully achieved. The mechanism is only suitable for
discrete domain.

Blum et al. [29] applied a similar exponential based mechanism, net mechanism,
to generate a synthetic dataset over a discrete domain. They searched for several net
datasets N(%) that could answer queries from %". The net mechanism provides a
lower bound of the accuracy:

0> 0 (;12/310g1/3m10gl/3 |5&”|) '

el/3

46 5 Differentially Private Data Publishing: Non-interactive Setting

Subsequent works made progress in proving accuracy. Dwork et al. [74] utilized
boosting to improve the accuracy of the release dataset and improved the accuracy

/ g 2/3
lower bound to 0(%). Hardt et al. [91] combined the exponential
mechanism with a multiplicative weight updating approach to achieve a nearly
optimal accuracy guarantee.

Efficiency

Although these mechanisms provide a tight bound on accuracy, none of them can
be performed in polynomial time. The time cost is super-polynomial in the size of
universe 2" and the concept class €. It is |2 [P 12 1€] Blum et al. [29] claimed
that if a polynomial time is required, the definition of privacy has to be relaxed. This
claim was confirmed by Dwork et al. [71], who proved that only after relaxing the
notion of € to (€,) could the run-time be linear in the size of the data universe and
the size of the query set.

Moreover, Ullman et al. [221] showed that no algorithm can answer more than
O(n?) arbitrary predicate queries in polynomial time. The Laplace mechanism
is almost optimal among all computationally efficient algorithms for privately
answering queries. This result suggests that for privately query release, it is difficult
to design mechanisms to answer arbitrary queries efficiently. Classes of queries that
have a particular structure is what we can exploit.

Gaboardi et al. [85] presented a practical way to deal with the inefficient
problem for high dimensional datasets. The algorithm packages the computationally
hard step into a concisely defined integer program, which can be solved non-
privately using a standard solver. The optimization step does not require a solution
that is either private or exact: it can be quickly solved by existing, off-the-shelf
optimization packages quickly in practice. Even though the authors do not solve the
inefficient problem in synthetic data release, their work provides a practical way to
compute high dimensional data in practice.

Discussion

Table 5.7 summarizes key works on the synthetic dataset in terms of accuracy,
efficiency and privacy level. For simplicity, sensitivity is predefined as 1, the
dependence on S is omitted and the run-time only considers the size of the universe.

In summary, computational learning theory extends the research work on
synthetic data release, proving it is possible to maintain an acceptable utility
while preserving differential privacy. Nevertheless, the issues of how to reduce the
computational complexity, and how to provide various types of queries on these
datasets remain as challenges.

5.4 Synthetic Dataset Publishing 47

Table 5.7 Synthetic data release comparison

Mechanism Accuracy Efficiency Privacy
. n2310g!/3 mlog!/® &

Net mechanism [29] o(——pm—) exp(Z) (e)

DNR [71] O(X L1212 Imy exp(2) (€.6)

DRV [74]) exp(2) (€.5)

MWP [91] (M)IB exp(2) ¢

€n

5.4.2 High Dimensional Synthetic Dataset Publishing

Neither anonymized dataset publishing nor learning theory based publishing can
effectively handle the high-dimensional dataset. For the anonymized method, when
the input dataset contains many attributes, existing anonymized method will inject
a prohibitive amount of noise, which leads to an inferior utility. For the learning
theory based method, the computational complexity is exponential to the dimension
of the dataset, making the publication infeasible to high-dimensional dataset. One
promising way to address the high dimensional problem is to decompose high
dimensional data into a set of lower dimensional marginal datasets, along with an
inference method that infers the joint data distribution from these marginal datasets.

Zhang et al. [248] followed the above rationale and applied Bayesian network to
deal with the high dimensional problem. They assumed that there are correlations
between attributes. If these correlations can be modeled, the model can be used
to generate a set of marginals to simulate the distribution of the original dataset.
Specifically, given a dataset D, they first construct a Bayesian network to model the
correlations among the attributes in D. This model will approximate the distribution
of data in D using a set of low-dimensional marginals of D. After that, they inject
noise into each marginal to ensure differential privacy. These noisy marginals and
the Bayesian network are used to build an approximation of the data distribution
of D. Lastly, they sample records from the approximate distribution to construct
a synthetic dataset. The disadvantage of the solution is that it consumes too
much privacy budget in the Bayesian network constructing process, making the
approximation of the distribution inaccurate.

Chen et al. [44] addressed the disadvantage by proposing a clustering based
method. They first learn the pairwise correlation of all attributes and generate
a dependency graph. Secondly, they apply the junction tree algorithm to the
dependency graph to identify a collection of attribute clusters to derive all the noisy
marginals. At last, they make use of the noisy marginal tables and the inference
model to generate a synthetic dataset. Comparing with [248], they have limited
access to the dataset in the two steps, saving the privacy budget to obtain a better
result in the last step.

48 5 Differentially Private Data Publishing: Non-interactive Setting
5.5 Summary on Non-interactive Setting

The interactive setting has attracted attention due to advances in statistical databases.
In interactive settings, the privacy mechanism receives a user’s query and replies
with a noisy answer to preserve privacy. Traditional Laplace mechanisms can only
answer O(n) queries, which is insufficient in many scenarios. Researchers have to
provide different mechanisms to fix this essential weakness.

The proposed interactive publishing mechanisms improve performance in terms
of query type, the maximum number of queries, accuracy, and computational
efficiency. Upon analysis, we conclude that these measurements in interactive
releases are associated with one another. For example, given a fixed privacy budget,
a higher accuracy usually results in a smaller number of queries. On the other hand,
with a fixed accuracy, a larger number of queries normally leads to computationally
inefficient mechanisms. Therefore, the goal of data publishing mechanism design is
to achieve a better result that can balance the above mentioned measurements. The
choice of mechanism depends on the requirement of the application.

High sensitivity presents a big challenge in non-interactive settings. Batch query
publishing methods can only publish limited types of queries. Publishing a synthetic
dataset seems appealing because, in some scenarios, people require details of the
attributes to determine further analysis methods. The research on synthetic data
publishing, however, is still in its early stages and there are many open problems
in this area. The essential problem is efficiency. Given most publishing mechanisms
need to sample datasets from the entire data universe, it is hard to search for a
suitable dataset in polynomial time.

Another problem is that synthetic dataset publishing can only publish datasets for
particular purposes. For example, an anonymization dataset focuses on a decision
tree algorithm, the published dataset obtains an acceptable result for decision tree
tasks, yet the proposed method does not guarantee the performance for other types
of tasks. Learning-based methods have the same disadvantage, or worse, as they
only guarantee learning performance for a particular class. Publishing a dataset for
multiple purposes needs further investigation.

The third problem is dealing with high-dimensional datasets. Even though [248]
and [44] have undertaken some initial work, they both consume too much of
the privacy budget when building the distribution model, making the results less
accurate than that of lower-dimensional datasets.

Chapter 6
Differentially Private Data Analysis

Privacy is an increasingly important issue in a wide range of applications, and
existing non-private algorithms need to be improved to satisfy the requirement
of privacy preserving. These non-private algorithms can be data mining, machine
learning or statistical analysis algorithms. The straightforward way to preserve the
privacy is to incorporate the differentially private mechanisms, such as Laplace or
exponential mechanism, into existing algorithms. We consider this incorporation as
differentially private data analysis, which is an important research direction that
attracts significant research attention.

Differentially private data analysis aims to publish an approximately accurate
analysis model rather than query answers or synthetic datasets. The essential idea is
to extend the current non-private algorithm to a differential privacy algorithm. This
extension can be realized by several frameworks, which can be roughly categorized
as a Laplace/exponential framework and a Private Learning Framework. Table 6.1
shows the differentially private data analysis problem characteristics, in which
researchers concerned with accuracy and computational efficiency of these two
frameworks. As different papers use diverse terms to describe the output, terms
“model” and “algorithm” are interchangeable in this section.

6.1 Laplace/Exponential Framework

The most common extension method is to incorporate Laplace or exponential
mechanisms into non-private analysis algorithms, and hence it is referred to as
Laplace/exponential framework.

© Springer International Publishing AG 2017 49
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_6

50 6 Differentially Private Data Analysis

Table 6.1 Differentially private data analysis problem characteristics

Differentially private data analysis

The nature of input data Transaction
The nature of output data Analysis models/algorithms
Analysis framework Laplace/exponential framework, private learning
Analysis mechanism Laplace/exponential, learning process
Challenges Accuracy, computational efficiency
Fig. 6.1 SuLQ interface Algorithm
Curator
SulLQ
A
Operation:
Add Noise 7
D
f (D),
| ——
Fig. 6.2 PINQ interface Algorithm
Curator PINQ
O
Operations: f
Add Noise
Dataset D f() Exponential |
atase ‘D) | Partition D
N—

6.1.1 SulQ and PINQ Interface

As not every analyzer is an expert in privacy, researchers have developed a number
of standard interfaces that automatically bring differential privacy into non-private
algorithms. Two essential interfaces satisfied the Laplace/exponential framework:
Sub-Linear Queries (SuLQ) interface [28] and Privacy Integrated Queries (PINQ)
interface [155]. Both assume that non-private algorithm can be decomposed into
operations, which can be considered to be queries set F. Each operation f € F is
submitted to the interfaces, and the interfaces replied with randomized results in
the differential privacy constraint. After combining these randomized query results,
the algorithm provides a differentially private result. Figures 6.1 and 6.2 shows two
interfaces.

6.1.1.1 SulQ

Sub-Linear Queries (SuLQ) output randomized continuous and Boolean values
for each input. It enforces the differential privacy by adding calibrated noise into
each operation. The analyzer utilizes these noisy operations to generate more
sophisticated algorithms.

6.1 Laplace/Exponential Framework 51

One of the limitations of SuLQ lies in its lack of the exponential mechanism.
When dealing with selection operation of an algorithm, SuLQ is unable to provide
sufficient privacy guarantees [83]. Therefore, SuLQ needs further improvement to
satisfy diverse algorithms.

6.1.1.2 PINQ

Privacy Integrated Queries platform (PINQ) [155] is an interface that provides more
operations than SuLQ. It uses Laplace noise on numeric queries and exponential
mechanism on selection operations. It not only defines the numeric queries such
as count (NoisyCount), sum (NoisySum) and average (NoisyAvg) with
independent noise, but also provides an operation Partition that allows queries
to execute on disjoint datasets. The Partition operation takes advantage of
parallel composition by partitioning the dataset into multiple disjoint sets. Its privacy
level is determined by the maximal € in these sets. Recently, Proserpio et al. [184]
extended the platform into wPINQ (for weighted PINQ), which uses weighted
datasets to avoid the worst case sensitivities.

In summary, based on these private operations, SuLQ and PINQ can create
private algorithms such as ID3 classifier, singular value decomposition, k-means,
and statistical query learning models [28]. However, as these interfaces do not
consider the objectives and properties of various algorithms, the performance of
the analyzed results may be suboptimal.

6.1.2 Specific Algorithms in the Laplace/Exponential
Framework

We list some examples of algorithms to illustrate the implementation of the
Laplace/Exponential framework. Some of them apply an interface such as SulLQ,
while some introduce the Laplace and exponential mechanisms into the algorithm
directly. These algorithms are usually associated with specific machine learning or
data mining tasks, which are categorized into Supervised Learning, Unsupervised
Learning and Frequent Itemset Mining.

6.1.2.1 Supervised Learning

Supervised learning refers to the prediction methods that extract models describing
data classes via a set of labeled training records [108]. As one of the most popular
supervised learning algorithms, decision tree learning, has been extensively studied
in Laplace/exponential frameworks.

52 6 Differentially Private Data Analysis

Decision trees are iterative processes that recursively partition the training
sample to build a tree with each label representing a leaf. Assuming there is an input
dataset D with d categorical attributes {ay, ...ay}, a decision tree is constructed
from the root that holds all the training records then the algorithm chooses the
attribute g; that maximizes the information gain to partition the records into child
nodes. The procedure is performed recursively on each subset of the training records
until a stop criteria is meet.

The first differentially private decision tree algorithm was developed on the SuLQ
platform [28]. Noise is added to the information gain, and an attribute a; with
noisy information gain that is less than a specified threshold is chosen to partition
a node. However, as information gain is evaluated separately for each attribute in
each iteration, the privacy budget is consumed several times in each iteration, which
results in a large volume of noise. In addition, SuL.Q fails to deal with continuous
attributes. If those attributes are simply discretized into intervals, the basic concept
of differential privacy is violated, because the split values in continuous attributes
would reveal information about the records.

To overcome the SuLQ platform’s disadvantages, Friedman et al. [83] improved
the algorithm in two ways. First, they implemented an exponential mechanism
in the attribute selection step. The score function is defined by the information
gain or the gain ratio. The attributes with a top score have a higher probability of
being selected. In this way, less of the privacy budget is consumed than by SuLQ.
Second, the proposed method can deal with continuous attributes. An exponential
mechanism is employed to select every possible splitting value and the continuous
attribute’s domain is divided into these intervals. Compared to SuLQ, they obtain
better performance.

Jagannatham et al. [104] provided an algorithm for building random private
decision trees, which randomly select attributes to create nodes. The algorithm first
creates a tree in which all the leaves are on the same level and then builds a leaf
count vector. Once the independent Laplace noise is added to the count vector,
a differentially private random decision tree can be generated from the noisy leaf
vector. The algorithm iteratively produces multiple random decision trees and uses
the ensemble method to combine these trees. As the attribute is randomly selected,
this step saves the privacy budget; however, as each tree’s magnitude is scaled up
with the number of trees in the final ensemble step, the utility of the ensemble
remains a problem.

Rana et al. [188] proposed a practical approach to ensemble decision trees in a
random forest. They do not strictly follow the notion of differential privacy, which
keeps the neighboring data distribution approximately invariant. Instead, they only
keep the statistic features invariant. A privacy attack model is defined to prove the
reliability of the proposed decision tree. As less budget has been consumed in the
ensemble process, this relaxation of differential privacy can lead to higher utility
compared to other algorithms.

Discussion Differentially private decision tree algorithms were the earliest algo-
rithms to be investigated in the differential privacy community. Table 6.2 compares

6.1 Laplace/Exponential Framework 53

Table 6.2 Comparison of supervised learning methods

Typical

Difficulty Key methods papers Advantages Disadvantages
Privacy budget | Add noise to [28] Easy to implement Noise will be high due
has to be information gain to privacy budget
COHSPmCd. arrangement in
multiple times attribute selection

Use exponential | [83] Save part of privacy | Still has high noise

mechanism to budget in the attribute

select attribute selection

Select attribute [104, 188] | Does not consume Privacy budget will be

randomly privacy budget during | largely consumed in

attribute selection the ensemble process

most prevalent differentially private methods in decision trees. The advantage of
this series of methods is that they are concise and easy to implement. However,
because tree-based algorithms need to select split attributes multiple times, the
privacy budget is quickly consumed, which incurs a huge utility loss. This drawback
stems from decision tree building and is not easy to deal with. Nowadays, one of the
most popular ways to design differentially private supervised learning algorithms is
to apply a private learning framework.

Algorithm 1 Basic k-means Algorithm
Require: points 7y, .. .,r,.
Ensure: k centers {vy, ..., v} with arranged points
repeat
1. Create k clusters by assigning each point to its closest center;
2. Re-calculate the center of each cluster;
until centers do not change

6.1.2.2 Unsupervised Learning

As a typical unsupervised learning method, clustering algorithms group unlabeled
records into clusters to ensure that all records in the same cluster are similar to each
other. Assume the input is a set of points, ry,...,r,, the clustering output is k centers
{v1,..., v} and assigned points.

A basic k-means algorithm is formulated by Algorithm 1. The aim of differential
privacy clustering is to add uncertainty into the center v and the number of records
in each center. To achieve this goal, noise is added in Step 1 in Algorithm 1. In
fact, adding noise to cluster centers is impractical because the sensitivity of the
cluster center will be quite large as deleting one point will totally change the center.

54 6 Differentially Private Data Analysis

Therefore, the challenge for clustering is to evaluate and minimize the sensitivity of
the cluster centers.

Nissim et al. [172] used local sensitivity with k-means clustering to circumvent
the large sensitivity problem, by relying on the following intuition. In a well-
clustered scenario, a point with noise should have approximately the same center
as its previous center. In addition, moving a few “well-clustered” records would not
ultimately change the centers. As such, they define a local sensitivity to measure
the record-based sensitivity of the cluster center, which is much lower than the
traditional global sensitivity. Since the value of local sensitivity is difficult to
measure, they provide a sample aggregate method to approximate local sensitivity.

Feldman et al. [79] proposed a novel private clustering by defining the private
coresets. A coreset P is a small weighted set of records that captures some geometric
properties of these records. They use the private coreset to preserve differential
privacy for k-median queries. When calculating what is the sum of distances from P
to some other records in set R, the input set R can be transferred under the boundary
of differential privacy to a private coreset P, in which k-median queries can easily
be handled. Because the coreset P is differentially private, the clustering algorithm
performed on P also satisfies differential privacy.

Based on local sensitivity, Wang et al. [227] implemented subspace clustering
algorithms. They introduce Laplace mechanism into an agnostic k-means clustering,
and an exponential mechanism into Gibbs sampling subspace clustering algorithm.
Their subsequent paper, Wang et al. [228] adopted a Johnson-Lindenstrauss trans-
form to guarantee differential privacy in a subspace clustering algorithm. The
Johnson-Lindenstrauss transform can reduces the dimensions of the dataset, making
the clustering problem practical, as well as preserving the distance between each
record.

Discussion In general, even some differentially private platforms such as
SuLQ [28], PINQ [155], Privgene [251], Gupt [162] can automatically implement
clustering algorithms. They all assume that the sensitivity of the cluster centers
has been predefined. Even though local sensitivity can partially solve the problem,
further reducing sensitivity still remains a challenge. Table 6.3 illustrate current
differentially private unsupervised methods.

6.1.2.3 Frequent Itemset Mining

Frequent itemset mining aims to discover itemsets that frequently appear in a dataset
D. Suppose I is the set of items in D, and an itemset refers to a subset of 1. Let each
record r; € D denote as a transaction that contains a set of items from /. A frequent
itemset refers to a set of items whose number of occurrences in transactions is above
a threshold, and the proportion of supporting transactions in the dataset is defined as
the frequency. Given an itemset [;, if transaction r; contains I;, we say r; supports /;,
and the proportion of supporting transactions in the dataset is defined as the support

6.1 Laplace/Exponential Framework 55

Table 6.3 Comparison of unsupervised learning methods

Typical
Difficulty Key methods papers | Advantages Disadvantages
High sensitivity | Use local sensitivity | [172, Decreases the level | Local sensitivity
of clustering 227] of the sensitivity may not be easy to
centers estimate
Johnson- [228] Guarantees Johnson-
Lindenstrauss differential privacy | Lindenstrauss
transform while retaining transform is only
distance between valid for norm 2
points distance
measurement

of ;. An itemset with a frequency larger than the predefined support threshold is
called a frequent itemset or a frequent pattern.

Let U represent all frequent itemsets, where the topk most frequent itemsets in U
should be released under differential privacy guarantee. Laplace noise is normally
added to the frequency; however, the main challenge is that the total number of
itemsets is exponential to the number of items: If I contains #n items, the number of
all possible itemsets is |U| = Zle (). Decreasing the number of candidate itemsets
is a major research issue in differentially private frequent itemset mining.

Bhaskar et al. [24] solved the problem by providing a truncated frequency to
reduce the number of candidate itemsets. They proposed an algorithm that uses the
exponential mechanism to choose the top-k itemsets. The score function of each
candidate is the frequency defined as p(U) = max(p(U), px — y), where py is the
frequency of the k-th most frequent itemsets and y € [0, 1] is an accuracy parameter.
Every itemset with a frequency greater than p; — y is computed as its normal
frequency p(U) while the frequency of the rest is truncated to p;—y. All the itemsets
with frequencies of p; — y are grouped into one set, and the algorithm uniformly
selects itemsets from this set. In this way, the computational cost is significantly
reduced.

The advantage of the truncate frequency is that it could significantly decrease the
size of candidate itemsets. However, it is only applicable when k is small, otherwise,
the accuracy parameter y might be larger than g;. Another weakness is that the top-k
itemsets should be predefined as length, which affects the flexibility of the frequent
itemset mining.

To address these weaknesses, Li et al. [144] proposed an algorithm, PrivBasis,
which introduces a new notion of basis sets to avoid the selection of top-k itemsets
from a very large candidate set. Given some minimum support threshold, 6, the
authors construct a basis set Z = By, B, ..., so that any itemset with a frequency
higher than 0 is a subset of basis B;. They introduce techniques for privately
constructing basis sets, and for privately reconstructing the frequencies of all subsets
of B; with reasonable accuracy.

The PrivBasis algorithm releases arbitrary length itemsets and ensures high
accuracy, but generating basis sets B is not easy. Furthermore, when the length of

56 6 Differentially Private Data Analysis

itemset / and the number of basis sets w are large, the cardinality of the candidate set
is still too big to handle. Hence, how to efficiently decrease the size of the candidate
set is still a challenge.

Zeng et al. [246] utilized a random truncated method to decrease the number of
candidate itemsets. They propose an algorithm that randomly truncates transactions
in a dataset according to a predefined maximal cardinality. The algorithm then
iteratively generates candidate itemsets by the a priori property, and perturbs the
support of candidate itemsets.

Lee et al. [134] proposed a FP-tree based frequent itemset mining algorithm.
The propose algorithm first identify all frequent itemsets. The algorithm does not
know their supports, but only that their supports are above the threshold. Using
this information, the algorithm builds a differentially private FP-tree with privatized
supports of the frequent itemsets. The proposed algorithm injects noise in the data
structure at the intermediate (FP-tree) step. The final output can be further refined
through an optional post-processing step. The advantage of the algorithm is that
information disclosure affecting differential privacy occurs only for count queries
above the threshold; negative answers do not count against the privacy budget.

Shen et al. [200] applied a Markov chain Monte Carlo (MCMC) sampling
method to deal with the challenge of large candidate itemsets. They claim that
an MCMC random walk method can bypass the problem, and the exponential
mechanism can then be applied to select frequent itemsets. They use this method
to mine frequent graph patterns.

Xu et al. [244] applied a binary estimation method to identify all possible
frequent itemsets and then use an exponential mechanism to privately select frequent
itemsets. The number of candidates is eventually a logarithm of the original number
using a binary search.

Discussion Frequent itemset mining is a typical data mining task, which suffers
from searching large candidate sets. Differential privacy makes the problem worse.

Table 6.4 Comparison of frequent itemset mining methods

Difficulty Key methods Typical papers Advantages Disadvantages

Large candidate | Merge candidates | [24, 134, 144, 246] | Easy to implement | Merge strategy

itemsets into groups has high impact
on the output.
Some important
patterns may be

missed
Binary search in | [244] The frequent The search time
the candidate set itemsets can be can be
quite accurate decreased, but
still inefficient
Sampling from [200] Highly efficient Some important
candidate set patterns may be

missed

6.2 Private Learning Framework 57

Table 6.4 lists current key methods, in which [24, 134, 246] and [144] tried to merge
some candidates into groups using different methods. [200] adopted a sampling
method to search the candidate itemsets. [244] applied a binary search method.
All of those methods decreased the searching space from exponential to polynomial,
which is a big achievement. However, the noise still remains high, which needs to
be decreased further.

6.1.3 Summary on Laplace/Exponential Framework

The Laplace/exponential frameworks can introduce Laplace or exponential mech-
anisms freely to various types of algorithms. However, the utility of the analysis
results is a challenge for this framework. When adding noise to algorithm steps, it
is unclear how large the utility loss will be and the analysis result is not easy to
compare.

One possible way to tackle the difficulty is solving the data analysis problem
through the view of optimization and taking advantage of some existing theories,
such as the learning theory [115], so that the utility loss can be estimated
and compared. Based on this intuition, researchers proposed the private learning
framework.

6.2 Private Learning Framework

Machine learning is one of the most commonly-used techniques in various areas.
With the increased concern about the privacy preservation, many learning algo-
rithms attempt to protect the privacy of individuals in the training datasets. One
line of research investigates the learning problem from the perspective of machine
learning theory [115, 225].

A non-private learning problem is shown in Fig. 6.3a. Suppose D = ry,...,r,
is a set of samples (training dataset) drawn from a universe 2. Dots and triangles
denote the labels y € 0, 1. A concept c is a function that separates one label from
another. Suppose there are groups of functions (hypotheses) H and 4; is one of them.
The goal of the learning process L is to find a hypothesis # that agrees with ¢ on
almost the entire universe. Figure 6.3b illustrates a typical learning process: by using
the input training samples, the learner selects the most suitable # € H as the output
model w.

Based on the description of non-private learning, the purpose of a private learning
framework is to design a learner that outputs an approximately accurate model and
preserves the differential privacy of training samples. The learner, known as a private
learner, preserves the privacy of the training samples and outputs a hypothesis with
bounded accuracy. Private learning frameworks are concerned with the following
issues:

58 6 Differentially Private Data Analysis

Learner Output Model

S
Training
Samples

(b)

Fig. 6.3 Learning (a) problem and (b) process description

e How to choose an optimal model in terms of differential privacy?
e How many samples are needed to achieve a bounded accuracy?

The first question can be dealt with by analyzing the property of Empirical Risk
Minimization (ERM) technique, which will be introduced in Sect. 6.2.1. The second
question can be tackled by analyzing the sample complexity of a private learner,
which will be discussed in Sect. 6.2.3.

6.2.1 Foundation of ERM

The key technique utilized to select a hypothesis is ERM, in which an optimal model
is chosen by minimizing the expected loss over the training samples [38].

Suppose h € H is a hypothesis and w is the output model, we define a loss
Sfunction £(h(w,r),y) to estimate the expected risk of the hypothesis. The goal of
ERM is to identify a w that minimizes the expected risk of the whole universe.
Equation (6.1) shows the expected risk minimization.

R(W*) = miny+ewEyy~o(L(W,1,y)). (6.1)

Because the distribution & of the universe is unknown, we can only estimate the
empirical risk R,(w) on training sample D. Equation (6.2) shows the empirical risk
minimization.

Ru(w) = ming— 3 £(h(W, 1), 2) + Agu(w), 6.2)
n

i=1

where the regularizer A (w) prevents the over-fitting.

By choosing different loss functions, ERM can be implemented to certain
learning tasks such as linear regression [39], logistic regression [38], and kernel
method [90, 105]. The private learning framework applied ERM to estimate the
hypothesis set to choose an optimal output model w. The utility of private ERM is
measured by the difference between the real risk R(w) and the private R(W), which
is defined as risk bound.

6.2 Private Learning Framework 59

R,(w)
S—
jainio Learner Output Model
Samples
w w
(a) (b)

Fig. 6.4 (a) Output perturbation diagram. (b) Output perturbation

Algorithm 2 ERM with Output Perturbation

Require: Dataset D, and related parameters.
Ensure: output private model W
1w = argminy 2 7 (h(W. 7). y)) + Au(w)
2. Sample noise 1 from a Gamma distribution
3. Compute W = w + 1

6.2.2 Private Learning in ERM

When incorporating differential privacy into the current learning process, current
works apply two methods via an ERM technique: output perturbation and objective
operation. The output perturbation inserts noise into the output w; while the
objective operation adds noise to the objective function prior to learning. Based
on both methods, we will discuss several learning algorithms, including logistic
regression and SVM.

6.2.2.1 Output Perturbation

Chaudbhuri et al. [38] proposed output perturbation solutions on logistic regression.
Figure 6.4a illustrates the process and Fig. 6.4b shows that the W is obtained by
moving original w on the horizontal axis. The sensitivity was %, which was
associated with the regularizer parameter A. With analysis, Chaudhuri et al. argued
that the learning performance of this private algorithm will degrade with the
decreasing of A.

Their successive paper [39] formally analyzed the ERM framework. Algorithm 2
illustrates the output perturbation in a private ERM [39]. The author trained
classifiers with different parameters on disjoint subsets of the data and utilized the
exponential mechanism to privately choose parameters.

60 6 Differentially Private Data Analysis

R, (w)

Gradient=-b

Training
Samples

Learner Output Model

N

H={hy,...I,}

wo W
(a) (b)

Fig. 6.5 (a) Objective perturbation diagram. (b) Objective perturbation

Algorithm 3 ERM with Objective Perturbation

Require: Dataset D, and related parameters.
Ensure: output private model W
1. Sample noise 1 from Gamma distribution;
2. Compute w = arg miny, % YW, x;),) + Ar(w)+ < 7, W >.

6.2.2.2 Objective Perturbation

Chaudhuri et al. [38, 39] also presented the objective perturbation solution by adding
noise to the loss function £(D), which is illustrated in Fig. 6.5. Particularly, Fig. 6.5a
shows that the noise is directly added to the learner and Fig. 6.5b shows that the
calibration of noise is associated with the gradient of R, (w). The formal ERM with
objective perturbation is described in Algorithm 3 [39].

After analyzing the performance of both solutions, they conclude that when
the function in the regression algorithm is convex and doubly differentiable,
the objective perturbation outperforms the output perturbation. This is because
regularization already changes the objective to protect against over-fitting, and
changing the objective will not significantly impact performance. This claim is
confirmed in terms of a risk bound in the next subsection.

6.2.2.3 Risk Bound in Different Learning Algorithms

Many machine learning algorithms can be implemented in privacy learning frame-
works, including linear regression, online learning, deep learning, etc. With the
exception of the learning process and the privacy budget, the risk bound is related
to the dimension and the size of training samples. Bassily et al. [17] showed that the
risk bound depends on O(+/d/n) under (¢, §)-differential privacy and O(d/n) under
(e)-differential privacy. These results show that the larger the dimension and the
size, the lower utility that ERM can achieve. Table 6.5 lists several typical learning
algorithms and their risk bounds.

6.2 Private Learning Framework 61

Table 6.5 Private learning risk bound

Learning algorithm | References | Perturbation method | Loss function Risk bound
Regression [39] Output/objective Regularized MLE Depends on
perturbation dlogd/ depend
ond
SVM [105] Output/objective Arbitrary kernel, for | Depends on
perturbation example, polynomial |d'/3/n?/3
kernels
[196] Output perturbation | Hinge-Loss function | Depends on

with invariant kernel, | /d
such as Gaussian

kernel
Online learning [116] Objective Regularized MLE Depends on
perturbation +/d and time T
Deep learning [5, 180] Objective Average of N/A
perturbation unmatched sample

Nearly all types of learning problems can be analyzed in terms of their risk
bound. For example, most of the existing papers solve regression problems that have
a single optimal objective. Ullman [222] considered the regression problem as a
multiple objective optimization when the datasets are examined with different aims.
Multiple convex minimization is considered as a set of queries that can be answered
by a prevalent multiplicative weights method. Ullman implemented several single
objective regression results in multiple objectives platform and their risk bounds are
consistent with those original papers.

Kasiviswanathan et al. [116] considered private incremental regression in terms
of streaming data. They combined continual release [69] with ERM technology to
analyze the risk bound of several algorithms. Taking linear regression as an example,
they continuously update a noisy version of the gradient function to minimize the
MLE loss function. The risk bound depends on the +/d and the length of the stream:
O(min{~/d, T}), where this bound is quite close to the normal linear regression
private learner when the stream length 7 is large.

In addition, some papers consider private learning in a higher dimension dataset.
Kifer et al. [128] gave the first results on private sparse regression with high
dimensions. The authors designed the algorithm based on sub-sampling stability for
support recovery using a LASSO estimator. Their following work [214] extended
and improved the results with an algorithm based on a sample efficiency test
of stability. Jain et al. [106] proposed an entropy regularized ERM using a
sampling technique, This algorithm provides a risk bound that has a logarithmic
dependence on d. Kasiviswanathan et al. [114] considered random projections in
ERM frameworks. They provided a new private compress learning method with the
risk bound related to the Gaussian width of the parameter space C in the random
projection.

62 6 Differentially Private Data Analysis

One of the most promising directions is the deep learning. Recent research focus
has been devoted to the design of deep learning mechanisms. Abadi et al. [5] applied
objective perturbation in a deep learning algorithm by defining the loss function as
the penalty for mismatching training data. As the loss function is non-convex, they
adapted a mini-batch stochastic gradient descent algorithm to solve the problem.
The noise is added to every step of the stochastic gradient descent. In another
pilot work [202], Shokri et al. designed a distributed deep learning model training
system that enables multiple parties to jointly learn an accurate neural network.
They implemented private stochastic gradient descent algorithms to achieve (e, §)-
differential privacy within multiple parties. In the work of Phah et al. [180],
the authors perturbed the objective functions of the traditional deep auto-encoder
and designed the deep private auto-encoder algorithm by incorporating a Laplace
mechanism.

6.2.2.4 Discussion

Private learning applies ERM to estimate the hypothesis set to select an optimal
output w. It uses the output perturbation and the objective perturbation to ensure
that the output satisfies differential privacy. A series of works have proven that
this private learning is tractable for certain learning tasks, such as linear regression,
SVM, and deep learning, etc.

Risk bounds are highly associated with the dimension of the dataset. Current
research has decreased dependence on dimension to O(d). Under certain assump-
tions, the dimension dependence could be further relaxed.

6.2.3 Sample Complexity Analysis

The second problem: how many samples are needed in bounded accuracy? is
associated with sample complexity analysis. Sample complexity interprets the
distance utility measurement in another way to show how many samples are needed
to at least achieve a particular accuracy «. Probably approximately correct (PAC)
learning [121] helps to measure the sample complexity of learning algorithms.
Based on this theory, Blum et al. [29] and Kasiviswanathan et al. [115] proved that
every finite concept class can be learned privately using a generic construction with
a sample complexity of O(VC(%) log | Z"|) (we omit the other parameters). This is
a higher sample complexity than a non-private learner who only needs a constant
number of samples. Improving sample complexity is an essential issue.

The gap in sample complexity was studied in the follow-up papers and several
methods were provided, which can be categorized into the following three groups:

* the privacy requirement relaxation;
* the hypothesis relaxation;
* and semi-supervised learning.

6.2 Private Learning Framework 63

6.2.3.1 Relaxing Privacy Requirement

Beimel et al. [20] showed that when relaxing e-differential privacy to (e, §)-
differential privacy, sample complexity can be significantly decreased. Their follow-
up paper decreases sample complexity to O(log(+/(d - 1/8))) [206].

Another way to relax the privacy requirement is to preserve privacy for the labels
of samples, rather than entire attributes of samples. Chaudhuri et al. [37] assumed
that except labels, attributes of samples are insensitive. They showed that any
learning algorithm for a given hypothesis set that guarantees label privacy requires at
least 2(d") examples. Here, d’ is the doubling dimension of the disagreement metric
at a certain scale. The doubling dimension in 2" is the smallest positive integer d’
such that every ball of 2" can be covered by 27" balls of half the radius.

The key idea of label privacy is to decrease the dimension of sensitivity
information. It may give enough protection in a scenario where the content of the
underlying samples is publicly known except their labels. In some other scenarios,
however, attributes may be highly sensitive. For example, in the healthcare data, the
identity (attributes) of the people should be protected as well as the diseases (label).
Chaudhuri et al.’s relaxation is not applicable in this case.

6.2.3.2 Relaxing Hypothesis

This gap can also be closed by relaxing the requirement of the hypothesis. If the
output hypothesis is selected from the learning concept H C %, the learning process
is defined as a proper learning. Otherwise, it is called an improper learning. For
proper learning, the sample complexity is approximately 2(d). If choosing improper
learning, the sample complexity can be further decreased.

Beimel et al. [18] confirmed that when selecting a hypothesis that is not in &, the
sample complexity can be decreased to the constant. Their subsequent paper [19]
proposed a probabilistic representation of € to improve the sample complexity.
They considered a list of hypothesis collections {H|, ..., H,} rather than just one
collection of H to represent ¢’. The authors assumed that, when sampling H; from
the hypothesis list, there will be 1 € H close to ¢ in high probability. The sample
complexity can be reduced to O(max(In |H;l)).

This improvement in sample complexity comes at the cost of an increased
workload on evaluation, however. The learner will have to exponentially evaluate
many points that are far from the concept set 4. In general, for a private learner,
if H = ¥, the sample complexity is O(d) and the time for evaluation is constant.
If H # €, there is constant sample complexity but O(exp(d)) time for evaluation.

6.2.3.3 Semi-Supervised Learning

Semi-supervised learning is a useful method for reducing the complexity of labeled
samples. Beimel et al. [21] proposed a private learner by introducing semi-

64 6 Differentially Private Data Analysis

supervised learning to active learnings. The method starts with an unlabeled dataset
to create a synthetic dataset for a class %. This synthetic dataset is then used to
choose a subset of the hypotheses with a size of 2°(V€() n the last step the authors
apply O(VC(%)) labeled examples to choose the target synthetic dataset according
to the hypotheses set.

In this process, the sample complexity of the labeled samples is 0(%?) while
for the unlabeled samples it is 0(%@). Comparing the sample complexity of
labeled and unlabeled samples, this private learner uses a constant number of labeled
samples and O(d) unlabeled samples.

6.2.3.4 Discussion

Table 6.6 compares different methods in terms of their sample complexity. To
make the results clear, we utilize the VC dimension representation and omit other
parameters such as o, § and e.

6.2.4 Summary on Private Learning Framework

The private learning framework focuses on privacy preserving in the learning
problem. Its foundation theory is the ERM and PAC learning theory. The more
samples an algorithm can obtain, the more accurate will be the result. After applied
the PAC learning theory in privacy learning, the line of research works proposed

Table 6.6 Comparison of the sample complexity of different methods

Sample

Method References Description complexity Privacy level
Original Kasiviswanathan Uses an exponential | O(VC(%)log| Z"|) €

etal. [115], mechanism to

Blum et al. [29] search h
Relaxing Beimel et al. [20] From e to €, § O(log(1/3)) (€,0)
privacy level

Steinke et al. [206] | Frome toe,§ O(log(/d - 1/98)) (€,90)

Chaudhuri et al. [37] | Only preserve Q(d’) (d’ was the (¢)

privacy for labels

adjusted dimension
which is lower than
d)

Relaxing Beimel etal. [18, 19] | H # % and set a O(max(In|H;)) €
hypothesis group of H to

privately select a h.
Semi- Beimel [21] Use labeled datato | O(dVC(%)) €
supervised search h (labeled) O(VC (%))
learning (unlabeled)

6.3 Summary of Differentially Private Data Analysis 65

accuracy bounds on the private learner, and tried to decrease the sample complexity
in a fixed accuracy bound. Current research narrows down the sample complexity
gap between the private and non-private learning processes, which means that we
can learn privately by using acceptable number of samples.

The private learning framework is only concerned with supervised learning
algorithms; in addition, these algorithms should be PAC learnable. These strict
constraints hinder the development of the privacy learning framework, making it
currently actively developing in theory, but still impractical for real applications.

6.3 Summary of Differentially Private Data Analysis

As the most prevalent framework, the Laplace/exponential framework has been
widely used. The most prominent advantages are its flexibility and simplicity;
it can freely introduce Laplace and exponential mechanisms into various types
of algorithms. For the non-experts on privacy, it proposed a possible way to
ensure that the results satisfy the requirement of differential privacy. However, the
essential challenge for this framework is accuracy of the results, especially for those
algorithms whose operations have high sensitivities. They lead to a large volume of
noise in the analysis results. The Laplace/exponential framework is widely used in
current applications but there is still room for further improvement.

Private learning frameworks combine differential privacy with diverse learning
algorithms to preserve the privacy of the learning samples. The foundation theories
are ERM and PAC learning. ERM helps to select the optimal learning model by
transferring the learning process into a convex minimization problem. Differential
privacy either adds noise to the output models or to the convex objective functions.
PAC learning estimates the relationship between the number of learning samples
and the model’s accuracy. The more samples an algorithm can obtain, the more
accurate the result will be. As privacy learning results in higher sample complexity,
researchers are currently trying to narrow the sample complexity gap between
private and non-private learning processes so that private learning is feasible with
an acceptable number of samples.

Private learning frameworks, however, have some constraints. ERM requires that
the objective function should be convex and L-Lipschitz. PAC learning can only be
applied when the algorithm is PAC learnable. These constraints hinder the practical
development of privacy learning frameworks and make them an actively developing
theoretical proposition, yet still impractical for real applications.

Chapter 7
Differentially Private Deep Learning

7.1 Introduction

In recent years, deep learning has rapidly become one of the most successful
approaches to machine learning. Deep learning takes advantage of the increasing
amount of available computation to process big data. In addition, the new algorithms
and architectures being developed for deep neural networks are accelerating the
progress of various fields, including image classification, speech recognition, natural
language understanding, social networks analysis, bioinformatics, and language
translation [132].

The essential idea of deep learning is to apply a multiple-layer structure to
extract complex features from high-dimensional data and use those features to build
models. The multiple-layer structure consists of neurons. The neurons in each layer
receive a finite number of output neurons from the previous layer along with their
associated weights. The aim of the training process is to adjust the weights of these
neurons to fit the training samples. In practice, a stochastic gradient descent (SGD)
procedure is one of the most popular ways to achieve this goal.

Like other machine learning models, deep learning models are susceptible to
several types of attacks. For example, a centralized collection of photos, speech,
and video clips from millions of individuals might meet with privacy risks when
shared with others [202]. Learning models can also disclose sensitive information.
Fredrikson et al. proposed a model-inversion attack that recovers images from a
facial recognition system [81]. Adabi et al. [6] assumed that the adversaries would
not only have access to the trained model but may also have the full knowledge of
the training mechanism and the model parameters. Phah et al. [180] considered a
general adversarial setting in which potential privacy leaks can stem from malicious
inference with the model’s inputs and outputs.

Differential privacy can be integrated with deep learning to tackle these privacy
issues. However, directly applying Laplace noise within a deep learning model
yields inferior performance for several reasons:

© Springer International Publishing AG 2017 67
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_7

68 7 Differentially Private Deep Learning

Table 7.1 Differentially private deep learning methods

Related work Adbversarial setting System setting Privacy guarantee method

Shokri et al. [202] | Additional capabilities | Distributed system | Differentially private SGD
algorithm with convex
objective functions

Adabi et al. [6] Additional capabilities | Centralized system | Differentially private SGD
algorithm with non-convex
objective functions

Phah et al. [180] | General capabilities Centralized system | Objective function
perturbation of deep
auto-encoder

* High sensitivity: in deep learning training processes, the sensitivity of both the
objective function and the model’s output during perturbation is quite high.

* Limited privacy budget: iterative training processes divide the privacy budget into
several pieces, which leads to high levels of noise in the final result.

Several possible solutions to these challenges have been explored. For example,
Adabi et al. [6] clipped the objective function to bound its sensitivity and applied
a moment accountant method to the objective function to form an optimal privacy
composition. Phah et al. [180] applied a functional mechanism to perturb the objec-
tive function and decrease noise. In general, the current research on differentially
private deep learning can be classified according to three criteria, as shown in
Table 7.1:

Its adversarial setting. In the work of Shokri et al. [202] and Adabi et al. [6],
assumed that adversaries would not only have access to the trained model but
would also have full knowledge of the training mechanism and the model’s
parameters. Whereas, Phah et al. [180] considered a more general adversarial
setting, where potential privacy leaks might arise from malicious inference with
a model’s inputs and outputs.

Its system setting. In a pilot study [202], Shokri et al. designed a distributed deep
learning model training system that enables multiple parities to jointly learn an
accurate neural network. However, both Adabi et al. [6] and Phah et al. [180]
considered a centralized system setting where data are held centrally.

The privacy guarantee method used. ~The methods for guaranteeing differential
privacy can be classified into two types. The first type adds noise to the execution
process of the optimization algorithm. The second perturbs the objective by
adding differentially private noise to the objective functions before the learning
procedure Shokri et al. [202] and Adabi et al. [6] designed a differentially private
SGD algorithm by introducing a sparse vector technique [73], while Adabi
et al.’s [6] SGD approach relied on a Gaussian mechanism. Phah et al. [180],
perturbed the objective functions of a conventional deep auto-encoder and
designed a deep private auto-encoder algorithm that incorporates a functional
mechanism.

7.2 Preliminary 69
7.2 Preliminary

Based on artificial neural networks and the rapid development of cloud computing
and big data techniques, deep learning aims to extract nonlinear features and func-
tions from massive data to train complex models and their numerous parameters.
The main difference between deep learning and traditional machine learning is that
the former involves learning feature representation, while the latter always leverages
hand-designed features. Thus, the two main challenges in deep learning are: how to
automatically learn the values of the parameters, or weights, of each neuron from
the training data; and how to minimize the objective functions of the neural network.

7.2.1 Deep Learning Structure

Suppose D = {(x1,¥1), ..., (xn,ys)} is a set of samples (the training dataset) drawn
from a universe 2, where y; € {0, 1} is the label for each sample x;, The layer
contains the samples that we can observe, the link between layers are and a multiple-
layer network is the most popular structure for deep learning architectures. The
network includes an input layer, an output layer, and some hidden layers. Figure 7.1
is a typical multiple-layer network with three hidden layers. The bottom layer is the
input layer; it accepts the training samples and can be observed. The three middle
layers are hidden layers that extract increasingly abstract features from the input
samples. The output layer contains the final results from processing the samples,

Output Layer

Mapping from
features

Input Layer

Fig. 7.1 Deep learning structure

70 7 Differentially Private Deep Learning

Fig. 7.2 Neuron input and
output Output=a(X.wixi)

such as classification labels. This process can be interpreted as the right-hand side
of the flowchart shown in Fig. 7.1, which provides a high-level schematic of how
each layer works.

The circles in each layer represent neurons. Each neuron receives a finite number
of outputs from the neurons in the previous layer along with its associated weight.
A neuron’s output is calculated by applying a nonlinear activation function to all the
input values. Figure 7.2 shows a neuron’s inputs and its output. Suppose the inputs
of a neuron are x = (x1, x2, X3, x4) and the weights are w = (wy, wy, w3, wy), the
output of the neuron is a(}_ w; - x;), where a() is the activation function.

The activation function is normally a nonlinear function that transforms the
weighted sum of the inputs. The most popular activation functions are sigmoid,
tanh or a rectified linear function.

» Sigmoid function: sigmod(x) = H_lﬁ
¢ Tanh function: tanh(x) = H_% -1
¢ Rectified linear function:

0 fi 0
rec(x) = orx =

X forx > 0.

The tanh function is a re-scaled version of the sigmoid function with an output
range of [—1, 1] instead of [0, 1]. The rectified linear function is a piece-wise linear
function that saturates at exactly 0 whenever the input x is less than 0.

In the designing of the multiple-layer structures, weights w are derived from
an objective function J(w, x). Finding w is an optimization process that yields an
acceptably small loss of J(w, x). There are several possible definitions for function
J(w,x). The most prevalent one is the average of the loss over the training samples
{x1,x2,...x,}, where J(w) = % > . J(w,x;). As J(w,x) is normally a non-convex
function, a gradient descent method is applied to estimate w.

The following sections briefly describe SGD and deep auto-encoders-two repre-
sentative concepts in this field. SGD, presented in Sect.7.2.2, plays an important
role in most deep learning optimization algorithms. Deep auto-encoders are a fun-
damental part of deep learning model structures and are presented in Sect. 7.2.2.1.

7.2 Preliminary 71
7.2.2 Stochastic Gradient Descent

In a typical deep learning structure, there may be hundreds of millions of adjustable
weights. The weight learning process can be considered as a nonlinear optimization
problem, while the objective functions measure the errors. One of the most popular
algorithms for properly adjusting the weight vectors is gradient descent. In this
approach, a gradient vector is used to indicate the amount an error would increase
or decrease if a given weight was increased by a tiny amount, and the weight vector
for that weight is then adjusted in the opposite direction [132].

However, when applied to learning tasks on a large dataset, gradient descent
algorithms are far from efficient. SGD is an extension to gradient descent, and
these algorithms can significantly reduce computational costs compared to their
predecessors. SGD algorithms have therefore been widely used in deep learning.

Consider an input layer that contains only a few training samples (x;,y;).
SGD computes the average gradient for those examples and adjusts the weights
iteratively. The process is repeated for many small sets of examples from the training
set until the average of the objective function stops decreasing. Due to the difficulty
of minimizing the loss function J(w, x) in complex networks, a batch of training
data are randomly selected to form a subset § (mini-batch) at each step of the SGD
algorithm. Hence, the gradient VyJ(W, X) can be estimated as:

Next, the weights w of the objective J(w) are updated as follows:

1
Wekl = Wi g, gs = 1o > Vi (w.x), (7.1)

X€ES

where « is the learning rate and ¢ is the current iteration round.

Algorithm 1 shows the pseudo-code for the SGD algorithm. Note that a Back-
Propagation algorithm is always used to compute the derivative of the loss function
J(w,x) with respect to each parameter (lines 4-6). In practice, the repeating
statements (lines 2-9) are are only executed a fixed number of times T to save overall
time costs.

Algorithm 1 SGD Algorithm

Require: Training dataset x = {x,xs, ..., X,}, loss function J(w, x) = % > =1 J(W, x;), learning
rate o.
Ensure: w.
1: Initialize wy randomly;
2: repeat
3: Randomly take samples S, from the training dataset x;

4: for each i € S, do

5: compute g,(x;) <= Vy,J(W,, x;); { Compute gradient}
6: end for

7: compute g, < IAIT Yies, &1(x1);

8: update W, <— W, —ag;; {Descent}

9: until an approximate minimum is obtained.
10: return w.

72 7 Differentially Private Deep Learning

X (Q O O O>\ Decoder
' | X=sigmod(wTh(x))
w (O QO <
W
- 0000

Fig. 7.3 Auto-encoder

Encoder

— h(x)=sigmod(wx)

7.2.2.1 Deep Auto-Encoder

As a basic deep learning model, the Deep Auto-Encoders [22] is composed of
multiple Auto-Encoders. Generally each auto-encoder has two parts: an encoder
that encodes the input into a representation using the function /(x), and a decoder
that reconstructs the input from the encoded representation using the function
X = d(h). The auto-encoders aim to minimize the negative log-likelihood of the
reconstructions.

Figure 7.3 shows the structure of an auto-encoder. It has a layer of input neurons,
a hidden layer in the middle, and an output layer at the end. Generating the hidden
layer is considered to be the encoding process, during which a sigmod function is
used to activate the neurons in the hidden layer. Equation (7.2) shows the creation
of h(x)

h(x) = sigmod(Wx). (7.2)

From the hidden layer to the output layer, the decoder uses the weight vector w:
X = sigmod(h(w'x)). (7.3)
The auto-encoder model is trained to minimize the difference between the input
and the output. There are two types of loss functions. For a binary input x, the

auto-encoder minimizes the negative log-likelihood of the reconstruction as shown
in Eq.(7.4)

i=1
J(w.x) = —logPr(x|x. w) = = > (xilogi; + (1 — x;)log(1 — %)). (7.4)

This loss function actually measures the cross-entropy error of a binomial problem.
When the inputs are real values, this loss function normally measures the sum
of the squared Euclidean distance between the output and input values. as shown
in Eq. (7.5).

7.3 Differentially Private Deep Learning 73

J(W,x) = % > @ —x) (7.5)

Gradient methods can also be used to minimize loss functions.

Multiple auto-encoders can be stacked to form a deep auto-encoder. Or, some-
times an output layer can be added to the top of a deep auto-encoder to predict Y
using a single binomial variable. In these cases, the cross-entropy error serves as the
loss function to measure the difference between y; and y:

Y7
E(Yr,0) = =Y [yilog3; + (1 — yi) log(1 =)], (7.6)

i=1

where Y7 is the set of labeled data used to train the model.

7.3 Differentially Private Deep Learning

The common interests and permission requirements of multiple parties demand that
the privacy preserving goals of deep learning include the protection of both the
training datasets and the training parameters. The main methods for guaranteeing
differential privacy in deep learning models are: (1) adding noise to the execution
process of an existing optimization algorithm; or (2) perturbing the objective
functions of the given optimization problem. A differentially private SGD algorithm
is representative of the former method, while the latter method typically uses a deep
private auto-encoder. This section briefly reviews the rationales for these related
works.

One straightforward way to protect the privacy of training data against leaks is
to simply add noise to the trained parameters resulting from the learning algorithm.
That is, the privacy-enhancing techniques are not applied to the internal training
process but rather to its outputs. However, due to the difficulties in fine-grained noise
analysis when adopting this approach, adding too much noise would further distort
the utility of the learning algorithm. Motivated by this problem, the extant literature
has presented several sophisticated approaches that aim to guarantee the differential
privacy of training data during the training process. As an essential component of the
training process, the SGD algorithm has also been enhanced in various differentially
private techniques. Following Sections first presents the basic Laplace method, and
then presents private SGD, private auto-encoder and distributed private SGD.

74 7 Differentially Private Deep Learning

Algorithm 2 Basic Laplace Method

Require: D = {(x1,y1),..., (%0, yu)}> J(W, x), learning rate «, noise scale o, batch size S, privacy
budget €.
Ensure: w.
1. initialize wy randomly;
2.¢, =¢/T;
fortr=0,..., T—1do
3. take a random sample set S; from D;
4. compute gradient: for each i € S,, compute g (x;) = V,,,J (W, x;);
5. add noise: g, = é(zig,(x,-) + Lap(AJ/€);
6. descent: GV\[+1 =W, — Ot,/g\,;
end for
7. ;V\ = /V;T.

7.3.1 Basic Laplace Method

The most direct method is to add noise to the SGD process. Laplace noise can be
added to each iterative gradient descent iterative round ¢, as shown in Eq. (7.7)

g(x) = Vi, J(W, x;) + Lap(AJ/€,). (1.7)
Then the weight is then estimated by g through Eq. (7.8):
Wr-l,—] - W[- arvwgt(w;.xl'). (7.8)

Algorithm 2 shows the procedure for a basic Laplace method to train a model
with weight set w by minimizing the empirical objective function J(w,x). The
weight set is initialized by a set of random numbers in Step 1. Suppose there are a
total of 7 rounds in this iterative gradient descent model, the privacy budget would
be divided into T pieces in Step 2. Step 3 takes a random batch sample set S; from
the training set. For a single sample x; € S;, partial differential g,(x;) of the function
J(w;, x;) is computed in Step 4. Step 5 adds Laplace noise to the g;(x;) based on the
sensitivity of J(wg, x;) and the privacy budget ¢,. In the descent Step 6, the weights
are estimated from the weights in the last round and the noisy function g(x;). After
all rounds are finalized, weighs w is determined by the weights of in the last round.

Clearly, Step 5 guarantees that the output result W satisfies e-differential privacy.
However, as mentioned in Sect. 7.1, this basic Laplace method produces an inferior
learning model based on W. The noise Lap(AJ/¢,) is quite large as there is no a
priori bound on the size of the gradients, which leads to a high AJ. In addition,
due to the vast number of iterative rounds in the gradient process, ¢, is quite small,
which lead to a high level of noise. If there were 1000 iterations and the total privacy
budget for each sample was set to 1, each iteration would only be allocated 0.001 of
the privacy budget. Therefore, applying the basic Laplace method to deep learning
models is impractical in real-world cases. However, researchers have proposed
various methods to improve the quality of these models.

7.3 Differentially Private Deep Learning 75

Algorithm 3 Differentially Private SGD

Require: D = {(x1,y1),..., (xs, y2)}, J(w), learning rate &, noise scale o, group size L, gradient
norm bound C.
Ensure: w.
1. initialize wy randomly;
fort=0,..., T—1do
2. take a random sample L, with probability L/n;
3. compute gradient: for each i € L, compute g,(x;) = V,,, J(wy, (xi,¥:));
llg: i) ll2

4. norm clip gradient: g, = g,(x;)/ max(1, =5—2);
5. add noise: g, = %(Z,.g,(x,») + A(0,02CD));
6. descent: ,V;r+1 = ;v\, - ot,fg\,;

eni forA

T.w=wr;

8. compute the overall privacy loss (€, §) using a privacy accounting method.

7.3.2 Private SGD Method

Adabi et al. [6] extended the basic Laplace method and proposed a private SGD
algorithm. Similar to the basic Laplace mechanism, the noise is added to the
objective function J(w,x). However, three additional technologies improve the
performance of the output model.

* Norm clipping of the objective function J to bound its sensitivity.

* Grouping several batches together then adding noise to the group.

* Applying moment accountant to the objective functions to form an optimal
privacy composition

A brief outline of their algorithm is presented before analyzing the above three
technologies in detail.

Algorithm 3 presents the differentially private SGD algorithm. It has some
differences to Algorithm 2. First, Algorithm 3 includes several new parameters,
including noise scale o, group size L, and gradient norm bound C. These parameters
are used when adding noise, grouping batches and in norm clipping, respectively.
Similar to the basic Laplace method, the private SGD method initializes wo with
random values in Step 1. However, in Step 2, instead of using a batch of samples
S;, a larger sample group L, is sampled. This can be considered as a merger of
several batch samples. The aim of Step 2 is to decrease the total noise added to
the private SGD method. The gradient computing in Step 3 is similar to the basic
Laplace method. In Step 4, a private SGD method clips the gradient with a constant
C, aiming to bound the sensitivity of g,. Step 5 adds calibrated Gaussian noise to g,
and calculates the weights using a noisy version of g, in Step 6. Finally, in addition
to the output of weights in Step 7, the privacy loss of the method is derived based
on a privacy accounting technique in Step 8.

76 7 Differentially Private Deep Learning

7.3.2.1 Norm Clipping

One of the challenges in differentially private deep learning is the high sensitivity
of the objective function. To bound the influence of each individual sample on g(x),
which is the gradient of J(w, x), the private SGD method clips each gradient in £,
norm by using a predefined threshold for C, as shown in Eq. (7.9).

lg®@l2 forflgx)[>=C

(7.9)
C for [[g(x) |2 > C.

lg®)]2 =

In the norm clipping step, the gradient vector g;(x;) in round ¢ will be replaced
by g;(x;)/ max(1, M), and the sensitivity of the g,(x;) is bounded to C: A,g =
C. It worth noting that in a multi-layer neural network, each layer can be set to a
different clipping threshold C.

7.3.2.2 Grouping Batches

As SGD normally estimates the gradient of J(w, X) by computing the gradient of
the loss on a batch of samples and taking the average, noise has to be added to
each batch. Hence, a smaller batch size leads to more noise in total. To decrease
the amount of added noise, the private SGD method groups several batches together
into a larger group L, called a /ot, and adds the noise to the lot. In practice, each lot
is created independently by picking each sample with a probability of L/n.

7.3.2.3 Privacy Composition

The proposed private SGD method applies a Gaussian mechanism with a sensitivity
equal to C. According to the Gaussian mechanism defined in Chap.2, each lot in
private SGD preserves (Te, T§)-differential privacy when 0 = A,f/2In(2/8) /€.
As there are L/n lots in the dataset, the final output preserves (TL/ne, TL/né)-
differential privacy. This forms loose bound for the output in terms of sequential
composition.

However, to improve the bound of the privacy loss, the private SGD method
introduces a stronger accounting method, moments accountant, which improves the
bound to O(+/TL/ne, §)-differential privacy for an appropriately chosen noise scale
and a threshold of C.

Theorem 7.1 There exist the constants c; and c,. Given the sampling probability
L/n, and the number of iterative round T, for any € < c¢\TL/n, the private SGD is
(€, §)-differential privacy for any § > 0 if we choose

L Tog(1]8) .10

€

7.3 Differentially Private Deep Learning 77

Algorithm 4 Deep Private Auto-Encoder Algorithm
Require: x = {(x,..., X}, J(W, X)

Ensure: 6.
1. Derive a polynomial approximation of J(w, x), denoted as J(w, x)
2. Perturb the function J(w, X) to generate perturbed function of?(w, x) by using a functional
mechanism. =R
3. Compute W = arg minJ (W, X);
4. Stack k private auto-encoders;
5. Derive and perturb the polynomial approximation of the cross-entropy error E(6);

6. Compute 0: 6 = argminE(0).

7.3.3 Deep Private Auto-Encoder Method

Phah et al. [180] perturbed the objective functions of a traditional deep auto-encoder
and designed a deep private auto-encoder algorithm that incorporates a Laplace
mechanism.

7.3.3.1 Deep Private Auto-Encoder Algorithm

Phah et al. [180] deep private auto-encoder algorithm perturbs the loss func-
tion J(w,x). But, unlike the basic Laplace or the previously mentioned private
SGD method, this deep private auto-encoder algorithm applies a functional mecha-
nism [252] to a perturbed J(w, x). This proposed deep private auto-encoder model
is used to make binomial prediction.

Algorithm 4 shows the key steps of the deep private auto-encoder algorithm.
The first step applies a Taylor expansion to approximate the loss function J(w, x),
and then the Taylor expansion is perturbed using a functional mechanism in Step
2. After creating the perturbed loss function /J\(w, X), Step 3 computes the weight
vector using gradient descent. Step 4 stacks private auto-encoders to construct a
deep private auto-encoders. Here, the previous hidden layer can be considered as the
input of the next auto-encoder. The first four steps aim to create a deep private auto-
encoder model. Step 5 focuses on a binomial prediction problem in the top layer,
which includes a single binomial variable to predict y and apply a loss function to
the cross-entropy error E(6). The function E(8) is also perturbed by a functional
mechanism. The final step computes 9 by minimizing E (0).

Figure 7.4 shows the resulting structure of the deep private auto-encoder model.
It is worth noting that, before stacking multiple hidden layers, a normalization layer,
denoted as 7, is inserted after each hidden layer. The normalization layer guarantees
all data assumptions and that differential privacy will be satisfied when training the
next hidden layer.

78 7 Differentially Private Deep Learning

Fig. 7.4 Structure of the

deep private auto-encoder output laver @@

Wi
e m
h2 m
W1 — Stacking

normalization layer nu m
Hidden layer hq O O O
7'y

. 0000

7.3.3.2 Functional Mechanism

As proposed by Zhang et al. [252], the functional mechanism aims to perturb
the objective functions by adding Laplace noise into every coefficient Ay of this
function’s approximate polynomial form. In the deep private auto-encoder method,
before adopting a functional mechanism to perturb the data reconstruction function
J(w,x), the approximate polynomials from Step 2 and the Cross-Entropy Error
E(0) (Step 5) are first derived by leveraging the Taylor expansion (Step 1 and Step
5, respectively).

7.3.3.3 Sensitivity Measurements

The deep private auto-encoder algorithm contains two perturbations. The first
perturbation is the loss function J(w, x) during the training process; the second is the
loss function E(#) in the prediction process. As both perturbations apply a Laplace

mechanism, each uses a different sensitivity, as shown in Eqgs.(7.11) and (7.12),
respectively, are used in the perturbation.

1
AJ=d(b+Zb2), (7.11)
where d is the dimension of samples and b is the number of hidden variables.

1
AE = (Inl + Z|n|2) , (7.12)

7.3 Differentially Private Deep Learning 79

where |7 is the number of variables in the normalization layer. Both sensitivities are
highly related to the variables in the hidden layer, or normalization layer. Increasing
the variables in the hidden layer may increase the prediction accuracy in the learning
process; however, this may also increase the amount of noise added to the loss
functions.

7.3.4 Distributed Private SGD

In addition to the potential privacy leaks yielded by non-private algorithms, the basic
architecture of centralized deep learning systems can also cause several privacy
issues, especially when considering the concerns of everyone involved. For example,
once an individual user has contributed information to a massive dataset that is
subsequently used to develop a complex learning model, it is nearly impossible for
that person to control or influence what happens to their data. It is relatively hard for
users to completely trust companies in the big data era. Further, when considering
the co-operation required between multiple companies and institutes aiming to con-
struct models using joint data, achieving proprietary data privacy for both companies
while jointly sharing the data used greatly compounds these difficulties. Distributed
private deep learning architectures are in need of development. However, SGD
algorithms can be parallelized and executed asynchronously [55, 191, 261], These
advantages led Shokris [202] to propose a distributed selective SGD (DSSGD)
protocol, in which selective parameter sharing was the key novelty.

At the outset, all the participants involved in the DSSGD agree on a common
learning objective. A parameter server is used to maintain the settings for all the
parameters @ ¢°?®) and their latest values.

Each participant i downloads the parameters w(”), replacing their local parameters
with the latest values from the server. Each participant then executes the SGD
algorithm and uploads a portion of the computation results warf) to the parameter
server. The server collates the updates from multiple participants, maintains the
latest parameter values, and makes the results available to all participants. Pseudo-
code for the participant’s side of the DSSGD protocol is shown below. Some of
the notations from the original description [202] have been replaced to maintain
consistency with the previous contents of this chapter. Note that the parameters
participant i uploads to the server are selected according to one of the following
criteria:

o largest values: sort gradients in Vw(® and upload g, fraction of them, starting
with the largest.

* random with threshold: randomly subsample the gradients with values above
threshold t.

These selection criteria are fixed for the entire training set.

80 7 Differentially Private Deep Learning

Algorithm 5 DSSGD for Participant i

Require: The initial parameters w® that are chosen by the server, learning rate «, fraction of
parameters selected for download S, fraction of parameters selected for upload f,,.

1: repeat

2: Download B; x |w®| parameters from server and replace the corresponding local parame-
ters;

3: Run SGD on the local dataset and update the local parameters w(;

4: Compute gradient vector Vw(® which is the vector of changes in all local parameters due
to SGD;

5: Upload ng) to the parameter server, where P is the set of indices of at most B8, x |w®|
gradients that are selected according to some criteria;

6: until an approximate minimum is obtained.

7.3.4.1 Sparse Vector Technique

The above DSSGD protocol is only able to prevent direct privacy leaks that occur
as a result of sharing a participant’s local training data with others. Therefore,
Shokri et al. [202] also adopted a sparse vector technique (SVT) [73] to prevent
indirect privacy leaks caused by participants sharing locally updated parameters.
SVTs were originally proposed as a way of answering some queries in interactive
settings without the need to consume any of the privacy budget. This method is
based on the intuition that, in some situations, only the queries with answers above
a certain threshold need to be considered; those below the threshold do not. In this
way, SVTs first compare a noisy query answer and a noisy threshold, then release
an output vector that indicates whether the answer is above or below the given
threshold. Algorithm 6 shows the pseudo-code for a differentially private DSSGD
for participant i using an SVT.

Algorithm 6 Differentially Private DSSGD for Participant i Using an SVT

Require: The total privacy budget €, the sensitivity Af of each gradient, the maximum number
c = B, x |[w?]| of uploaded gradients, the bound y on gradient values shared with other
participants, the threshold t for gradient selection.

1: Initialize €; = %e, generate fresh random noise p = Lap(2cAf/€;);
2: Initialize €, = %e, count = 0;

3: Randomly select a gradient VWJ@;

4: Generate fresh random noise v; = Lap(4cAf/e€);

5: if abs(bound(Vw,”.)) +1v; > t + p then

6: Generate fresh random noise vj/ = Lap(2cAf/e2);

7: uploaded bound(Vw}i) + vj/ ,) to the parameter server;

8: charge € to the privacy budget;

9: count = count + 1, if count > ¢, then Halt or else go to line 1;
10: else
11: Go to line 3;
12: end if

7.4 Experimental Methods 81
7.4 Experimental Methods

This section briefly introduces the typical experimental methods, including bench-
mark datasets, learning objectives and computing frameworks.

7.4.1 Benchmark Datasets

There are some benchmark datasets commonly used in differentially private deep
learning domain. These include:

o MNIST! [133]. This dataset consists of 60,000 training samples and 10,000
testing samples of handwritten digit recognition. Each example is a 28 x 28
image. Both [202] and [6] evaluated their the proposed algorithms using this
dataset.

* CIFAR [47]. The CIFAR dataset comprises labeled subsets of the 80 million Tiny
Images’ dataset. There are two versions of different numbers of image classes.
The CIFAR-10 dataset that consists of 50,000 training samples and 10,000
test samples belonging to ten classes. The CIFAR-100 dataset also has 50,000
training samples, but they are separated into 100 classes. Abadi et al. [6] mainly
used the CIFAR-10 dataset to conduct the experiments and used the CIFAR-100
dataset as a public dataset to train the network.

o SVHN? [170]. This dataset is a collection of the house numbers from Google
Street View images. It contains over 600,000 samples; each sample is a 32 x 32
image with a single character in the center. Shokri et al. [202] used 100,000
samples for training and 10,000 samples for each test.

7.4.2 Learning Objectives

The learning objective stated in Shokri et al.’s work was to classify input data
from the MNIST and SVHN datasets into ten classes[202]. The accuracy of the
differentially private DSSGD protocol was compared to SGD and to a standalone
scenario. In the work of Abadi et al.’s work [6], the classification accuracy of
the proposed algorithm was evaluated on a training set and test set by changing
various parameters, such as the privacy budget, the learning rate and so on. In Phanh
et al.’s work [180], the learning objective was to execute the proposed deep private
auto-encoder for a binomial classification task on health data from a social network.
The prediction accuracy of the compared algorithms was evaluated by varying the
dataset’s cardinality and the privacy budget.

'http://yann.lecun.com/exdb/mnist/.
Zhttp://groups.csail. mit.edu/vision/TinyImages/.
3http://ufldl.stanford.edu/housenumbers/.

http://yann.lecun.com/exdb/mnist/
http://groups.csail.mit.edu/vision/TinyImages/
http://ufldl.stanford.edu/housenumbers/

82 7 Differentially Private Deep Learning
7.4.3 Computing Frameworks

Several deep learning frameworks* have provided abundant resources for
researchers (e.g., TensorFlow, Torch7, Caffee, and so on). Among existing research
on differentially private deep learning, two frameworks have been commonly used
to conducting experiments:

 Torch7 [48, 219] and Torch7 nn packages.’ Torch7 is based on Torch, which
is a MATLAB-like environment built on LuaJIT. It is composed of eight built-
in packages. Of these, the Torch7 nn package provides standard modules for
building neural networks. The work of [202] adopts a multi-layer perceptron
(MLP) and a convolutional neural network (CNN) for its experiments and
implements them in Torch7.

* TensorFlow.® TensorFlow was developed by the Google Brain Team and belongs
to symbolic framework which is specified as a symbolic graph of vector oper-
ations. The work of [6] implemented their differentially private SGD algorithm
using this framework.

A detailed comparison of deep learning frameworks was conducted by Anusua
Trivedi in 2016.7

7.5 Summary

Although deep learning has achieved impressive success in many applications,
the existing research on differentially private deep learning is mainly focused on
classification tasks, such as the image classification tasks in [202] and [6], and
the human behavior classification tasks in [180]. Many other deep learning tasks,
such as language representation, may provide future opportunities for applying
differential privacy to enhance related learning processes.

Remarkably, artificial neural networks may not be the only way to develop a deep
learning model. The deep forest model, proposed by Zhou et al. [254] and based on
a decision tree ensemble approach, has shown good properties for hyper-parameter
tuning. It contains efficient and scalable training processes and has maintained
excellent performance compared to traditional approaches in initial experiments on
small-scale training data. This work may lead to potential privacy issues that will
need to be addressed, and motivates a further novel research area for differentially
private algorithm design.

“https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software.
Shttps://github.com/torch/nn.
Shttps://www.tensorflow.org.
"http://blog.revolutionanalytics.com/2016/08/deep-learning-part- 1.html.

https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
https://github.com/torch/nn
https://www.tensorflow.org
http://blog.revolutionanalytics.com/2016/08/deep-learning-part-1.html

Chapter 8
Differentially Private Applications: Where
to Start?

8.1 Solving a Privacy Problem in an Application

A lot of differentially private applications have been proposed nowadays. The var-
ious steps that can be followed when solving a privacy preservation problem for a
particular application are shown in Fig. 8.1. The dark boxes in the flowchart show
the steps, and the orange boxes illustrate the possible choices. First, it is necessary
to identify the scenarios: data publishing or data analysis. Data publishing aims to
release answers to queries or entire datasets to public users; whereas, data analysis
normally releases a private version of a model. Because private learning frameworks
solve privacy preservation problems using optimization, an optimization objective
normally has to be determined. The second step is identifying challenges in the
application. Although differential privacy is considered to be a promising solution
for privacy preservation issues, implementation in some applications still presents a
number of challenges. These challenges, and their possible solutions, are introduced
in the next subsection.

The third step is selecting the most suitable mechanisms. Some major mecha-
nisms, such as transformation and iteration, have already been presented in Chap. 3.
In the real world, a curator can develop more useful mechanisms based on the
specific requirements of the application. Once the solution, or algorithm, for a
problem has been determined, a utility and privacy analysis are required. As men-
tioned in Chap. 2, the most popular utility measurement is an error measurement,
which evaluates the distance between the non-private output and the private output.
Various applications may interpret these errors in different ways. For example, in
recommender systems, the error could be a mean average error, while in location-
based services, the error is normally a Euclidean distance error. The error is bounded
by the accuracy parameter «, which can be estimated using tools like a union

© Springer International Publishing AG 2017 83
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_8

84 8 Differentially Private Applications: Where to Start?

Application

Data Publishing Data Analysis

I

Private Learning [

L/E Frameword Framework

Identify Identify objective
challenges functions

Select
mechanisms

Utility Privacy Budget
meausurement arrangment

Privacy analysis

N
Laplace A Sequel \|
Inequations Others |
properti ; \ compo; composi l
/

Experimental
Evaluation

DP
Application

Fig. 8.1 Application flowchart

bound from probability theory, a property in a Laplace distribution, or some other
useful inequality. Once the privacy budget has been assigned to each operation in
the algorithm, the privacy level of the algorithm is estimated through parallel or
sequential composition.

8.2 Challenges in Differentially Private Applications 85

The final step is experimental evaluation, which evaluates the algorithm’s
performance for its intended application. Experimental evaluation involves: choos-
ing the datasets, selecting a performance evaluation measurement, and assigning a
privacy budget. Several popular public datasets are presented in the next subsection.
Performance is highly associated with the utility analysis and can be considered
as a practical proof of the utility analysis. Evaluating the performance of a private
algorithm normally involves a comparison between the proposed algorithm, other
private algorithms, and non-private algorithms. Typically, the privacy budget is set
to less than 1 for each operation. The application is considered to be differentially
private when all the above steps are complete.

8.2 Challenges in Differentially Private Applications

8.2.1 High Sensitivity Challenge

The most serious challenge in many applications is that queries with high sensitivity
lead to high levels of noise, which may significantly decrease the utility of
the applications. The noise added by differential privacy is calibrated according
to the sensitivity of the query. Simple queries, such as count or sum, introduce
minor noise, which has a low effect on utility. However, queries with high sensitivity
are found in many real-world applications, such as the similarity measurements in
recommender systems or the cluster center measurements in a clustering algorithm.
In these cases, deleting one record in the dataset will have a significant impact on the
similarity result. The essential challenge for differential privacy is how to decrease
the noise in queries with high sensitivity.

One of the most useful ways to deal with high sensitivity is to change the
definition of global sensitivity to be application-aware, which can create local
sensitivity. The notion of global sensitivity, which considers worst-case scenarios,
has quite a rigorous definition, but in many applications it may not be necessary
to use such strict sensitivity. If using global sensitivity generates some redundant
noise, the definition of sensitivity can be relaxed to achieve a trade-off between
privacy and utility.

8.2.2 Dataset Sparsity Challenge

When differential privacy uses exponential or other randomization mechanisms,
a sparse dataset will induce redundant noise. An exponential mechanism is an
essential differential privacy mechanism that allocates different probabilities to
every possible output for a query and then selects one output according to these
probabilities. If the dataset is sparse, there will be many possible outputs, and a
randomization mechanism will introduce a massive amount of errors compared to
non-private mechanisms.

86 8 Differentially Private Applications: Where to Start?

One possible solution is to shrink the domain of randomization. The noise will
decrease when the range that is randomized is limited. For example, clustering is
one possible way to structure existing items into groups and limit the domains to be
randomized within each cluster.

8.2.3 Large Query Set Challenge

In real-world applications, such as data mining and recommendation systems, large
numbers of queries have to be released. In addition, many applications have multiple
steps where noise needs to be added. However, difficulties occur when the query
set is large because the privacy budget needs to be divided into tiny pieces. In
these scenarios, a large amount of noise will be introduced into the published query
answers.

For example, suppose we have a privacy budget ¢ and the sensitivity equals
1. If algorithm A has only one step where noise is added, the total noise will
be Lap(1/e€). But, if recursive algorithm B repeats over ten rounds and noise
has to be added to each round, the privacy budget ¢ will be divided into ten
pieces, and the noise added to each round will be Lap(10/¢). The total noise
will be 10 * Lap(10/€), which is much higher than the noise in algorithm A.
Unfortunately, most applications have more than one step where noise needs to be
added. Therefore, a critical challenge in real-world applications is how to decrease
noise when answering a large query set.

Several possible solutions have been proposed in previous research. One possible
solution is to apply an iteration mechanism. Adding noise to each step in a
recursive algorithm is accomplished using an iteration mechanism, and, given
that some noise will be generated without consuming the privacy budget, the
total amount of noise will be reduced. Iteration mechanisms were discussed in
Chap. 3. Another possible solution is to release a synthetic dataset, which can
be used to answer multiple queries without consuming any more of the privacy
budget. Synthetic dataset publishing was discussed in Chap. 5. In addition, a parallel
composition can be applied when the query is only performed on a subset of the
dataset.

8.2.4 Correlated Data Challenge

Existing research on differential privacy assumes that, in a dataset, data records are
sampled independently. However, in real-world applications, data records are rarely
independent [32]. When a traditional differentially private technique performed on a
correlated dataset discloses more information than expected, this indicates a serious
privacy violation [126]. Recent research has been concerned with this new kind of

8.2 Challenges in Differentially Private Applications 87

privacy violation; however, coupled datasets lack a solid solution. Moreover, how to
decrease the large amount of noise incurred by differential privacy in a correlated
dataset remains a challenge.

As advances in correlated data analysis are made, it may now be possible
to overcome these research barriers. Correlated information can be modeled by
functions or parameters that can be further defined as background information in
a differential privacy mechanism. For example, Cao et al. [32] use time intervals
and correlation analyses to identify correlated records, and they model correlated
information using inter-behavior functions. This solution may help tackle these
research barriers by incorporating modeled information into a differential privacy
mechanism as most records are only partially correlated. In other words, the impact
of deleting a particular record may differ among the remaining records. If those
differences can be quantified, they can be used to calibrate the noise. New sensitivity
can be defined by correlating the quantified differences.

8.2.5 Computational Complexity Challenge

Differential privacy introduces extra computational complexity to applications.
Complexity is not a significant issue in traditional Laplace mechanisms; however,
in other mechanisms, such as iteration mechanisms or mechanisms that need to
traverse the whole universe, computational complexity is exponential to the size of
the universe. This is a substantial obstacle when implementing differential privacy
in various applications, especially in real-time systems.

The most effective solution for eliminating the impact of computational time is
to avoid traversing the entire universe. The curator can partition the domain into
smaller subsets to eliminate the search space, or convert the search domain into
a tree structure to decrease complexity. Thus, sampling is a useful technique for
decreasing search times.

8.2.6 Summary

In summary, these challenges prevent differential privacy from being applied to a
broader range of real-world applications. Current research is trying to fix these
challenges in several practical ways. Table 8.1 summarizes these challenges and
their possible solutions, which can be used in various applications.

88

8 Differentially Private Applications: Where to Start?

Table 8.1 Challenges and possible solutions

Challenges
High sensitivity

Large query set

Data sparsity
Correlated data

Computational
complexity

Possible solutions
Use local sensitivity

Change the function

Iterative based
mechanism

Publish synthetic dataset

Apply privacy
composition theorem
Break the correlation
between queries

Shrink the scale of the
dataset

Define correlated degree
and use local sensitivity
Sampling

Avoid traverse the entire
universe

Disadvantages

Sacrifice privacy; local sensitivity may
not be easy to estimate

May sacrifice utility, not easy to
replace a high sensitivity query

The parameters are not easy to adjust;
introduce extra computational
complexity

Only useful for specific target;
introduce extra computational
complexity

May not be applicable for some
applications

May not be applicable for some
applications

Shrinking process may introduce extra
noise; sacrifice privacy level

Only suitable for data with lower
correlation

May loss some important information
May not be applicable for some
applications

8.3 Useful Public Datasets in Applications

8.3.1 Recommender System Datasets

The Netflix dataset' is a real industrial dataset released by Netflix. It was
extracted from the Netflix Prize dataset. Each user has rated at least 20 movies,
and each movie has been rated by 20-250 users.

The MovieLens? datasets are the benchmark datasets for recommender system
research. GroupLens Research has collated movie rating datasets of various sizes
to cater for diverse requirements. For example, the MovieLens 20M dataset is the
latest dataset and provides 20 million ratings and 465,000 tag applications applied
to 27,000 movies by 138,000 users. It includes tag genome data with 12 million
relevance scores across 1100 tags.

The Yahoo! datasets® represents a snapshot of the Yahoo! Music community’s
preferences for various songs. The dataset contains over 717 million ratings of
136,000 songs provided by 1.8 million users of Yahoo! Music services. The data
were collected between 2002 and 2006.

Uhttp://www.netflixprize.com.
Zhttp://www.grouplens.org.
3https://webscope.sandbox.yahoo.com/catalog.php?datatype=r.

http://www.netflixprize.com
http://www.grouplens.org
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

8.3 Useful Public Datasets in Applications 89
8.3.2 Online Social Network Datasets

The Stanford Network Analysis Platform (SNAP) is a general purpose network
analysis and graph mining library that includes datasets describing very large
networks, including social networks, communications networks, and transportation
networks [136].

8.3.3 Location Based Datasets

The T-Drive trajectory dataset contains 1-week of trajectories for 10,357 taxis.
It includes around 15 million total data points with a total trajectory distance
reaching 9 million kilometers.

Geolife is a location-based social networking service, enabling users to share
their life experiences and build connections using their GPS location history. This
dataset includes 178 users over a period of 4 years (from April 2007 to October
2011). It contains 17,621 trajectories covering a distance of 1,251,654km, and a
total duration of 48,203 h.

Gowalla is a location-based social networking website where users checking-in
to share their location. This dataset contains a total of 6,442,890 user check-ins of
the users during the period between February 2009 and October 2010. The main
objective behind the use of this dataset is to understand the basic laws that govern
the human motion and dynamics. This dataset belongs to SNAP.

There are also several well-known websites that can crawl photos using GPS
information, for example, Flickr: www.flickr.com. Instagram: http://instagram.com.

8.3.4 Other Datasets

The UCI Machine Learning repository” is a collection of datasets, domain theories,
and data generators that are used by the machine learning community to empirically
analyze machine learning algorithms. It provides a number of datasets that can be
used to evaluate privacy preservation methods. For example, the Adult dataset
from the repository was originally used to predict whether a citizen’s income would

exceed 50,000 p.a. based on census data. It is also known as the “Census Income”l
dataset and is a popular dataset used to evaluate privacy preservation methods.

“http://archive.ics.uci.edu/ml/.

www.flickr.com
http://instagram.com
http://archive.ics.uci.edu/ml/

90 8 Differentially Private Applications: Where to Start?
8.4 Applications Settings

The basic settings of an application based on the flowchart in Fig. 8.1 are illustrated
in Table 8.2. This nomenclature is used in subsequent chapters.

The first row shows the type of applications, for example location privacy, rec-
ommender system or social network. The nature of the input and output data is also
listed in the table. The input data, output data and utility measurements are highly
related to the application. For example, the input data of a recommender system are
normally a user-item matrix, while social network data are normally graphs. The
output data of a recommender system are normally rating predictions, while social
network output data can be statistics information or graphs. Challenges and possible
solutions vary across application types. The publishing setting can be interactive or
non-interactive, while the analysis setting can be a Laplace/exponential framework
or a private learning framework. Utility measurements are normally based on the
error measurement, which is the distance between the non-private result and the
private result. For example, in a recommender system, the utility can be measured
by the distance between the original MAE and the MAE based on the private result.

Table 8.2 Application settings

Application Recommender systems, location privacy. . .
Input data Transaction, graph, stream, ...
Output data Prediction, statistics information, synthetic data, . ..

Publishing/analysis setting | Interactive; non-interactive; Laplace/exponential framework;
private learning framework. . .

Challenges High sensitivity, . ..

Solutions Adjust sensitivity measurement. . .

Selected mechanism Partition, iteration, query separation, ...

Utility measurement Error measurement

Utility analysis Probability theories, Laplace properties, inequations,. . .
Privacy analysis Sequential composition, parallel composition

Experimental Evaluation MAE, RMSE, etc.

Chapter 9
Differentially Private Social Network Data

Publishing

9.1 Introduction

With the significant growth of Online Social Networks (OSNs), the increasing
volumes of data collected in those OSNs have become a rich source of insight into
fundamental societal phenomena, such as epidemiology, information dissemination,
marketing, etc. Much of this OSN data is in the form of graphs, which represent
information such as the relationships between individuals. Releasing those graph
data has enormous potential social benefits. However, the graph data infer sensitive
information about a particular individual [13], which has raised concern among
social network participants.

If the differential privacy mechanism is adopted in graph data, the research
problem is then to design efficient algorithms to publish statistics about the graph
while satisfying the definition of either node differential privacy or edge differential
privacy. The former protects the node of the graph and the latter protects the edge in
the graph.

Previous works have successfully achieved either node differential privacy and
edge differential privacy when the number of queries is limited. For example, Hay
et al. [95] implemented node differential privacy, and pointed out the difficulties
to achieve the node differential privacy. Paper [229] proposed to publish graph
dataset using a dK-graph model. Chen et al. [41] considered the correlation between
nodes and proposed a correlated release method for sparse graphes. However, these
works suffer from a serious problem: when the number of queries is increasing, a
large volume of noise will be introduced. This problem can be tackled by iteration
mechanism, which will be presented in this chapter.

This chapter focuses on both node and edge differential privacy. First, the chapter
present several basic methods on node and edge differential privacy, then proposed
an iteration method to publish a synthetic graph. Specifically, given a set of queries,
an iteration method is used to generate a synthetic graph to answer these queries
accurately. The iteration process can be considered as a training procedure, in

© Springer International Publishing AG 2017 91
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_9

92

Table 9.1 Application settings

9 Differentially Private Social Network Data Publishing

Application Social network data publishing
Input data Graph
Output data Query answers and synthetic graph data

Publishing setting

Non-interactive

Challenges

Large query set

Solutions

Iterative based method

Selected mechanism

Iteration

Utility measurement

Noise measurement

Utility analysis

Laplace properties

Privacy analysis

Sequential composition

Experimental evaluation

Graph distance

Fig. 9.1 Graph

which queries are training samples and the synthetic graph is an output learning
model. A synthetic graph is finally generated by iterative update to answer the set of
queries. As the training process consumes less privacy budget than the state-of-the-
art methods, the total noise will be diminished. Table 9.1 shows the basic setting of
the application.

9.2 Preliminaries

We denote a simple undirected graph as G(V, E), where V = {v;,vz,...,v,} is a
set of vertices (or nodes) representing individuals in the social network and E €
{(u,v)|u,v € V} is a set of edges representing relationships between individuals.
Figure 9.1 shows an example of a graph, in which the nodes are represented by
circles and edges are represented by lines. The degree of a node refers to the number
of its neighbourhoods. Formally, we define degree as follows:

Neighbourhood:

N@) = {u|(u,v) € E,u # v}; 9.1)

9.3 Basic Differentially Private Social Network Data Publishing Methods 93

Fig. 9.2 Queries on graphs (: :j w

Triangle counting k-triangle counting

fraction of nodes of degree

degree

k-star counting Degree distribtuion

Degree:
D(v) = [N(v)|. 9.2)

Besides the count of nodes and edges in a graph, Fig. 9.2 shows several popular
subgraph queries, including triangle counting, k-triangle counting, k-stars counting,
and degree distribution.

9.3 Basic Differentially Private Social Network Data
Publishing Methods

9.3.1 Node Differential Privacy

Node differential privacy ensures the privacy of a query over two neighbouring
graphs where two neighbouring graphs differ one node and all edges connected
to the node. Figure 9.3 shows the neighboring graphes in node differential privacy.
Hay et al. [95] first proposed the notion of node differential privacy and pointed
out the difficulties to achieve it. They showed that the result of query was highly
inaccurate for analyzing graph due to the large noise.

Let us use Fig. 9.3 to illustrate the problem. When answering query f;: how many
nodes are there in the graph? the Af; equals to 1, and the noise adding to f; is scaled
to Lap(1/¢), which is quite low. However, when answering query f,: how many
edges are there in the graph? the sensitivity of f> equals to 5 as the maximum degree
of all nodes is 5. The noise adding to the f, result is quite large comparing with
the f7.

The high sensitivity of node differential privacy derives from the degree of a
node. When deleting a node, the maximum changing is determined by the largest
degree of node in a graph. Theoretically, the sensitivity of a graph G will be

94 9 Differentially Private Social Network Data Publishing

Neighboring Graph G’

Fig. 9.3 Neighboring graph in node differential privacy

maximum to n — 1. How to decrease the sensitivity of f, is a challenge. One of
the key ideas to achieve a better utility of node differential privacy is to transform
the original graph to a new graph with lower sensitivity. Several methods have been
proposed to achieve the goal. These methods roughly can be grouped into three
categories: truncation, Lipschitz extension and iterative based mechanism.

9.3.1.1 Truncation and Smooth Sensitivity

Truncation method transforms the input graphes into graphes with maximum degree
below a certain threshold 6 [117]. The graph G is truncated to Gy by discarding
nodes with degree > 6. Figure 9.4 shows a truncated graph G3 for original graph
G, in which one node with degree 5 is discarded to make sure all nodes are equal or
below the degree of 3. By this way, the sensitivity of edge counting query will be
decreased from sensitivity 5 to sensitivity of 3.

Algorithm 1 e-Node-Private Algorithm for Publishing Degree Distributions

Require:AG, €, 0, degree distributions query f
Ensure: p.
1. determine the randomized truncated parameter: select’G\ e{D+ 10% +1,....2D+
2. computer Gfg\and smooth bound S(Gy) with =

¥

logn
B

€ .
V26+1’

3. output 7 = £(G2) + Cauchy(2285(Gy)) .

Kasiviswanathan et al. [117] showed that given a query f defined on the trunked
graph Gy, a smooth bound S is necessary for the number of nodes whose degrees
may change due to the truncation. They applied Nissim et al.’s [172] B-smooth
bound S(G) for local sensitivity, which has been discussion in Definition 2.4 in
Chap. 2. One can add noise proportional to smooth bounds on the local sensitivity
using a variety of distributions. Kasiviswanathan et al. used the Cauchy distribution
Cauchy(~/25(G)/¢€). Algorithm 1 shows a typical algorithm to publish degree
distributions for a G.

9.3 Basic Differentially Private Social Network Data Publishing Methods 95

Fig. 9.4 Truncation method on graph

There are three major steps in the algorithm. The first step determines the
truncated parameter 6. As we may not know the maximum degree in the graph,
or the maximum degree may be very large, 6 is normally approximated by 9
Therefore, the algorithm randomized the cutoff to obtain a better bound. Given a
target parameter 6, the algorithm picks a random parameter in a range of bounded
constant multiple of 8. The second step creates the truncated graph by discarding
the node with degree greater than 6. The final step add Cauchy distributed noise to
each entry of the degree distribution.

Truncating G to Gy is not easy, as deleting all nodes with degree greater than 6
will ultimately delete more nodes and edges than we expected. Blocki et al. [27]
solved this problem by selecting an arbitrary order among the edges, traversing the
edges and removing each encountered edge that is connected to a node that has
degree is greater than 6. Day [53] used an reverse way to create truncated graph.
They first deleted all edges and add edges in a pre-defined order to achieve Gyg.

9.3.1.2 Lipschitz Extension

A more efficient method to achieve node differential privacy is based on Lipschitz
extension. A function f” is a Lipschitz extension of f from Gy to G if it satisfies with
(1) f" agrees with f on Gy, and (2) the global sensitivity of f' on G is equal to the
local sensitivity of f on Gy. As the sensitivity of f” is lower than that of f, Lipschitz
extension of f is considered as an efficient way to decrease the sensitivity.

Figure 9.5 shows two conditions of Lipschitz extension. The large square is
used to show all graphes with all possible degrees, and the eclipse inside the
square is applied to show Gy. For a query f, the global sensitivity is denoted by
Af, which is larger than the local sensitivity Afy. If the algorithm can find an
efficiently computable Lipschitz extension f” that is defined on all of G, then we
can use the Laplace mechanism to releasef(G) with relatively small additive noise.
Consequently, the target of the algorithm is to find a f” for f.

Kasiviswanathan et al. [117] proposed a flow-based method to implement such
extensions for subgraph counts. Figure 9.6 shows the graph flow. Given a graph
G = (V,E) and a degree bound 6, the flow-based method first constructs a flow
graph by copy two versions of nodes set V; = v;|v € V and V, = v,|v € V, which
are called left and right copies, respectively. The flow graph of G with a source s
and a sink ¢ is a directed graph on nodes V; | V, | {s, #}. Edges (s, v;) and (v,, ?)

96 9 Differentially Private Social Network Data Publishing

Fig. 9.5 Lipschitz extension
G Higher Af

AF=Dof w-__

~E

> Lipschitz extension f’

Gu

Fig. 9.6 Flow based method

to obtain Lipschitz extension a G
®
9‘0 »©
&
Cc

are with capacity 6, while each edge (u,v) in E is added as (u,v’) between v,
and v, with capacity 1. Let vs(G) denote the value of maximum flow from s to
t, v4(G)/2 is a Lipschitz extension of an edge query f. The global node sensitivity
Avy(G) < 20. Accordingly, Kasiviswanathan et al. [117] published the number of
edges by Algorithm 2.

Algorithm 2 e-Node-Private Algorithm for Publishing Edge Numbers
Require: G, €, 6, number of edge query f
Ensure: 7
1.?=f(G) + Lap(2n/¢) and threshold © = @;
iff > 37 then
2. output?.
else
3. compute vy(G) with 6;
end if
4.7 = va(G)/2 + Lap(26/e).

Blocki et al. [27] proceeded with a similar intuition. They showed that Lipschitz
extensions exist for all real-valued functions, and give a specific projection from any
graph to a particular degree-bounded graph, along with smooth upper bound on its
local sensitivity.

Above works can only efficiently compute Lipschitz extensions for one-
dimensional functions, in which the output is a single value. Raskhodnikova
et al. [189] developed Lipschitz extensions for degree distribution queries with
multidimensional vector outputs, via convex programming. Specifically, they

9.3 Basic Differentially Private Social Network Data Publishing Methods 97

designed Lipschitz extensions with small stretch for the sorted degree list and
for the degree distribution of a graph.

9.3.1.3 Iterative Based Mechanism

Chen et al. [45] proposed an iterative based method to achieve node differential
privacy. Given graph G and any real-valued function f, they defined a sequence of
real-valued functions 0 = f(G) < f1(G) < --- < fu(G) = f(G) with the recursive
monotonicity property that: f;(G’) < f;(G) < fi+1(G’) for all neighbors G and G’ and
Vi € {0,1,---,m}. They then defined quantity X to approximate the true answer
of f, and the global sensitivity of X is A. XA(G) = minep,1)(fi(G) + (n — i) A),
where X5(G) < f(G) but close to f(G) for larger A. For a carefully chosen A,
they output the X (G) via Laplace mechanism in the global sensitivity framework,
as an approximation of the real-valued function f(G). This recursive approach can
potentially return more accurate subgraph counting for any kinds of subgraphs with
node differential privacy. However, constructing the sequence of functions f;(G) is
usually NP-hard, and how to efficiently implement it remains an open problem.

9.3.2 Edge Differential Privacy

Edge differential privacy means adding or deleting a single edge between two nodes
in the graph makes negligible difference to the result of the query. The first research
over edge differential privacy was conducted by Nissim et al. [172], who showed
how to evaluate the number of triangles in a social network with edge differential
privacy. They showed how to efficiently calibrate noise for subgraph counts in terms
of the smooth sensitivity. The results of this technique are investigated by Karwa
et al. [113] to release counts on k-triangles and k-stars.

Rastogi et al. [190] studied the release of more general subgraph counts under
a much weaker version of differential privacy, edge adversarial privacy, which
considers a Bayesian adversary whose prior knowledge is drawn from a specified
family of distributions. By assuming that the presence of an edge does not make the
presence of other edges, they computed a high probability upper bound on the local
sensitivity, and then added noise proportional to that bound. Rastogi et al.’s method
can release more general graph statistics, but their privacy guarantee protects
only against a specific class of adversaries, and the magnitude of noise grows
exponentially with the number of edges in the subgraph.

Hay et al. [95] considered releasing a different statistics about graph, the degree
distributions. They showed that the global sensitivity approach can still be useful
when combined with post-processing of the released output to remove some added
noise, and constructed an algorithm for releasing the degree distribution of a graph,
with the edge differential privacy.

98 9 Differentially Private Social Network Data Publishing

Based on the local sensitivity, Zhang [249] adopted exponential mechanism to
sample the most suitable answer for subgraph query. The score function is designed
carefully to make sure it reflects the distribution of query outputs. A different
approach was proposed by Xiao [234], who inferred the networks structure via
connection probabilities. They encoded the structure information of the social
network by the connection probabilities between nodes instead of the presence or
absence of the edges, which reduced the impact of a single edge.

Zhu et al. [260] proposed an iterative graph published method to achieve edge
differential privacy. They proposed a graph update method that transfers the query
publishing problem to an iteration learning process. The details are presented in the
following section.

9.4 Graph Update Method

9.4.1 Opverview of Graph Update

The proposed method is called Graph Update method as the key idea is to update
a synthetic graph until all queries have been answered [260]. For a social network
graph G and a set of queries F = {fi,...,f,}, the publishing goal is to release a
set of query results F and a synthetic graph G to the public. The general idea is to
define an initial graph (G, and update it to G 1_in m round according to m queries
in F. Release answers F and the synthetic graph Gare generated during the iteration.
During the process, four different types of query answer involve in the iteration:

* True answer a;: this is the real answer that a graph response to a query. True
answer can not be published directly as it will arise privacy concern. The true
answer is normally used as the baseline to measure the utility loss of a privacy-
preserving algorithm. The symbol a, is used to represent the true answer for a
single query f, and A, = F(G) = {ay, . .., am} is applied to represent an answer
set for a query set F.

* Noise answer a,: when we add Laplace noise to a true answer, the result will
be the noise answer. Traditional Laplace method will release the noise answer
directly. However, as we mentioned in Sect. 9.1, it will introduce large amount
of noise to the release result. A single query answer is represented by a, =
f(G) = f(G) 4 Lap(s/e) and an answer set is represented by A, = F(G) =
{ant, . Qum)- R

» Synthetic answer ay: this is the answer generated by a synthetic graph G. A single
query is presented by a;, = f (6) and A, = F (6) = {d,1, ..., a4} is applied to
represent an answer set.

* Release answer a,: this is the answer finally released after the iteration. In Graph
Update method, the release answer set will consist of noise answers and synthetic
answers. The algorithm applied a, :fand A = F= {a,1,...,a;m} torepresent
the single answer of a query and the answer set, respectively.

These four different query answers will control the graph update process. The
overview of the method is presented in Fig.9.7. On the left side of the figure, the

9.4 Graph Update Method 99

G

Fig. 9.7 Overview of Graph Update method

query set F performs on the G to get true answer set A,. Laplace noise is then added
to A, to get a set of noise answer A; = {aj1, ... as,}. Each noise answer ay; helps
to update the initial G, and produce a release answer a,;. The method eventually
outputs A, = {a,1, ..., a,} and the 6;,,, as final results.

Comparing with the traditional Laplace method, the proposed Graph Update
method adds less noise. As some queries are answered by the synthetic graph, these
query answers will not consume any privacy budget. Moreover, the synthetic graph
can be applied to predict new queries without any privacy budget. Eventually, the
Graph Update method can outperform the tractional Laplace method.

Algorithm 3 Graph Update Method
Require: G, F = {fi,....fu}. €, M0
Ensure: A, = {a,1,...,am}.
l.e =¢/m
2. initial graph 50;
for each query f; € F do
3. Compute true answer ay;;

4. Add Laplace Noise to true answer a,; =’f\,- = fi(G) + Lap(S/€’);
5. Compute synthetic answer ag; = f;(G);

6. Ni = dapj — dgi;
if |ta;| > no then
7. Aari = dp;;
8. update the ai_l to /G\,-;
else
9. Ari = dyis
10. G,y = Gy
end if
end for

11. Make all degrees in G round numbers.
12. Output A, = {a,1,....am}, and G;

100 9 Differentially Private Social Network Data Publishing
9.4.2 Graph Update Method

At a high level, the Graph Update method works in three steps:

* initial the synthetic graph: As the method only preserves the edge privacy, it
assumes that the number and the labels of nodes are fixed. The synthetic graph is
initialed as a fully connected graph with fixed nodes.

* update the synthetic graph: the initial graph will be updated according to result
of each query in F, until all queries in F have been used.

* release query answers and synthetic graph: Two types of answers, noise answers
and synthetic answers that have potential to be released. Synthetic graph is also
released to the public.

Algorithm 3 is a detailed description of the Graph Update method. In step 1,
the privacy budget € is divided by m and will be arranged to each query in the set.
Step 2 initializes the graph to Gy as a full connected one. Then for each query f;
in the query set F, the algorithm computes the true answer f;(G) at Step 3. After
that, the noise answer and the synthetic answer of f; are computed at Step 4 and 5,
respectively. Step 6 measures the distance between the true answer and the synthetic
answer. If the distance is larger than a threshold 7, the Step 7 will release the noisy
answer. Otherwise, the synthetic graph will be updated by an Updated Function in
Step 8 and Step 9 will release the synthetic answer. This means the synthetic graph
is applicable for answering question, so in Step 10, the algorithm puts the current
synthetic graph to the next round. This process is iterated until all queries in F are
preceded. Finally, As the number of edges should be a integer, the algorithm round
the number of degrees in Step 11. the algorithm generates A, and G as the output
in Step 12.

Algorithm 4 Update Function

Require: Z}\,f, n,60,(0<60<1)
Ensure: G'.
1. Identify related nodes V/ that f involved,;
if n > 0 then
2.D(Vy) = (1 + 0) * D(Vy);
else
3. D(Vf) =0 % D(Vf);
end if
4.G' = GUD(Vy).
5. Output G.

The parameter 7y is a threshold controlling the distance between A, and Aj.
A larger no means less update of the graph and most of the answer in A, are
synthetic answers. It leads to less privacy budget consuming, however, when the
synthetic graph is far away from the original graph, the performance may not
optimal. A smaller no means the algorithm has more updates of the graph and

9.4 Graph Update Method 101

most of the answer in A, are noise answers. More privacy budgets will be consumes
in this configuration. Consequently, the choice of 7y will have impact on different
scenarios.

9.4.3 Update Function

Step 8 in Algorithm 3 involves with an Update Function, which updates the

synthetic graph G to graph G according to query answers. Specifically, Update

Function is controlled by the distance 1 between the a, and a; of f. If a, is smaller

than a;, it means that the synthetic graph has more edges than the original graph in

the related nodes. Update Function has to delete some edges between the related

nodes. Otherwise, Update Function will add some edges in the synthetic graph.
These related nodes is defined in the follow Definition 9.1:

Definition 9.1 (Related Node) For a query f and a graph G, related nodes V; are
all nodes that response to the query f, D(Vy) is used to denote degrees of those
nodes.

The number of edges for a node should be a integer. However, to adjust degree of
those related nodes, we arrange weight 6 (0 < 6 < 1) for each edge. After the
updating, these weights will be rounded to represent node edges.

Algorithm 4 illustrates the detail of Update Function. In the first step, the
function identifies related nodes. If n > 0, which means the synthetic graph has
less edges than the original one, the function will enhance the 6 in Step 2. If n < 0,
which means the synthetic graph has too many edges, the function will diminish
those edges by 6 in Step 3. Step 4 merges the edges to the original graph. Step 5
outputs the G'.

9.4.4 Privacy and Utility Analysis
9.4.4.1 Privacy Analysis

To analyze the privacy level of the proposed method, the sequential composition is
applied. For the traditional Laplace method, when answering F with m queries, €
will be divided into m pieces and arranged to each query f; € F. Specifically, we
have €/ = €/m and for each query, the noise answer will be a,; = f; + Lap(s/¢€’).
According to the sequential composition, the Laplace method preserve (¢' * m)-
differential privacy, which is equal to e-differential privacy.

In Graph Update method, the release answer set A, are the combination of noise
answers A, and synthetic answers A;. Only A, consume privacy budget, while A; do
not. In Algorithm 4, even Step 4 adds Laplace noise to the true answer, the noise
result does not release directly. Only when the algorithm processed to Step 7, in

102 9 Differentially Private Social Network Data Publishing

which a, is released, the algorithm consumes the privacy budget. Suppose there are
j(0 <j < m) queries in F is released by synthetic answers, the algorithm preserves
((m—j) * €')-differential privacy. As (m—j) x €’ < mx¢’, the Graph Update method
preserve more strict privacy than tractional Laplace method.

9.4.4.2 Utility Analysis

Error measurement is applied to evaluate the utility. The error is defined by Mean
Absolute Error MAE). MAE, of release answer A, is defined as Eq. (9.3)

1 ~
MAE, = —|Fi(G) — Fi(G)|
m

= (@ -G

fieF

1
= — Z lay — al
m

a; €A,
1
= —|A, — Al 9.3)
m

Similarly, MAE, of noise answers and MAE; of synthetic answers are defined as
Egs. (9.4) and (9.5), respectively.

1

MAE, = _|An _Atl; 9.4)
m
1

MAE, = —|A, — A,. 9.5)
m

It is obvious that for true answers A,, the MAE is zero. MAE, represents the perfor-
mance of traditional Laplace method. A lower MAE implies a better performance.

The target of Graph Update method is to achieve a lower MAE, in a fixed privacy
budget. A simulated figure, Fig. 9.8, is applied to illustrate the relationship between
MAE values and the size of the query set m.

In Fig.9.8, x axis is the size of the query set and y axis is the value of MAE.
For noise answer A,, MAE, is arising with the increasing of m. A smooth line
is applied to represent the MAE, in this simulated figure. In real case, the line is
fluctuated as the noise is derived from Laplace distribution. The MAE; is decreasing
at the beginning with the increasing of m. When it reaches to its lowest point, the
MAE; begins to rise with the enhance of m. This is because with the update of
the graph, the synthetic graph is getting more and more accurate, MAE; is keeping
decreasing. However, as the iteration procedure is controlled by the noise answer, it
is impossible for synthetic graph to equal to the original graph, no matter how large
m is. On the contrary, with the increasing of m, more noise will be introduced to
iteration and the synthetic graph will be far away from the original graph.

9.4 Graph Update Method 103

Fig. 9.8 Utility of the query MAE 4
set on a graph

Synthetic Answer
i

Noise Answer
1

/
I
i
|
'y

sy

As A, is the combination of A, and A;, MAE, of release answers can be reflected
by synthetic answer MAE; and noise answer MAE,. Figure 9.8 shows that MAE;
will below MAE, when the query size reaches to m;. After reaching to a lowest
point, it begins to increase. After reaching to my, the MAE; is higher than MAE,.
Consequently, when m in the scale of [0, m;) U (my, m], the MAE, is dominated by
noise answer MAE,. When m in the scale of [m;, m,], the MAE, is dominated by
synthetic answer MAE;. By this way, in the scale of [0, m], the MAE, of release
answers is smaller than MAE,, which means that the performance of the proposed
Graph Update method is better than the traditional Laplace method.

9.4.5 Experimental Evaluation

This section evaluates the performance of the proposed Graph Update method
comparing with Laplace mechanism.

9.4.5.1 Datasets and Configuration

The experiment involve with four datasets listed in Table 9.2. These datasets are
collected from Stanford Network Analysis Platform (SNAP) [136].

The experiment considers the degree query on nodes, which is similar to the
count query on relation dataset. To preserve the edge privacy, the degree query has
the sensitivity of 1, which means deleting an edge will have maximum impact of 1
on the query result. The performance of results is measured by Mean Absolute Error
(MAE) (9.3).

104 9 Differentially Private Social Network Data Publishing

Table 9.2 Graph datasets

Type Name Nodes Edges

Social networks Ego-Facebook 4039 88,234

Social networks Wiki-Vote 7115 103,689

Internet peer-to-peer networks p2p-Gnutella08 6301 20,777

Collaboration networks ca-GrQc 5242 14,496
250 T T T T T T T T T 250

Graph Update
Laplace
Correlated |

Graph Update
Laplace
Correlated

200 [200 [

150 [

w w
< <
= =
100 [100
50 - 50 - VM
MVM
I
o Lot | aplli
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Size of Query set Size of Query set
250 T T T T T T T T T 250
Graph Update Graph Update
——— Laplace ——— Laplace
Correlated Correlated
200 200
150 150
w w
< <
= =
100 100
50 50
v
e
0 s L L L L L L L L 0 . L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Size of Query set Size of Query set

(c) (d)

Fig. 9.9 Performance of different methods. (a) ego-Facebook. (b) Wiki-Vote.
(c) p2p-Gnutella0s. (d) ca-GrQc

9.4.5.2 Performance Evaluation on Diverse Size of Query Sets

The performance of the Update Graph is examined through comparison with the
Laplace method [62] and Correlated method [41]. The size of query sets is from 1
to 200, in which each query is independent to each other. Parameters 1o and 6 as
optimal ones for each dataset and the € is fixed at 1 for all methods.

According to Fig.9.9, It is observed that with the increasing of the size of the
query sets, MAEs of all methods are increasing approximately in linear. This is

9.5 Summary 105

because the queries are independent to each other and the privacy budget is arranged
equally to each query. With the linear increasing of the query number, the noise
added to each query answer is enhanced linearly.

Second, Fig. 9.9 shows that Update Graph has lower MAE comparing with other
two methods, especially when the size of the query set is large. As shown in
Fig.9.9a, when the size of query set is 200, the MAE of Graph Update is 99.8500
while the Laplace method has MAE of 210.0020, and the Correlated method has
MAE of 135.2078 which is 52.45 and 26.15% higher than the proposed Update
Graph. This trend can be observed in Fig.9.9b—d. The proposed Graph Update
mechanism has better performance because part of query answers does not consume
any privacy budget, while noise is only added in the updated procedure. Other
methods, including Laplace method consume the privacy budget when answering
every query. The experimental results show the effectiveness of Graph Update in
answering a large set of queries.

Third, it is worth to mention that when the size of the query set is limited,
the proposed Graph Update may not necessary outperform the Correlated method.
Figure 9.9a shows that when the size is less than 20, MAE's of Graph Update and the
Correlated method are mixed together. This is because when the query set is limited,
the synthetic graph can not be fully updated and may differ from the original graph
largely. Therefore, the performance may not necessary outperform other methods
significantly. This result shows that Graph Update is more suitable in scenarios that
need to answer a large amount of queries.

9.5 Summary

Nowadays, the privacy problem have aroused peoples attention. Especially the
online social network data, which contains a massive personal information. How
to release social network data is a hot topic that attracts lots of attention. This
chapter proposes several method to meet with the graph publishing problem. And
to overcome the problem of providing accurate results even when releasing large
numbers of queries, this chapter then presents an iterative method that transfers the
query release problem into an iteration based update process, so as to providing a
practical solution for publishing a sequence of queries with high accuracy. In the
future, much more complied queries should be investigated, such as cut queries and
triangle queries, which can allow researchers to get more information of the dataset
while still can guarantee users’ privacy.

Chapter 10
Differentially Private Recommender System

10.1 Introduction

A recommender system attempts to predict a user’s potential likes and interests
by analyzing the user’s historical transaction data. Currently recommender sys-
tems are highly successful on e-commerce web sites capable of recommending
products users will probably like. Collaborative Filtering (CF) is one of the most
popular recommendation techniques as it is insensitive to product details. This is
achieved by analyzing the user’s historical transaction data with various data mining
or machine learning techniques, e.g. k nearest neighbor rule, the probability theory
and matrix factorization [194]. However, there is potential for a breach of privacy in
the recommendation process.

The literature has shown that continual observation of recommendations with
some background information makes it possible to infer the individual’s rating or
even transaction history, especially for the neighborhood-based methods [30]. For
example, an adversary can infer the rating history of an active user by creating fake
neighbors based on background information [30].

Typically, a collaborative filtering method employs certain traditional privacy
preserving approaches, such as cryptographic, obfuscation and perturbation. Among
them, Cryptographic is suitable for multiple parties but induces extra computational
cost [31, 247]. Obfuscation is easy to understand and implement, however the utility
will decrease significantly [23, 176]. Perturbation preserves high privacy levels by
adding noise to the original dataset, but the magnitude of noise is subjective and
hard to control [181]. Moreover, these traditional approaches suffer from a common
weakness: the privacy notion is weak and hard to prove theoretically, thus impairing
the credibility of the final result. In order to address these problems, differential
privacy has been proposed.

© Springer International Publishing AG 2017 107
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_10

108 10 Differentially Private Recommender System

Differential privacy was introduced into CF by McSherry et al. [156], who
pioneered a study that constructed the private covariance matrix to randomize each
user’s rating before submitting to the system. Machanavajjhala et al. [152] presented
a graph link-based recommendation algorithm and formalized the trade-off between
accuracy and privacy. Both of them employed Laplace noise to mask accurate
ratings so the actual opinions of an individual were protected.

Although differentially privacy is promising for privacy preserving CF due to its
strong privacy guarantee, it still introduce large noise. Large noise occurs for two
reasons: the high sensitivity and the naive mechanism. Sensitivity determines the
size of the noise to be added to each query. Unfortunately, the queries employed in
recommendation techniques always have high sensitivity, followed by the addition
of large noise. A naive mechanism is another issue that leads to high noise. Previous
work directly uses the differential privacy mechanism and disregards the unique
characteristics of recommendations, thus negatively affecting the recommendation
performance.

To overcome the weakness, two research issues need to be considered.

* How fto define sensitivity for recommendation purposes? Traditional global
sensitivity measurement is not suitable for CF due to high dimensional input.
How to define a new sensitivity is an issue to be addressed.

* How to design the recommender mechanism for CF? For example, the perfor-
mance of neighborhood-based methods is largely dependent on the quality of
selected neighbors. How to enhance the quality of selected neighbors in a privacy
preserving process is another research issue. By re-designing the private selection
mechanism, One can retain the accuracy from the final output result.

To achieve the goal, the chapter first proposes two typical differentially private
recommender systems, and then present a differentially private neighborhood-based
recommender system to defend a specific attack, KNN attack, in detail. Table 10.1
illustrates the setting of differentially private recommender system.

Table 10.1 Application

. Application Recommender systems
settings Input data User-item rating matrix
Output data Prediction
Publishing setting Interactive
Challenges High sensitivity
Solutions Adjust sensitivity measurement
Selected mechanism Group large candidate sets
Utility measurement Error measurement
Utility analysis Union bound
Privacy analysis Parallel composition

Experimental evaluation | Performance measured by MAE

10.2 Preliminaries 109

10.2 Preliminaries

10.2.1 Collaborative Filtering

Collaborative Filtering (CF) is a well-known recommendation technique that
can be further categorized into neighborhood-based methods and model-based
methods [193]. The neighborhood-based methods are generally based on the k
nearest neighbor rule (KNN), and provides recommendations by aggregating the
opinions of a user’s k nearest neighbors, while model-based methods are developed
using different algorithms, such as singular value decomposition, probabilistic latent
semantic, etc., to predict users’ rating of unrated items [210].

Let U = {uy,uy...u,} be asetof users and I = {t1,1,...t,} be a set of items.
The user xitem rating dataset D is represented as a nxm matrix, in which r,; denotes
the rating that user u gave to item #;. For each #;, s(i, j) represents its similarity with
item #. s(u,v) denotes the similarity between user u, with u,. Ny(#;) denotes the
set of item #;’s k neighbors, and Uj; = {u, € Ulry # @,ry # @} denotes the set
of users, co-rating on both item #; and ¢#. In addition, we use Zr) to denote average
rating, and 7 to represent inaccurate rating, including predicted rating or noisy rating.

Table 10.2 is a typical user-item matrix. Users rate different movies by various
scores. The target of recommender system is to predict those empty rates by
neighborhood-based or model-based methods.

10.2.2 Neighborhood-Based Methods: k Nearest Neighbors

Two stages are involved in neighborhood-based methods: the Neighbor Selection
and the Rating Prediction. Figure 10.1 shows a k nearest neighbor algorithm. In the
Neighbor Selection stage, the similarity between any two users or any two items is
estimated, and corresponds to the user-based methods and the ifem-based methods.
Various measurement metrics have been proposed to compute the similarity. Two
of the most popular ones are the Pearson Correlation Coefficient (PCC) and
Cosine-based Similarity (COS) [7]. Neighbors are then selected according to the
similarity.

Table 10.2 User-item matrix

- User |Alien |Logan |Beauty and the beasts | The artist
for a movie recommender

system Alice |3 2 4 5
Bob 3 5 4
Cathy |2 3 4 0

Eva 3 4

110 10 Differentially Private Recommender System

User-item dataset P -
’ AY
:’ Neighbour selection ‘: Prediction
i i
! 1
! Nearest | ! s 3
: Item (or neighbors| | Y jet, S(L,J) X 1
n user) . 1, =
i similarit of item | = Z |q([/)l
! arity (or user) | ! j €Ly 1915
1 s(i, J) |
1 I 1
1 u 1
1 1
\ 1
\ ’

Fig. 10.1 k nearest neighbors method

¢ Pearson Correlation Coefficient

erUij(rxi - ;i)(rxj - ;])

sim(i, j) = , (10.1)
v, (ra =7\ e (r = 7
where 7 is the average rating given by relative users.
* Cosine-based Simlarity
sim(i,j) = —1 (10.2)
[ril 2117l |2

In the Rating Prediction Stage, for any item ¢;, all ratings on #; by users in Ny (u,)
will be aggregated into the predicted rating 7,;. Specifically, the prediction of 7; is
calculated as a weighted sum of the neighbors’ ratings on item #;. Accordingly, the
determination of a suitable set of weights becomes an essential problem because
most work relies on the similarity between users or items to determine the weight.
For example, for ifem-based methods, the prediction of 7,; is formulated as follows:

ep. S(,)) *Faj
Fui = M (10.3)
Zjela (i,)]

In user-based methods, the active user’s prediction is made by the rating data
from many other users whose rating is similar to the active user. The predicted rating
of user v on item « is:

ZueUU S(Uv M)(ruoz - fu)
2o s u)] ’

Py =Ty +

where 7, and 7, is average rating given by user u and v respectively.
Finally, the computed prediction are converted into recommendations, e.g., a
subset of items with the highest predicted rating is recommended to the user.

10.2 Preliminaries 111

Fig. 10.2 Matrix User-item dataset
factorization recommender d d
system ltems
% Matrix Q :
—~_ Users
n T n| Matrix
P
8 o Al
,m - q, P u

10.2.3 Model-Based Methods: Matrix Factorization

Some of the most successful model-based methods are based on matrix factoriza-
tion. Matrix factorization characterizes both items and users by vectors of factors
inferred from item rating patterns. Matrix factorization models map both users
and items to a joint latent factor space of dimensionality /, such that user-item
interactions are modeled as inner products in that space.

Specifically, the method factorizes D into two latent matrices: the user-factor
matrix P with the size of n x [and the item-factor matrix Q with the size d x [. Each
row p, in P (and g; in Q) represents the relation between the user u (item ¢) and the
latent factor. The dimension / of the latent matrices is less than d. The dataset D is
approximated as a product of P and Q, and each known rating r,; is approximated
by 7ui = q"pu. Figure 10.2 shows the matrix factorization method.

To obtain P and Q, the method minimizes the regularized squared error for all
the available ratings:

minP,Q Y " [(ri—pu-4})” + Apull* + lail*)]- (10.4)

ri €D

The constant A regularizes the learned factors and prevents overfitting. Two
common ways to solve the non-convex optimization problem are stochastic gradient
descent (SGD) and alternating least squares (ALS).

In SGD, the factors are learned by iteratively evaluating the error e,; = r,;— p,,qiT
for each rating r,;, and simultaneously updating the user and item vectors by taking
a step in the direction opposite to the gradient of the regularized loss function:

Pu < Pu + v(€uiqi — Apy) (10.5)
qi < qi + v(€wpu — Aqi). (10.6)

The constant y determines the rate of minimizing the error and is often referred to
as the learning rate.

ALS solves the problem by updating the user and item latent vectors iteratively.
In each iteration, fix P, then solve Q by least square optimization. And then fix Q,
solve P by least square optimization.

112 10 Differentially Private Recommender System

Both in SGD and ALS, once the factorization converges, the latent matrices P
and Q are used to predict unknown user ratings. The resulting latent vectors p, and
q; are multiplied:

?ui = CIiTPm (107)

which produces the predicate rating 7,,; of user u for item r;.

10.3 Basic Differentially Private Recommender Systems

Differential privacy technique has been incorporated in research on recommender
systems in two different settings. The first setting assumes that the recommender
system is untrustworthy, so the noise will be added to the dataset before submitting
to the recommender system. As the noisy data will not release any sensitivity
information, the non-private recommender algorithm, including model-based and
neighbourhood-based methods, can be used directly. Another setting focuses on the
trusted recommender system, which can access to the user-item dataset directly.
When a user applies a recommender result, the private recommender system will
submit queries to user-item dataset one by one and add noise to the results.
Recommendation will be performed based on the noisy result. Figure 10.3 shows
two different type of settings. We present two methods to illustrate two settings in
following sections.

User-item data

Noisy Similarity and
other related data

Recommendations

Add Noise ,
Non-private ;
"\ RecSys -
User
Untrustworthy recommender system
Noisy Similarities and
other related data
Similarity Add Noise Recommendations

query

Private
RecSys

- 3

Trustworthy recommender system

Fig. 10.3 Two settings of differentially private recommender system

10.3 Basic Differentially Private Recommender Systems 113

10.3.1 Differentially Private Untrustworthy Recommender
System

The first typical method is provided by McSherry et al. [156], who was the first team
to introduce the differential privacy notion to collaborative filtering. They calibrated
Laplace noise for each step to create a covariance matrix, and used the non-private
recommender algorithm on this matrix to predict ratings. In general, it is a synthetic
covariance matrix publishing method.

For a large class of prediction algorithms it suffices to have following data: G:
average rating for all items by all users; I: average rating for each item by all users;
uy: average item rating for each user; and covariance matrix (Cov). All ratings are
scaled in the interval [—B, B]. McSherry et al.’s method consists of three steps and
noise will be added to each step.

Step 1: Evaluation of Global and Item Averages, G and I Suppose there are n
users with d items, the global average of item will be estimated as follows with
privacy budget €. The sensitivity of will be the 7,,,c — #yin = 2B.

(Z[) rui) + Lap(zB/el)

G=
D

(10.8)

Then for each item #;, calculating the average rating for each item by all users.
The average item ratings is calculated by adding a number of fictitious ratings f to
stabilize the items averages, helping to limit the effect of noise for items with few
ratings, while only slightly affecting the average for items with many ratings.

(ZD/ rui) + ﬂ - GAUg + Lap(zB/GZ)

1=
\Dj| + B

(10.9)

The added noise may causes the item average to go out of the range of input ratings
[Fimin> Ymax], the item average is clamped to fit this range.

Step 2: Evaluation of User Averages and Clamping of the Resulting Ratings
They follow the same technique to compute the user average ratings. The basis for
evaluating the user averages is the ratings after the item averages were discounted.
They stabilize the user effects with the addition of 8, fictitious ratings with the
newly computed global average. The user average rating is calculated as follows.
Let D' = {r,; — I(i)|r.i € D}, the adjusted global average will be

_ Cpri) + Lap(2B/e)

C_;/
|D'|

114 10 Differentially Private Recommender System

Then for each user v, user average rating is

0= (ZDU r:”-) + ,Bu : G + Lap(ZB/GZ)
’ |Rv| + Bu '

The user averages are then clamped to a bounded range.

—B if r,; < —B
Yui = § Fui if —-B<r,;<B

B if}’m‘>B.

Step 3: Calculate the Covariance Matrix The final measurement is the covari-
ance of the centered and clamped user ratings vectors. They use per-user weights
w, equal to the reciprocal of ||e|| (the binary elements and vectors indicating the
presence of ratings) as follows:

Cov = Zwururf + b, (10.10)

W=> wwee, +b. (10.11)

u

Noise b added to Cov could be large if a user’s rating has large spread or if a user
has rated many items. McSherry et al. provided two solutions: (1) Center and clamp
all ratings around averages. If clamped ratings can be used, then the sensitivity of
the function can be reduced. (2) Carefully weight the contribution of each user to
reduce the sensitivity of the function. Users who have rated more items are assigned
lower weights.

After the independent Gaussian noise proportional to the sensitivity bound is
added to each entry in covariance matrix, all related data have been send to a non-
private recommender system.

10.3.2 Differentially Private Trustworthy Recommender
System

Another set of researches focus on the trusted recommender system. Friedman
et al. [82] applied this setting in the matrix factorization algorithm. They claimed
four different possible perturbation in the matrix factorization process, which
presented in Fig. 10.4.

10.3 Basic Differentially Private Recommender Systems 115

Gradient \I

User-item dataset perturbation mTmmmmmmmmmsssmmmmmmommoooes N
| I \
d d \
1
2@ Items Ii
Matrix Q H
1
Users H
n - Matrix i
P :
1
i

P

rxu - qz pu i
A /

N .

_—— L _ 1l
Input \I Il ALS with output \I Il output
| Perturbation | Pperturbation | perturbation

Fig. 10.4 Different perturbation methods in matrix factorization

10.3.2.1 Matrix Factorization with Private Input Perturbation

In the input perturbation approach, noise is added to each rating to maintains
differential privacy. As the ratings are in the range r,; € [Fuin, max], the global
sensitivity of the ratings is Ar = ryge — rmin = 2B. The input perturbation will
be D = rui + Lap(2B/¢€)|r, € D.

Obviously, this directly perturbation will demolish the utility of the user-item
dataset. So the noisy ratings should be clamped to limit the influence of excessive
noise. To mitigate this effect, they applied an additional clamping step after the
introduction of noise, using the clamping parameter o, as shown in the below
equation

—B if ru < —B

0 if |ry| < @

Tyi = .
Yyi ifa < |}’,,”‘| < B
B if}"m' > B.

This clamping adjusts ratings in the range [—«,], improving the prediction
accuracy.

10.3.2.2 Private Stochastic Gradient Perturbation

To perturb the SGD, the training samples are used to evaluate the prediction error
resulting from the current factor matrices, and then the matrices are modified in
a direction opposite to the gradient, with magnitude proportional to the learning
rate y. Suppose there are w iterations. In each iteration, for each r,; € D, add Laplace
noise to the error ¢,; in each iteration.

116 10 Differentially Private Recommender System

@ui = Tui — puq: + Lap(2wB/e). (10.12)

Because the error will be exceed to maximum or minimum error, clamping method
will be used again to adjust the scale in the below equation

—Cmax if r, ui < —€max
Cui = \ €y if |eui| < €max
€max if Cui > €max-

After that, the error ¢,; will be used in the SGD iteration as shown in Eq. (10.5).

10.3.2.3 ALS with Output Perturbation

ALS perturbation alternately fixes one of the latent matrices P or O, and optimize the
regularized loss function for the other non-fixed matrix. When item-factor matrix Q
is fixed, the overall regularized loss function can be minimized by considering for
each user u the following loss function defined over the subset of ratings D, =
{ryi € D|v = u}. First, estimate the bound of p,ax and g,ax as ||p,|2 and | g2,
respectively. In each iteration, and for each user u in P, generate a noise vector b

with f(b) exp(—% . [%) The noise vector b will be added to loss function
as shown in Eq. (10.13)
pu < argminJg(p,, Dy) + b. (10.13)
1’!4

If p, exceed the maximum value, then normalized it by p, by Eq. (10.14)

pull2

Sirriilarly, for each item ¢; in Q, sampling noise vector b with f(b) o exp(—% .
nj
Gmax2B

). The noise vector b will be added to loss function as follows:

g; < argminJp(q;, D;) + b. (10.15)
qi

If g; exceed the maximum value, normalized it by

gi < qi - e (10.16)
llgill2

When finally obtain P and Q, the rating of u will be predicted by Eq. (10.7).

10.4 Private Neighborhood-Based Collaborative Filtering Method 117

In general, Friedman et al. explored all possibilities on the perturbation of matrix
factorization [82]. Similar to McSherry et al.’s method, they applied clamping to
avoid exceeded noise on user-item matrix. But both methods are still suffered
by high sensitivity. Even though they define a constant B to restrict the size of
sensitivity, It is still too high comparing with the existing rating.

10.4 Private Neighborhood-Based Collaborative
Filtering Method

Zhu et al. [258] mainly studied the trusted recommender systems. The algorithm
ensured that a user cannot observe sensitive information from the recommendation
outputs, and therefore, the proposed algorithm is immunized from a particular
attack, KNN attack.

10.4.1 KNN Attack to Collaborative Filtering

Calandrino et al. [30] presented the KNN attack. They claim that if a recommenda-
tion algorithm and its parameters are known by an attacker, and supposing he/she
knows the partial ratings history of active user u, on m items, then the attacker can
infer user u,’s remaining rating history. The inference process can be summarized
as follows.

The attacker initially creates k fake users known as sybils. He/she arranges each
sybil’s history rating with the m items in the active user u,’s rating history. Then
with high probability, the k nearest neighbors of each sybil will consist of the
other k — 1 sybils along with the active user u,. The attacker inspects the lists of
items recommended by the system to any of the sybils. Any item on the sybils, for
example, lists not belonging to those m items, will be an item that u, rates. The
attacker will finally infer the ratings history of an active user and this process will
be considered a serious privacy violation. While this is an example for user-based
methods, similar inference can also be processed for item based methods.

A KNN attack can be performed efficiently in CF due to the sparsity of a typical
rating dataset. Approximately, m = O(logn) is sufficient for an attacker to infer
a user, where n is the total number of users in the rating dataset. For example, in
a dataset with thousands of users, m = 8 is sufficient [30]. This is such a small
number that can easily be collected by an attacker. Furthermore, an attack will be
more serious if an attacker can adaptively change the rating history of his sybils by
observing the output of CF. This can be easily implemented in a system that allows
users to change previously entered ratings. How to hide similar neighbors is a major
privacy issue that cannot be overlooked.

118 10 Differentially Private Recommender System
10.4.2 The Private Neighbor Collaborative Filtering Algorithm

For the privacy preserving issue in the context of neighborhood-based CF methods,
the preserving targets differ between item-based methods and user-based methods
due to the different perspectives regarding definition of similarity. In item-based
methods, an adversary can infer who the neighboring users are by observing any
changes in the item similarity matrix. Therefore, the objective is to protect the
users’ identity. In user-based methods, what an adversary can infer from the user
similarity matrix is the item rated by the active user. The preserving objective is
then to hide the historically rated items. The proposed PNCF algorithm can deal
with both cases. To make it clear, Zhu et al. presented the PNCF algorithm from
the perspective of the item-based methods, and this can be applied to user-based
methods in a straightforward manner.

For traditional non-private item-based CF methods, the prediction of the active
user’s score is generated by previous ratings of this user on similar items. The first
stage aims to identify the items of k nearest neighbor, and the second stage aims to
predict the rating by aggregating the ratings on those identified neighbor items. To
resist a KNN attack, the neighbor information in both stages should be preserved.
The PNCF algorithm includes two private operations:

Private neighbor selection: prevents the adversary from inferring “who is the
neighbor”. Specifically, the recommender mechanism is adopted to perform
private selection on the item similarity matrix to find k neighbors Ny (#;). The
recommender mechanism ensures that for a particular item, deleting a user has
little impact on the chosen probability. Therefore, the adversary is unlikely to
figure out who their neighbors are by continuously observing recommendations,
and is unlikely to infer the rating history of an active user by creating fake
neighbors.

Predict perturbation: prevents the adversary from inferring “what is the rating” of a
particular user on an item. It perturbs neighbors similarity by adding a zero mean
Laplace noise to mask “what is the rating given by a certain neighbor”. Noisy
output is utilized as the weight in making predictions.

Figure 10.5 shows the private neighbor selection and perturbations in a
neighborhood-based recommender system.

Algorithm 1 provides the pseudocode for how to use the proposed PNCF
algorithm in a traditional neighborhood-based CF method. In the algorithm, Steps
1 and 4 are standard recommendations steps. Specifically, Step 1 computes the
similarity between items. It is not a step to guarantee the privacy but will still play
a vital role, because the result will be employed as a utility score in the next step.
Step 4 provides the prediction for 7,; according to Eq. (10.3). and considers it as an
output of recommendations. However, Steps 2 and 3 implement two operations in
the proposed PNCF algorithm. Compared to the non-private algorithm, the cost of
this will be the prediction accuracy. The accuracy cost is defined as the utility loss
of the algorithm.

10.4 Private Neighborhood-Based Collaborative Filtering Method 119

User-item dataset

ftom (or Nearest
neighbors Predict
. user) i
user) of item of r
similarity (or user)
s(i, J)
ILI
I
SR TN (T
[rivate Predict |

[
| neighbours | |
\ __ _selection _ _

perturbation |

Fig. 10.5 Different perturbation methods in neighbourhood based recommender system

Algorithm 1 Private Neighbor Collaborative Filtering(PNCF)

Require: D, privacy parameter €, truncated parameter w, number of neighbors k, u,, t;
Ensure: 'r\a,»

1. Computing item to item similarity Matrix S;

2. Private Neighbor Selection: Select k neighbors N (z;) from I;

3. Perturbation: Perturb the similarity in N, (z;) by adding; Lap(%) noise;

4. Predict’i'*;,-;

Although the standard differential privacy mechanism, the recommender mech-
anism, can be applied for private selection, it can not be directly applied to CF
because the naive recommender mechanism induces abundant noise that signifi-
cantly influences the performance of the prediction. Here, the main challenge is to
enhance performance by decreasing the noise magnitude. Consequently, two issues
will be addressed in Steps 2 and 3 accordingly: (a) decrease in the sensitivity, and (b)
increased accuracy. Moreover, both of these operations consume an equivalent € /2.
According to the sequential composition, the algorithm satisfies e-differential
privacy.

10.4.2.1 The Private Neighbor Selection

Private Neighbor Selection aims to privately select k neighbors from a list of
candidates for the privacy preserving purpose. This is unlike the k nearest neighbor
method which sorts all candidates by their similarities and selects the top k similar
candidates. Private Neighbor Selection adopts the recommender mechanism to
arrange probabilities for every candidate. The probability is measured by a score
function and its corresponding sensitivity. Specifically, the similarity is used as
the score function and the sensitivity is measured accordingly. For an item ¢;, the
score function ¢ is defined as follows:

qi(l, ;) = s(i,), (10.17)

120 10 Differentially Private Recommender System

where s(i,) is the output of the score functions representing the similarity between
t; with ¢;, I is item #;’s candidate list for neighbors, and ¢; is the selected neighbor.
The probability of selecting #; will be arranged according to the g;(/, t;).

The recommender mechanism uses the score function g to preserve differential
privacy. However, the naive recommender mechanism fails to provide accurate
predictions because it is too general, and therefore not suitable for recommendation
purposes. Accordingly, two operations are proposed to address this obstacle. The
first operation is to define a new Recommendation-Aware Sensitivity to decrease the
noise, and the second operation is to provide a new recommender mechanism to
enhance the accuracy. Both are integrated to form the proposed PNCF algorithm,
which consequently obtains a better trade-off between privacy and utility.

10.4.2.2 Recommendation-Aware Sensitivity

This section presents Recommendation-Aware Sensitivity based on the notion of
Local Sensitivity to reduce the magnitude of noise introduced for privacy-preserving
purposes. Recommendation-Aware Sensitivity for score function ¢, RS(i, j) is mea-
sured by the maximal change in similarity of two items when removing a user’s
rating record. Let (i, j) denote the s(i,j) after deleting a user, then RS(i, j) captures
the maximal difference if all the users’ ratings are tested:

RS(i.)) = max [IsG@.j) = 5" Gl (10.18)

The result varies on the different item pairs.

Take the item-based Cosin similarity as an example to generate the value of
Recommendation-Aware Sensitivity. PCC similarity can be measured in the same
way. Items are considered as a vector in the n dimensional user space. For example,
let r; and rj be a rating vector pair that contains all ratings given to #; and ¢,
respectively. Firstly, all the ratings for a single user u, are selected to analyze his/her
impact on s(i, j). There are four possible rating pairs on both item #; and #;:

(0, O), (0, }"Xj), (rxi, 0), and (}’Xi, rxj)-

Please note that in neighborhood-based CF methods, similarity is only measured on
the co-rated set between two items. This means the first three rating pairs have no
impact on the similarity function. Let U = {u, € U|ry # @, ry # @} be a set of
users who rated both #; and #;, with these two item rating vectors then be represented
as ry; and ryj, respectively. The length of the vector, ||ry;||, is determined by both
the rating and the number of co-rated users. When deleting a user, the rating vector
pair will be transferred to a new pair of ry; and r{Jj and the similarity will change to
s'(i,j) accordingly. The measurement and the smooth bound of Recommendation-
Aware Sensitivity are summarized in Lemmas 10.1 and 10.2, respectively.

10.4 Private Neighborhood-Based Collaborative Filtering Method 121

Lemma 10.1 For any item pair t; and t;, the score function q(I,t;)) has Local
Sensitivity

Tyi* Tyj ryi - P (|7l |7l = 7l || |7

RS = max b ma (205 s (2 rarllnd =l |
wcetly \ T 11711)il \ ™ TImlT Tl 1T

(10.19)

where uy is the user that makes a great impact on the t; and t; similarity, and
RS(i,j) = 1 when |U| = 1.

Proof
RS(i,j) = max ||s(i,j) — 5 (i, j)||1 (10.20)
_ Fith e
rill =l Ml - 1]
_ IR A R e | T R L | R
rill = rl] = 7] A1
Thus,

(7l l-llri-Cryerj—rf-r)

RS(ij) < TRl AT 1f||r{||||r]/||r,rjz ||r,||||rj||r{r;,
L]) =

rery il |l =117 111 1) .
otherwise.
Il AT
(10.21)
rill-ri-Crierj=r{-r)]| Fai'Ty
Please note ———— e = MaXyey, .
IERIETIRIATRTAL xeUy IEEAL

Thus, sim(i, j) and sim’(i,) differ at most by

Fois Foi ro (e et — e 7
max { max /xtix;j . max Xi XJ(” l”“ j||r/ ” l”l/l j||) , (1022)
AN IR | e A N L R | TR T [[

which is largely determined by the length of rating vector pairs.

Lemma 10.2 Recommendation-Aware Sensitivity with smooth bound is

B(RS(i, j)) = exp(—PB) - RS(i.). (10.23)

Both Lemmas 10.1 and 10.2 indicate that depending on the length of rating vector
pairs, score function g will only change slightly in a normal case. Compared to
Global Sensitivity, Recommendation-Aware Sensitivity can significantly decrease
the noise magnitude. Recommendation-Aware Sensitivity is used in the PNCF
algorithm. To simplify the notation, RS(i,j) or Recommendation-Aware Sensitivity
are used to represent B(RS(i,)) in the following formulas.

122 10 Differentially Private Recommender System

10.4.2.3 Private Neighbor Selection Implementation

Private Neighbor Selection is the major private operation in PNCF. This section
presents the Private Neighbor Selection based on the exponential mechanism and
show how it is introduced into CF. Given an active user u, and a target item #;, a can-
didate item list / and a corresponding similarity list s(i) =< s(i, 1), ..., s(i,m) >
are defined, which consists of similarities between #; and other m — 1 items.
According to Eq.(10.17), each element in s(i) is the score of the corresponding
item. The goal of Private Neighbor Selection is to select k neighbors in candidate
item list /, according to the score vector s(i). It should be noted that ¢, is not selected
in [as #; is the target item.

However, even though Recommendation-Aware Sensitivity is applied to reduce
noise, the naive exponential mechanism still yields low prediction accuracy. The
reason is that performance of neighborhood-based CF methods is largely dependent
on the quality of neighbors. If the top k nearest neighbors are assumed as the highest
quality neighbors (s; is used to denote the similarity to the k-th neighbor), the
randomized selection process will have a high probability of picking up neighbors
with low scores. The rating pattern of these low quality neighbors may be totally
different from the pattern of the active user, which lowers the accuracy of the
prediction. To address this problem, the best solution is to improve the quality of
k neighbors under differential privacy constraints.

Motivated by this, the algorithm uses a new notion of truncated similarity as the
score function to enhance the quality of selected neighbors. The truncated notion
was first mentioned in Bhaskar et al.’s work [24], in which they used truncated
frequency to decrease the computational complexity. The same notion can be used
in our score function ¢ to find those high quality neighbors. Specifically, for each
item in the candidate list 7, if its similarity s(i, j) is smaller than sy (i, -)—w, then s(i,)
is truncated to s (i, -) — w, where w is a truncated parameter in the score function;
otherwise it is still preserved as s(i, j). The truncated similarity can be denoted as

5(i,j) = max (s(i. j). s¢(i.) —)., (10.24)

where truncated parameter w will be analyzed in the next section.

The truncated similarity ensures no item in Ni(¢;) has a similarity less than
(sk(i, -)—w) and every item whose similarity is greater than (s (i, -) +w) is selected to
the Ni(#;). Compared to the naive exponential mechanism in which some items with
a similarity lower than (s (i, -) —w) may have a higher probability of being selected,
the truncated similarity can significantly improve the quality of selected neighbors.
Based on the Recommendation-Aware Sensitivity and the truncated similarity, the
Private Neighbor Selection operation is presented in Algorithm 2.

Item candidate list / is divided into two sets: C; and Cy. Set C; consists of items
whose similarities are larger than the truncated similarity (sx(i,-) — w), and Cy
consists of the remaining items in /. In the Private Neighbor Selection operation,
items in C; follow exponential distribution according to their similarities. Each

10.4 Private Neighborhood-Based Collaborative Filtering Method 123

Algorithm 2 Private Neighbor Selection
Require: €, k, w, t;, I ,s(i)
Ensure: N.(t;)
1: Sort the vector s(i);
2: Cl = [IJ|?(l,]) > Sk(l.,j) —Ww, l‘j € I],
Co = [tls(i.j) < sx(i.)) —w, 4 € 1],

3: for N=1:k do
4: for each item # in t; do
5: Allocate probability as:

esti)
exp (4k-RS(i.j))

ex(i) esip)
D jec; €Xp (4k~RS(iJ)) + [Col - exp (4k'RS(i.j))

6 end for

7: Sample an elements ¢ from C; and C, without replacement according to their probability;
8 Ni(t) = Ne(t) + 15

9: end for

4%-RS(iy)
does not deal with the elements one by one. Instead, it considers Cy as a single

of these have the probability proportion to exp(€:s(iy)) In Cy, the algorithm

4k-RS()

the items in Cy are selected uniformly. This does not violate differential privacy
because Cj is used as a single candidate and assign the weight according to the
exponential mechanism. This means the probability for each element in Cy still
follows exponential distribution. The probability of providing the same output for
neighboring datasets is still bounded by exp(€).

The Private Neighbor Selection operation can provide high quality neighbors and
guarantee the differential privacy simultaneously. The choice of w will influence the
utility in a fixed privacy level.

candidate with a probability proportion to exp(€:5(i)) When Cy is chosen,

10.4.3 Privacy and Utility Analysis
10.4.3.1 Utility Analysis

The utility of PNCF is measured by the accuracy of the predictions. Given an input
dataset D, the non-private neighbourhood-based CF method is set as a baseline.
By comparing the selected neighbors in PNCF with the corresponding neighbors in
the baseline method, the utility level of the proposed algorithms can be analyzed.
To predict the rating of #; for the active user u,, the non-private algorithm
typically chooses the top k similar neighbors and then generates an integrated output
as the prediction. Therefore, the closeness between top k similar neighbors in the

124 10 Differentially Private Recommender System

baseline method and the privately selected neighbors in PNCF is the key factor
that determines the utility level. When implementing the exponential mechanism,
the randomized selection step will choose low similarity neighbors with high
probability, which significantly lowers the accuracy of recommendations.

The proposed PNCF algorithm can preserve the quality of the neighbors in two
aspects: every neighbor with a true similarity greater than (s; + w) will be selected;
and no neighbor in the output has a true similarity less than (s; — w), where the
true similarity refers to the original similarity without perturbation or truncation.
Therefore, Private Neighbor Selection guarantees that with high probability, the k
selected neighbors will be close to the actual top k nearest ones. Hence, the utility
in PNCF will be better retained than that in the naive exponential mechanism. Two
theorems and proofs are used to support the claims as follows.

Theorem 10.1 Given an item t;, let Ni(t;) be the k selected neighbors and |v|
be the maximal length of all the rating vector pairs. Suppose RS as the maximal
Recommendation-Aware Sensitivity between t; and other items respectively, and
suppose p is a small constant less than 1. Then, for all p > 0, with probability at
least 1 — p, the similarity of all the items in N(t;) are larger than s, — w, where
w = min(sy, @ In W).
Proof First, the algorithm computes the probability of selecting a neighbor with a
similarity less than (s; —w) in each round of sampling. This occurs when there is an
unsampled neighbor with similarity no less than s;. Then with the constraint of w
and p, no neighbor in the output has true similarity less than (sy — w) after k rounds
sampling for neighbor selection.

If a neighbor with similarity (s, —w) is still waiting for selection, the probability

exp(“Gf)

of picking a neighbor with similarity less than (s; — w) is < —H& - =
exP(Ak RS)

exp(—grps)- Since there are at most |v| neighbors with similarity less than (s —w),
according to the union bound, the probability of choosing a neighbor with similarity
less than (sx — w) is at most (|v| — k) - exp(—z;z5)-

Furthermore, by the union bound in the sampling step, the probability of
choosing any neighbor with similarity less than (s; — w) is at most & - (Jv| — k) -
exp(—52).

LEtpzk'(|v| k) exp(4kRS

Then,
— gt = In(epn) (10.25)
we k(|U|—k)
= s = In Y

4k-RS k-(lv]=k)
= > 22
w < In o .

Thus, the probability that similarities less than (s — w) will be chosen is less
than p. As defined in Sect. 10.4.2.2, Recommendation-Aware Sensitivity is O(W).

10.4 Private Neighborhood-Based Collaborative Filtering Method 125

So for constant p, s O(klzl(“ll)’“zk)) is sufficient. In practise, the algorithm has

to ensure sy — w > O in COS similarity or s —w > —1 in PCC, so w =
min(se, 228 1n —k'(lvfl_k)).
Theorem 10.2 Given an item t;, for all p > 0, with probability at least 1 — p,
the similarities of all neighbors > sy + w are present in Ni(t;), where w =
min(sg, 285 1n —k'(lvpl_k)).
Proof Similar to Theorem 10.1, the algorithm firstly computes the probability of
picking a neighbor with a similarity less than s; in each round of sampling when
an unsampled neighbor with similarity greater or equal than (s; + w) is not present
in Ni(t;). Then we prove that with the constraint of w and p, all neighbors with
similarity > s; + w have been chosen in Ny (#;).
Suppose a neighbor with a similarity greater than (s; 4+ w) has not been selected
in Ni(1;), then the conditional probability of picking any neighbor with similarity
£(sk)
less than sy is < % = exp(—). Therefore, the probability of not selecting

any neighbor with similarity less than s; in any of the k rounds of sampling is:

€(sg +w)

k
St) = (1 ko= exn

(1—<|v|—k>-exp(M)).

4k - RS
(10.26)
Letl—p < (1 —k-(v|—k)- exp(gfkk,—;;”))). Thus, similarly to the proof of
Theorem 10.1. When

4 RS k- (] —k))’ (10.27)

w = min (sk,
P

all neighbors with similarity < s; + w are present in Ny(t;).

10.4.3.2 Privacy Analysis

The proposed PNCF algorithm contains two private operations: the Private Neigh-
bor Selection and the Perturbation. The Private Neighbor Selection is essentially
processing the exponential mechanism successively. An item is selected without
replacement in each round until & distinct neighbors are chosen. The score sensitivity
is calibrated by Recommendation-Aware Sensitivity.

From the definition of the exponential mechanism, each selection round pre-
serves (7)-differential privacy. The sequential composition undertakes the privacy
guarantee for a sequence of differentially private computations. When a series of
private analysis is performed sequentially on a dataset, the privacy budget € will
be added for each step. According to the sequential composition definition, Private
Neighbor Selection guarantees 5-differential privacy as a whole.

126 10 Differentially Private Recommender System

The Perturbation step adds independent Laplace noise to the Ni(#;) chosen in the
previous step. Given an item set Ni(#;), perturbation adds independent Laplace noise
to their similarities. The noise is calibrated by €/2 and the Recommendation-Aware
Sensitivity is:

Snoise(1,]) = s(i,j) + Lap (%S(”)) . (10.28)

According to the definition of the Laplace mechanism, this step satisfies €/2-
differential privacy.

Consequently, when combining both operations, the proposed method preserves
e-differential privacy by applying composition lemma on the selection and pertur-
bation step together.

10.4.4 Experiment Analysis
10.4.4.1 Datasets and Measurements

The datasets are the popular Net f1ix dataset' and the MovieLens dataset.”
The Netflix dataset was extracted from the Netflix Prize dataset, where each
user rated at least 20 movies, and each movie was rated by 20-250 users. The
MovieLens dataset includes around one million ratings collected from 6040 users
about 3900 movies. MovieLens is the standard benchmark data for collaborative
filtering research, while the Net £11ix dataset is a real industrial dataset released
by Netflix. Both datasets contain millions of ratings that last for several years and
are sufficient for investigating the performance of the proposed method from both a
research and industry perspective. Specifically, the All-But-One strategy is applied,
which randomly selects one rating of each user, and then, predicts its value using all
the left ratings in the dataset.

To measure the quality of recommendations, a popular measurement metric is
applied, Mean Absolute Error MAE) [7]:

1
MAE = T Z |Fai — il (10.29)

a,ieT

where r,; is the true rating of user u, on item ¢;, and 7; is the value of predicting the
rating. T denotes the test dataset, and |T| represents its size. A lower MAE means
a higher prediction accuracy. In each experiment, the traditional non-private CF
method is used as a baseline.

"http://www.netflixprize.com.
Zhttp://www.grouplens.org.

http://www.netflixprize.com
http://www.grouplens.org

10.4 Private Neighborhood-Based Collaborative Filtering Method 127

10.4.4.2 Performance of PNCF

This section, examines the performance of PNCF on two similarity measure-
ment metrics, PCC and COS. Specifically, the experiment applied the traditional
neighborhood-based CF as the non-private baseline, and then compared the PNCF
with the standard DP method in terms of the recommendation accuracy, as both
quantify the privacy risk to individuals. Parameter k represent the number of the
neighbors. Moreover, the truncated parameter w was set according to Lemma 10.1.
The privacy budget ¢ was fixed to 1 to ensure the PNCF algorithm satisfies the
1-differential privacy.

Table 10.3 shows the results on the Netflix data set. From this table, it is clear
that PNCF significantly outperforms DP in all configurations. Specifically, in the
item-based manner with the PCC metric, when k = 40, PNCF achieves a MAE
of 0.7178. This outperforms DP by 13.60%. When k = 10, PNCF obtains a MAE
of 0.7533, which outperforms DP by 13.07%. In the user-based manner with the
PCC metric, when k = 30, PNCF outperforms DP by 8.71% in MAE. Similar
trends are also observed when measuring neighbor similarity in COS. This indicates
that PNCF performs better in terms of the recommendation accuracy than the
standard differential privacy (DP) method that uses Global Sensitivity and the naive

Table 10.3 Overall performance comparison on Netflix

PCC COS
Non-private | PNCF DP Non-private | PNCF DP
Item-based |5 0.7504 0.7835 09153 |0.7524 0.7893 | 0.8786
10 0.7210 0.7533 | 0.8666 |0.7240 0.7637 |0.8301
15 0.7121 0.7407 0.8499 |0.7159 0.7486 |0.8134
20 0.7083 0.7343 10.8371 |0.7137 0.7414 | 0.8012
25 0.7070 0.7278 0.8329 |0.7133 0.7401 |0.7972
30 0.7068 0.7244 | 0.8287 |0.7137 0.7390 |0.7927
35 0.7072 0.7208 |0.8244 |0.7152 0.7385 {0.7899
40 0.7078 0.7178 |0.8154 |0.7169 0.7398 |0.7835
45 0.7086 0.7163 |0.8062 |0.7185 0.7392 {0.7789
50 0.7092 0.7146 | 0.8019 |0.7199 0.7395 |0.7770
User-based |5 0.7934 0.8025]0.8962 |0.8041 0.8009 | 0.8661
10 0.7641 0.7691]0.8538 |0.7691 0.7708 |0.8237
15 0.7509 0.7551]0.8324 |0.7553 0.7612 | 0.8042
20 0.7428 0.7485 10.8229 |0.7481 0.7564 | 0.7956
25 0.7375 0.7435]0.8137 |0.7434 0.7525 | 0.7867
30 0.7339 0.7408 |0.8115 |0.7398 0.7512 |0.7847
35 0.7316 0.7398 |0.8081 |0.7371 0.7494 |0.7812
40 0.7298 0.7381 |0.8059 |0.7350 0.7480 |0.7794
45 0.7284 0.7368 |0.8028 |0.7331 0.7469 | 0.7764
50 0.7273 0.7353 |0.8015 |0.7317 0.7456 | 0.7751

128 10 Differentially Private Recommender System

Table 10.4 Paired-z-test for df

t p-value
PNCF vs. DP on Netflix

Item-based |PCC |9 |26.5135 | <0.0001

COS |9 |[11.6696 | <0.0001
User-based |PCC |9 |25.8884 | <0.0001
COS |9 [10.5045 | <0.0001
0.88 ;\\ i ;«:\lnggriva(e i 0.92 7\\\ I ;%nc—gnvate i
0.86F \ S—l 1 ooF \ ——ls

MAE
o
@

(a) (b)

Fig. 10.6 Performance of PNCF and DP on the MovieLens dataset. (a) PCC-item. (b) PCC-user

exponential mechanism. On the other hand, compared with the baseline non-private
algorithm, the accuracy cost introduced by PNCF is much smaller than the cost
introduced by DP. This is because PNCF introduces two novel operations to reduce
the magnitude of introduced noise. Moreover, the two-tailed, paired r-test with a
95% confidence level has been applied to evaluate the performance of PNCF under
all configurations. The detailed statistical results on the Netflix dataset are presented
in Table 10.4. This table shows that the difference in performance between PNCF
and DP is statistically significant.

Moreover, Fig. 10.6 shows the results on the MovieLens dataset. Specifically,
Fig. 10.6a, b shows the performance of PNCF and DP with the PCC metric under
an item-based and user-based manner, respectively. It is clear that PNCF performs
much better then DP. In addition, it is observed that as k increases, both PNCF and
DP achieve better MAE. However, PNCF always performs better than DP across all
k values. This is because PNCF achieves privacy preserving by distinguishing the
quality of potential neighbors, and therefore always selects good-quality neighbors
as analysed in Sect. 10.4.3.1. Moreover, PNCF’s MAE performance is very close
to that of the non-private baseline. This indicates PNCF can retain the accuracy of
recommendation while providing comprehensive privacy for individuals.

10.5 Summary 129
10.5 Summary

One of the most popular recommendation techniques is the Collaborative Filtering
(CF) method, which predicts the rating on an unknown item based on the ratings
on that item by other similar users or neighbors. However, an adversary can
infer the rating history of an active user by creating fake neighbors based on
some background information. After a brief discussion on the differentially private
untrustworthy recommender system and the differentially private trustworthy rec-
ommender system, this chapter focuses on the privacy preserving issue in the context
of neighbourhood-based CF methods. The following three research questions are
addressed in this chapter to design the private neighborhood-based collaborative
filtering (PNCF) method: (1) How to preserve neighborhood privacy? (2) How
to define sensitivity for recommendation purposes? And (3) how to design the
differentially private recommender mechanism? The design of the PNCF method
considers all possible privacy leakage and integrates with the sensitivity and
mechanism requirement of applications. It uses a novel recommendation-aware
sensitivity to reduce the large magnitude of noise found in other methods and uses
a private neighbor selection mechanism to protect neighbors.

Chapter 11
Privacy Preserving for Tagging Recommender
Systems

11.1 Introduction

The widespread success of social network web sites, such as Del.icio.us and
Bibsonomy, introduces a new concept called the tagging recommender system [107].
These social network web sites usually enable users to annotate resources with
customized tags, which in turn facilitates the recommendation of resources. Over
the last few years, a large collection of data has been generated, but the issue of
privacy in the recommender process has generally been overlooked. An adversary
with background information may re-identify a particular user in a tagging dataset
and obtain the user’s historical tagging records [84]. Moreover, in comparison
with traditional recommender systems, tagging recommender systems involve more
semantic information that directly discloses users’ preferences. Hence, the privacy
violation involved is more serious than traditional violations [177]. Consequently,
how to preserve privacy in tagging recommender systems is an emerging issue that
needs to be addressed.

Over the last decade, a variety of privacy preserving approaches have been
proposed for traditional recommender systems [178]. For example, cryptography is
used in the rating data for multi-party data sharing [31, 247]. Perturbation adds noise
to the users’ ratings before rating prediction [181, 182], and obfuscation replaces a
certain percentage of ratings with random values [23]. However, these approaches
can hardly be applied in tagging recommender systems due to the semantic property
of tags. Specifically, cryptography completely erases the semantic meaning of
tags, while perturbation and obfuscation can only be applied to numerical values
instead of words. These deficiencies render these approaches impractical in tagging
recommendation. To overcome these deficiencies, the tag suppression method has
recently been proposed to protect a user’s privacy by modeling users’ profiles and
eliminating selected sensitive tags [177]. However, this method only releases an
incomplete dataset that significantly affects the recommendation performance.

© Springer International Publishing AG 2017 131
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_11

132 11 Privacy Preserving for Tagging Recommender Systems

This chapter introduces differential privacy into tagging recommender systems,
with the aim of preventing re-identification of users and avoiding the association
of sensitive tags (e.g., healthcare tags) with a particular user. However, although
these characteristics make differential privacy a promising method for tagging
recommendation, there remains some barriers to research:

* The basic differential privacy mechanism only focuses on releasing statistical
information that can barely retain the structure of the tagging dataset. For
example, this naive mechanism lists all the tags, counts the number and adds
noise to the statistical output, but ignores the relationship among users, resources
and tags. This simple statistical information is inadequate for recommendations.

 Differential privacy utilizes the randomized mechanism to preserve privacy, and
usually introduces a large amount of noise due to the sparsity of the tagging
dataset. For a dataset with millions of tags, the randomized mechanism will result
in a large magnitude of noise.

Both barriers imply the basic differential privacy mechanism cannot be simply
applied in a tagging recommender system, and a novel differentially private mech-
anism is needed. To overcome the first barrier, a synthetic dataset can be generated
to retain the relationship among tags, resources and users rather than releasing
simple statistical information. The second barrier can be addressed by shrinking the
randomized domain, because the noise can decrease when the randomized range
is limited. For example, the topic model method is a possible way to structure
tags into groups and limit the randomized domain within each topic. Based on
these observations, this chapter proposes a tailored differential privacy mechanism
that optimizes the performance of recommendation with a fixed level of privacy.
Table 11.1 shows the basic setting of tagging recommender system application.

Table 11.1 Application settings

Application Tagging recommender systems
Input data User-item tagging dataset

Output data Synthetic tagging dataset
Publishing setting Non-interactive

Challenges Data sparsity

Solutions Shrink domain by using topic model

Selected mechanism
Utility measurement
Utility analysis

Privacy analysis
Experimental evaluation

Dataset partitioning

Error measurement

Marlkov inequality

Parallel composition

Performance measured by semantic loss

11.2 Preliminaries 133

11.2 Preliminaries

11.2.1 Notations

In a tagging recommender system, D is a tagging dataset consisting of users,
resources and tags. Let U = {uj, up,---} be a set of users, R = {ry,r,---} be a
set of resources, and T = {1, 1, - - - } be the set of all tags, the relationships among
users, resources and tags are defined as folksonomy F =< U,R, T, AS >, where the
ternary relationship AS € U x R x T is referred to as the tag assignment set. For a
particular user u, € U and a resource r, € R, the authors use T (u,, rp) to represent
all tags flagged by the u, on rp,, and use T'(u,) to denote all tags utilized by user u,,.
The recommended tags for u, on a given resource r € R are represented by T” (u,, 1),
When a user u, select a particular resource r, the system will recommend a suitable
tag to the user. To achieve the target, the system first generates a rank on a set of tags
according to some quality or relevance criteria, then the top-N ranked tags, ’f(ua, r)
are finally selected as recommended tags.

Tagging dataset D can be structured by a set of users’ profiles P =
{P(ur),....P(uy))}. A user u,’s profile P(u,) =< T(us), W(u,) > is usually
modeled by his tagging records, including tag’s names 7'(u,) = {t1, ..., {j7(,)} and
weights W(ua) = {wi, ..., Wiz, [177].

11.2.2 Tagging Recommender Systems

A considerable amount of literature has explored various techniques for tagging
recommendations, which offers users the possibility to annotate resources with per-
sonalized tags and to ease the process of finding suitable tags for a resource [201].
For example, Del.icio. us' allows the sharing of bookmarks; Bibsonomy2 is a website
sharing of bibliographic references; Last.fin®> and Netflix* allow users to tag on music
and movies, respectively. These tagging recommendations have similar functions: a
user can add a resource and assign arbitrary tags to it. The collection of all his
assignments constitute the folksonomy. The user can explore his collections, as well
as the collections of other users.

To achieve the goal of tagging recommendation. Sigurbjornsson et al. provided
a typical recommender strategy [203]. Given a resource with user-defined tags, an
ordered candidate list of candidate tags is derived for each user-defined tag based on
tag co-occurrence. After aggregating and ranking in the candidate list, the system
provides top-N ranked tags.

Uhttps://del.icio.us/.
2http://www.bibsonomy.org/.
3http://www.last.fm/.
*https://www.netflix.com/.

https://del.icio.us/
http://www.bibsonomy.org/
http://www.last.fm/
https://www.netflix.com/

134 11 Privacy Preserving for Tagging Recommender Systems

Another well-known study is FolkRank [107], which adapts the PageRank
method into the tagging recommender system. The key idea of FolkRank is that
a resource flagged with important tags by important users becomes important itself.
The importance is measured by weight @, which is computed iteratively as follows.

W AMT+(1-1)7, (11.1)

where A is the adjacency matrix of folksonomy, _,o) is the preference vector and
A € [0, 1] is the damping factor measuring the influence of 75 .

There are other methods for tagging recommender systems, such as the clus-
tering based method [201], the tensor decomposition [212], and the topic-model
method [130].

11.2.3 Related Work

Compared to general recommender systems, the privacy problem in tagging recom-
mendation systems is more complicated due to its unique structure and semantic
content. Parra-Arnau et al. [177] made the first contribution towards the develop-
ment of a privacy preserving tagging system by proposing the suppression approach.
They first modeled the user’s profile using a tagging histogram and eliminated
sensitive tags from this profile. To retain utility, they applied a clustering method to
structure all tags and to suppress the less represented ones. Finally, they analyzed the
effectiveness of their approach by discussing the semantic loss of users. However,
there are several limitations on tag suppression. It only releases an incomplete
dataset, with parts of the sensitive tags deleted, and sensitive tags are subjective
without any quantity measurement. Furthermore, if the dataset is publicly shared,
users can be identified because the remaining tags still have the potential to reveal a
user’s identity. The privacy issue in tagging recommender systems remains largely
unexplored.

Zhu [256] proposed a differentially private tagging release algorithm, with the
aim of preserving comprehensive privacy for individuals and maximizing the utility
of the synthetic published dataset.

11.3 Private Tagging Publishing Method

11.3.1 User Profiles

In tagging dataset D, a user’s profile is defined by P(u) =< T(u), W(u) >, in
which tags in are represented by T'(u) = {t,..., 7|}, and weights are denoted as
W(ua) = {wi,...,w)r}, where w; = 0 indicates that #; is unused. A set of users

11.3 Private Tagging Publishing Method 135

Fig. 11.1 User profile

P(u)
/\
T(u) W(u)
Romantic
Diabetes | 2 ‘
Tag Candidates Disease
Smith Uni | 3 ‘

in D is presented by P = {P(u1), ..., P(uy))}. Figure 11.1 shows an example of a
user’s profile, which has tags and related weights. All tags are derived from a tag
candidate set. User’s profile P(u) may disclose the user’s privacy. If an adversary
has part of the information on P(u), he/she may re-identify a particular user in a
tagging dataset by simply searching the known tags. More background information
results in higher probability of re-identifying a user.

If we apply differential privacy mechanism directly, for a user u,, noise will be
added to the weight W(u,) and a noisy profile ﬁ(ua) =< T(uy,), W(ua) > will be
published. However, in this case, W(u,) is a sparse vector because a user tends to
flag limited tags. When applying the randomized mechanism, W(ua) will contain a
large amount of noise because lots of weights in W (u,) will change from zero to a
positive value.

One way to reduce the noise is to shrink the randomized domain, which refers
to the diminished number of zero weights in the profile. To achieve this objective,
the authors structure the tags into K topics and each user is represented by a topic-
based profile P.(u,) =< T,(us), W, (us) >, where T,(u,) = {T;, (ua), ..., Top (1ta)}
represents tags in each topic and W (1) = w;, (4a), ..., W (1) is the frequency
of tags in a topic z. Compared to W(u,), W,(u,) is less sparse. Because the noise
added to each w,, € W,(u,) is equal to w; € W(u,), the total noise added to W, (u,)
will significantly diminish. Figure 11.2 shows an example of topic based profile, in
which all tags are from a particular topic, and related weight refers to the occurrence
of a topic.

In the follow section, a Private Topic-based Tagging Release (PriTop) algorithm
is proposed to address the privacy issues in tagging recommender systems. The
authors in [256] first present an overview of the algorithm, then provide details of
its operations.

136 11 Privacy Preserving for Tagging Recommender Systems

Fig. 11.2 User topic based
profile ! P(u)
PN
‘, T W)
User

Romantic
Diabetes i
Disease @

Smith Uni

Computer

11.3.2 Private Tagging Release Algorithm Overview

The Prilop algorithm aims to publish all users’ profiles by masking their exact tags
and weights under the notion of differential privacy. Three private operations are
introduced to ensure each user in the released dataset cannot be re-identified.

Private Topic Model Generation This creates multiple topics according to the
resources and tags by masking the topic distribution on tags. From the output,
the adversary cannot infer to which topic a tag belongs.

Topic Weight Perturbation This operation masks the weights of tags in a user’s
profile to prevent an adversary from inferring how many tags a user has annotated
on a certain topic.

Private Tag Selection Some privately selected tags replace the original tags

On the basis of these private operations, the proposed PriTop algorithm generates
a new tagging dataset for recommendations, and its pseudocode is provided in
Algorithm 1. Firstly, step 1 divides the privacy budget into three parts for three
private operations. Step 2 groups all tags into K topics and in step 3, the weight
for each topic is perturbed by Laplace noise. After privately selecting the new tags
to replace the original ones in step 4, the sanitized dataset D is finally released for
recommendation purposes in the last step.

The PriTop algorithm contains three private operations: Private Topic Model
Generation, Topic Weight Perturbation and Private Tag Selection. The privacy
budget € is consequently divided into three pieces, as illustrated in Table 11.2.

11.3 Private Tagging Publishing Method 137

Algorithm 1 Private Topic-Based Tagging Release (PriTop) Algorithm
Require: D, privacy parameter €, K.
Ensure: D
1. Divided privacy budget into €/2, €/4 and €/4;
2. Private Topic Generation: create topic-based user profiles P(u,) based on the private topic
model with €/2 privacy budget;
for each user u, do
3. Topic Weight Perturbation: add Laplace noise to the topic weights with €/4 privacy
budget;

W(ua) = W(u,) + Laplace(g)K.

for each topic z; in P(u,) do
4. Private Tag Selection: Select tags according to the W(ua) in €/4 privacy budget;
end for
end for
5. Output D for tagging recommendations;

Table 11.2 Privacy budget
allocation in PriTop
algorithm

Operations Privacy budget
Private topic model generation | €/2
Topic weight perturbation €/4
Private tag selection €/4

These three private operations simultaneously guarantee a fixed e-differential
privacy and retain the acceptable recommendation performance. Details for the
Private Topic Model Generation operation is presented in following sections.

11.3.3 Private Topic Model Generation

This operation categorizes unstructured tags into topics to eliminate the randomiza-
tion domain. The method is based upon the idea of a topic model, which considers
a document as a mixture of topics and a topic is a probability distribution over
words [25]. Latent Dirichlet Allocation (LDA) is the simplest topic model and the
intuition behind it is that documents exhibit multiple topics [26]. Moreover, it is
concise, clear and easy to be extended in terms of privacy preserving. Therefore, we
applied LDA as the baseline model and introduced differential privacy to generate a
private topic model. In this model, a resource is considered as a document and a tag
is interpreted as a word. After discovering a set of topics expressed by tags, Laplace
mechanism ensures that an adversary cannot infer to which topic a tag belongs.
We conceptualize the Private Topic Model Generation in three steps:

* Generating LDA model using the Gibbs Sampling approach [87].
* Adding Laplace noise to the LDA model to create a private model.
* Creating user’s profile according to the private LDA model.

138 11 Privacy Preserving for Tagging Recommender Systems

11.3.3.1 LDA Model Construction

The first step constructs the LDA model by Gibbs Sampling. LDA makes the
assumption that there are K topics associated with a given set of documents, and
that each resource in this collection is composed of a weighted distribution of
these topics. Let Z = {z,...zx} be a group of topics, with the following equation
representing a standard LDA model to specify the distribution over tag .

K
Pr(ilr) =) Prtlz)Pr(zln), (11.2)

=1

where Pr(t|z;) is the probability of tag ¢ under a topic z; and Pr(z;|r) is the probability
of sampling a tag from topic z in the resource r.

In the model, the main variables of interest are the topic-tag distribution Pr(¢|z)
and the resource-topic distribution Pr(z|r). Gibbs sampling is a relatively efficient
method to estimate these variables in the model by extracting a set of topics from
a large documents collection [87]. It iterates multiple times over each tag ¢ of
resource r and samples the new topic z for the tag based on the posterior probability
Pr(z|t;, r, Z_;) by Eq. (11.3) until the model converges.

CE+pB CB + o
Y CTE + T8 Yk CF + K|

Pr(z|ti, r,Z_;) (11.3)

where CT® maintains a count of all topic-tag assignments and CRX counts the

resource-topic assignments. Z_; represents all topic-tag assignment and resource-

topic assignment except the current z for #;. o« and B are hyperparameters for the

Dirichlet priors, which can be interpreted as the prior observation for the counts.
Evaluation on the Pr(t|z) and Pr(z|r) is formulated as follows:

CTK+
Hmaz—mﬁgll—. (11.4)
> Cix +1TIB
CRK
Pr(zlr) = S (11.5)

e
Y k=1 Cik + Ke
After converging, the LDA model is generated with estimating Pr(z|t, r), P(t|z) and
P(z|r).

11.3.3.2 Private Model Generation

The second step introduces differential privacy by adding Laplace noise to the
final counts in the LDA model. There are four difference counts in Eq.(11.3):

11.3 Private Tagging Publishing Method 139

CI¥, LT‘ CTX, CRK and Y "k_; CRK_If we change the topic assignment on current
t;, the CTX will decrease by 1 and Z‘t,Tl CT% will increase by 1. Similarly, if the
CRK decreases by 1, the S K_, CFX will increase by 1 accordingly. Based on this
observation, we sample two groups of independent random noise from Laplace

distribution and add them to four count parameters. The new Is\r(zlt, r) is evaluated
as follows:

C+m+p8 CRE 4+ +

Pr(z|t, r) « ,
T —)+ |TIB Ykey CRE — iy + Ka

(11.6)

where 7; and 7, are both sampled from Laplace distribution Laplace(%) with the
sensitivity as 1.

11.3.3.3 Topic-Based Profile Generation

The third step creates topic-based user profiles. For each user with tags T'(u,) =
{t1,. ... Yirw,)) and related resources R(ug) = {ri,...,"Rrw,)|}> €ach tag can be
assigned to a particular topic z; € Z according to the l/’\r(z|t, r). So the user profile
can be represented by a topic-based

P.(uy) =< T, (ug), W, (ug) >

with the weight W, (u,) = {wy,...,wk}.

Generally, Private Topic Model Generation operation constructs a private LDA
model to create the topic-based user profile and retain the structure between tags
and resources. Details of this operation are shown in Algorithm 2.

For resources, the resulting topics represent a collaborative view of the resource
and tags of topics reflect the vocabulary to describe the resource. For users, the
resulting topics indicate the preference of a user.

11.3.4 Topic Weight Perturbation

After generating the topic-based user profile P,(u,), Laplace noise will be added to
mask the counts of tags in each topic.

K
W. (1) = (W2, (o). Wiy (ua)} + Laplace (g) . (11.7)

Noise added on the weight W, (u,) implies the revision of the tag list T (u,).
Positive noise indicates that new tags are added to the 7. (u,), while negative noise

140 11 Privacy Preserving for Tagging Recommender Systems

Algorithm 2 Private Topic Generation

Require: D, privacy budget 5, numbers of topics K
Ensure: P, = {P,(u),...P,(ujy))}
for each tag 1; do
Randomly initial the topic assignment Pr(z = zlt;, r, Z_;);
end for
for each r; do
for each ¢; do

repeat
. CiE+8
estimate Pr(t|z) = —t——;
iK1
Cﬁf(“+a

estimate Pr(z|lr) = <—%—
@n = S e

resign #; a new topic z according to

CriK + B CﬁcK +«a
|7 K RK .
1 CtTﬁ + 1718 2= Cox + Ka

Pl"(Z|ti, r, Z_i) (0.8

until converge
end for
end for
for each r; do
for each ¢; do
Sample noise from the Laplace distribution:

2
ny ~ Laplace(-),

€

2
N2 ~ Laplace(—).

€

ClE4ni+8 CRE+mta
K
YT —i 41718 Tiei Chk—m2 K’

Estimate f’\r(z|t, r) &

end for
end for
for each user u, do
for each < r,t > pair do
Assign z; according to Pr;s. (zlt, 7);
Generate P, (u,);
end for
end for
Output P, = {Pz(ul)9 .- ~Pz(“|U|)}-

indicates some tags have been deleted from the list. For positive noise in the topic
21, the operation will choose the tags with the highest probability in the current topic
zj according to the Pr(t|z). For negative noise, the operation will delete the tag with
the lowest probability in the current topic z;. The adding and deleting operations will
be defined by Eqgs. (11.8) and (11.9)

Toy(ta) = Toy(tta) + tew, (11.8)

11.3 Private Tagging Publishing Method 141

where ., = maxl.gl Pr(ti|z).
TZ! (ta) = Ty (ua) — Laeleres (11.9)

where o100 = minli‘l Pr(t;|z)).

After perturbation, we use Fz(ua) =< Tz(ua), Wz(ua) > to represent the noisy
topic-based user profile. However, the Ff’z (u,) still has the high probability to be re-
identified because it retains a major part of the original tags. The next operation will
replace all tags in T(ug) to preserve privacy.

11.3.5 Private Tag Selection

The Private Tag Selection operation manages to replace original tags with selected
new tags. The challenge is how to select suitable new tags in related topics. For
atagt; € TZ, (u4), uniformly random tag selection within ?Z, (uy) is unacceptable
due to significant utility detriment. The intuitive solution to retain utility is to use
the most similar tag to replace the original one. However, this approach is also
dangerous because the adversary can easily figure out the tag most similar using
simple statistical analysis. Consequently, the Private Tag Selection needs to: (1)
retain the utility of tags, and (2) mask the similarities between tags.

To achieve these, Private Tag Selection adopts the exponential mechanism to
privately select tags from a list of candidates. Specifically, for a particular tag #;, the
operation first locates the topic z; to which it belongs and all tags in /7\}, (uy) are then
included in a candidate list /. Each tag in [is associated with a probability based on a
score function and the sensitivity of the function. The selection of tags is performed
based on the allocated probabilities.

The score function is defined by the distance between tags. In the LDA model,
the distance between tags is measured by the extent of the same shared topics [208].
Using a probabilistic approach, the distance between two tags #; and #, is computed
based on the Jensen-shannon divergence (JS divergence) between Pr(z|t; = t) and
Pr(z|t; = 1y). JS divergence is a symmetrized and smoothed version of the Kullback-
Leibler divergence (KL divergence).

Pr; and Pr; is defined to be:

Prii
Dy (Pr||Pry) = Z In (P:lg;) Pri(i), (11.10)

1 1
Dys(Pri||Pry) = EDKL(PHIIS) + ED,<L(Pr2||5), (11.11)

where S = 3(Pri + Pry).

142 11 Privacy Preserving for Tagging Recommender Systems

Algorithm 3 Private Tag Selection
Require: %,i(ua), Pr(z|t)
Ensure: ’f (uq)
for each tags #; in 7" (u,) do
1. located the #; in topic z;
for each tags #; in z; do
2. Allocate probability as:

exp (5'11:‘;1~’/'))

e-qi(l.t) ;
e oxp (Z42)

end for

3. Select a tag #; from z; without replacement according to the probability;
end for
4. Output 7', (u,)

Because the JS divergence is bounded by 1 when using the base 2 loga-
rithm [147], so we define the score function g for a target tag ¢; as follows:

qi(l,t;)) = (1 — Dys(Pri||Pry), (11.12)

where I is tag #;’s candidate list, and #; € I are the candidate tags for replacement.
Each tag ¢; has a score according to Eq. (11.12).

The sensitivity for score function g is measured by the maximal change in the
distance of two tags when removing a topic shared by both #; and t;. Let D', (Pr;||Pr;)
denote the new distance between #; and f; after deleting a topic, and the maximal
difference between D'(Pr;||Pr;) and D,s(Pr;||Pr;) is bounded by 1. Therefore, the
sensitivity of score function is 1.

On the basis of the score function and sensitivity, the probability arranged to
each tag ; is computed by Eq. (11.13) with the privacy budget 7. The pseudocode
of Private Tag Selection is presented in Algorithm 3:

exp (5"11‘;1’[1'))

eqilf)’
ZjEZ[exp(8 .)

(11.13)

where z; is the topic in which #; belongs to.

11.3 Private Tagging Publishing Method 143
11.3.6 Privacy and Utility Analysis

The proposed PriTop aims to obtain the acceptable utility with a fixed e differ-
entially privacy level. This section first proves the algorithm is satisfied with the
e-differential privacy, then analyzes the utility cost.

11.3.6.1 Privacy Analysis

To analyze the privacy guarantee, we apply two composite properties of the privacy
budget: the sequential and the parallel composition. Based on the above Lemmas
and privacy budget allocation in Table 11.2, we measure the privacy level of our
algorithm as follows:

» The Private Topic Model Generation operation is performed on the whole dataset
with the privacy budget 5. This operation preserves 5-differential privacy.
e The Topic Weight Perturbation applies the Laplace mechanism to the

weights of topics. The noise is calibrated by Lap (ﬁ)[< and preserves

7 — differentialprivacy for each user. Furthermore, as a user’s profile is
independent, replacing a user’s tags has no effect on other user profiles. The
Private Tag Selection preserves g-differential privacy as a whole.

» The Private Tag Selection processes the exponential mechanism successively. For
one user u, each tag in the profile is replaced by a privately selected tag until all
tags are replaced. Each selection is performed on the individual tags, therefore the
selection for each user guarantees %-differential privacy. Similar to the previous
operation, every user can be considered as subsets of the entire dataset. Thus, the

Private Tag Selection guarantees 3-differential privacy.

Consequently, the proposed PriTop algorithm preserves e-differential privacy.

11.3.6.2 Utility Analysis

Given a target user u,, the utility level of the proposed PriTop algorithm is
determined by the accuracy of the tagging recommendation, which is highly
dependent on the distance between P(u,) and /Is(ua) [177]. The distance between
P(u,) and /Is(ua) is referred to as semantic loss [177].

1 't
SLoss = _Z M) (11.14)
|U| = \ maxd- [T (u)]|

where 7 is the new tag replacing the tag ¢.

144 11 Privacy Preserving for Tagging Recommender Systems

If we consider each private step as query f, then the difference between f(D) and
f(D) is the sematic loss. We then apply a widely used error utility definition. We will
demonstrate the sematic loss is bounded by a certain value « with a high probability.

All three private steps affect the semantic loss. But the first step, private topic
model generation, only affects the distance measurement between tags. Therefore,
we only need to measure the SLoss; in the perturbation step and SLoss, in the
selection step.

Theorem 3 For any user u € U, for all § > 0, with probability at least 1 — §, the
SLoss, of the user in the perturbation is less than o. When

K -exp(=74)
B —

the perturbation operation is satisfied with («, §)-useful.

|T(u)| >

Proof The perturbation adds Laplace noise with €/4 privacy budge to the weight
of each topic in a user’s profile. According to the property of Laplace distribution
Lap(b):

Pr(ly|>t)=Pr(y >t)+ Pr(y <t) = Z/OOxexp (—%) dx = (11.15)

— exp (—é) . (11.16)

We have
2K - d (tai 1ai) (€ €x
Pr(SL) = ——— - ——)dx = 11.17
r(SLoss; > o) maxd| T(w)| /aa 8exp(4) X ()
K ° d (taia,;ai) éaa
Pr(SL D=t exp (-5 11.18
r(SLoss; > o) maxd|T(w,)| exp 2) ()

As the perturbation step adds new tags or delete tags, the d(tai,?ai) will be less
than the maximal value. When we use the JS divergence, the maximal d (tai,?ai) is
1, so we obtain the evaluation on the SLoss; is

K -exp (—52)
Pr(SLoss; <o) <1 — ——== (11.19)
T (ua)]
Let
__ €
_Keew (%) g

T (ua) N

thus

11.3 Private Tagging Publishing Method 145

K -exp (%”‘“)

IT(ua)| > — 5 (11.20)

The average semantic loss for all the users is less than the maximal value, ¢ =
maxy,ey ®q, we have

T (u)] = %“T) (11.21)

Theorem 3 reveals the semantic loss of perturbation depends on the number of
tags a user has. More tags results in a lower semantic loss.

Theorem 4 For any user u € U, for all § > 0, with probability at least 1 — §, the

SLoss, of the user in the private selection is less than o. When

exp(§)
1-3a’

Q=

S

where Q is the normalization factor that depends on the topic that t € T(u) belongs
to, the private selection operation is satisfied with («, §)-useful.

Proof According to Marlkov’s inequality, we obtain

E(SLoss>)

a(l

Pr(SLoss, > a,) < (11.22)

For each tag ¢, in P,, the probability of ‘unchange’ in the private selection is
exp(§)

proportional to , where Q; is the normalization factor depending on the topic
t,; belongs to. Therefore, we obtain

E(SLoss,) = Z

4 €T (ug)

d(taiv/t\ai) (1 _ eXp (%))

max d|T (uq)| 0
According to (11.22), the evaluation of the SLoss; is

ZliET(lAa) d(taiv/t\ai) (1 - epr#)

Pr(SLoss; > a,) <
T (ua) ot

When we take the maximal d(tai,?ai) and Q = max Q;, it can be simplified as

1-— éexp(%)

U

Pr(SLoss, <ay) > 1— (11.23)

146 11 Privacy Preserving for Tagging Recommender Systems

Let
1—Lexp(s
1-—2 % P() >1-36,
ad
thus
exp (£
0< M (11.24)
1 —6ay,
For all users, « is determined by the maximal value: @ = max,, ey .
Finally, we obtain
exp (s
0< p(S), (11.25)
1 —6a

where Q = max Q;, and Q; = Zjea exp (M)

The proof shows the semantic loss of private selection mainly depends on the
privacy budget and the normalization factor Q;, which is measured by the total
distance inside topic z to which #; belongs. The shorter distance leads to a smaller
Q; and less semantic loss.

Further analysis shows that the total distance in a topic is determined by the
privacy budget € in the private topic model generation. It can be concluded that the
privacy budget has significant impact on the utility level of PriTop.

11.3.7 Experimental Evaluation
11.3.7.1 Datasets

We conduct the experiment on four datasets: Del.icio.us, Bibsonomy, MovieLens and
Last.fin. All of them are collected from collaborative tagging systems, which allow
users to upload their resources, and to label them with arbitrary words. The statistics
for all datasets are summarized in Table 11.3. Del.icio.us and Bibsonomy datasets
focus on resources and tags sharing, so each user tends to collect more resources
and various of tags. Last.fim and MovieLens datasets are derived from traditional
recommender systems, comparing with particular tagging systems, they have less
various of tags and less number of tags on each resources. To demonstrate the
effectiveness of the proposed PriTop, we select datasets from both tagging systems
and traditional recommender systems.

All four datasets are structured in the form of triples (user, resource, tag), and
filtered by automatically removing redundant tags like “imported”, “public”, etc.

11.3 Private Tagging Publishing Method 147

Table 11.3 Characteristics of the datasets

Dataset Record |U| |R| |7
Del.icio.us 130,160 3000 34,212 12,183
Bibsonomy 163,510 3000 421,928 93,756
Last.fm 186,479 1892 12,523 9749
MovieLens 47,957 2113 5,908 9079

Del.icio.us dataset is retrieved from the Del.icio.us web site by the Distributed
Artificial Intelligence Laboratory (DAI-Labor),? and includes around 132 million
resources and 950,000 users. We extracted a subset with 3000 users, 34,212
bookmarks and 12,183 tags.

Bibsonomy dataset is provided by Discovery Challenge 2009 ECML/PKDD2009.5
The dataset contains 3000 individual users, 421,928 resources and 93,756 tags.

MovieLens and Last.fim datasets both were obtained from HetRec 2011,” which
were generated by the Information Retrieval Group at Universidad Autonoma de
Madrid.

11.3.7.2 Performance of Tagging Recommendation

This section investigates the effectiveness of PriTop in the context of tagging
recommendations and compares it with tag suppression. We apply a state-of-the-
art tagging recommender system, FolkRank [107], to measure the degradation of
tag recommendations with privacy preserving.

In the FolkRank configuration, we follow [107] to apply a typical setting with
A = 0.7, 7 = 1, and the preference weights are set to 1 + |U| and 1 + |R|,
respectively. The computation repeats for ten iterations or stops when the distance
between two consecutive weight vectors is less than 107°. Please note that the choice
of parameters on FolkRank is less important because the target of the experiment
is to evaluate the impact of the private operations rather than recommendation
performance.

We apply the Leave-One-Out measurement strategy, which is a popular configu-
ration in evaluating tag recommendations [153]. To begin with, we randomly select
one resource of each user, and predict a list of N (top-N list) tags using all remaining
tags in the dataset. Precision and recall are used to quantify the performance. A large
value of precision or recall means better performance.

Shttp://www.dai-labor.de/.
Shttp://www.kde.cs.uni-kassel.de/ws/dc09/.
http://ir.ii.uam.es/hetrec2011.

http://www.dai-labor.de/
http://www.kde.cs.uni-kassel.de/ws/dc09/
http://ir.ii.uam.es/hetrec2011

148 11 Privacy Preserving for Tagging Recommender Systems

T(u,r) N T(M, r)

precision(T(u,r), T (u,r)) = T (11.26)
recall(T(u,r), T (u,r)) = w (11.27)
T (u, r)]

The following experiments compare the PriTop with tag suppression when N
varies from 1 to 10. For PriTop, we chose the number of topic K = 100, and test
the performance when € = 1 and € = 0.5. For tag suppression, we fix the eliminate
parameter to 0 = 0.8 and o = 0.6, which corresponds to the suppression rates of
0.2 and 0.4, respectively.

Figure 11.3 presents the recall of recommendation results. It is observed that the
proposed PriTop algorithm significantly outperforms the tag suppression method
on both privacy budgets. Specifically, as shown in Fig. 11.3a, when N = 1, PriTop
achieves a recall at 0.0704 with the ¢ = 1 which outperforms the result from the
tag suppression with 0 = 0.6, 0.0407, by 42.19%. This trend is retained as the
increasing of N. For example, when N = 5, PriTop achieves a recall at 0.1799
with the € = 1 which outperforms the result from the tag suppression by 37.19%
wheno = 0.6,0.113. When N reaches 10, the PriTop still retains 36.09% higher on
recall than tag suppression. Even we choose the lower privacy budget with € = 0.5
and a higher eliminate parameter sigma = 0.8, the improvement of PriTop is still
significant. The PriTop has a recall of 0.1382, which is also 7.67% higher than
tag suppression with a recall of 0.1276. Moreover, the improvement of PriTop is
more obvious when N = 10. It achieves recalls of 0.1882 and 0.2408 when € = 1
and € = 0.5, respectively. But tag suppression only achieves recalls of 0.1538
and 0.1881 with 0 = 0.6 and 0 = 0.8. Similar trends can also be observed in
Fig. 11.3b—d. For example, in the MovieLens dataset, when N = 10 and ¢ = 1.0,
the recall of PriTop is 0.4445, which is 27.33% higher than tag suppression with
o = 0.8. With the same configuration, PriTop is 22.43% and 25.22% higher than
tag suppression in Last.fm and Bibsonomy datasets. The experimental results show
the PriTop algorithm outperforms tag suppression in variety of N, which implies
that PriTop can retain more useful information for recommendations than simply
deleting the tags.

Moreover, it is clear that the performance of PriTop is very close to the non-
private baseline. For example, in Fig. 11.3a, when € = 1, the recall of the De.licio.us
dataset is 0.2408, which is only 3.00% lower than the non-private recommender
result. Other datasets show the same trend. As shown in Fig. 11.3b—d, with the
same configuration, the PriTop result is 3.62% lower than the non-private result
in the MovieLens dataset, 7.58% lower in the Last.fimm dataset and 1.4% lower in
the Bibsonomy dataset. The results indicate the PriTop algorithm can achieve the
privacy preserving objective while retaining a high accuracy of recommendations.

Figure 11.4 supports the above claims by plotting the precision results, which
also shows the improvement of PriTop compared to tag suppression and the high
recommender accuracy results of PriTop. However, curves in Fig. 11.3d are not
as smooth as others. This may be caused by the statistical property of Bibsonomy

11.4 Summary 149

—#— FR Non-private| 045 —#— FR Non-private| -
0251 —o— epsilon=1.0 — 4[| —e— epsilon=1.0 /g/
—— epsilon=0.5 o —— epsilon=0.5 N
—+— sigma=0.8 o 0.4f —+— sigma=0.8 — o
—2— sigma=0.6 X —2— sigma=0.6 //
— - <
= e + - — +
K] - - 4 8 - -
& P - -
o _
o
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
N N
(@) (b)
0.24 - - : - - -
—— FR Non-private 0.16 | —*— FR Non-private

0.22 —e— epsilon=1.0
—*— epsilon=0.5
0.2F| —+— sigma=0.8
—4&— sigma=0.6

—o— epsilon=1.0
—*— epsilon=0.5
0.14| —+— sigma=0.8
—&— sigma=0.6

Fig. 11.3 FolkRank recall result. (a) Del.icio.us. (b) MovieLens. (¢) Last.fm. (d) Bibsonomy

dataset, which contains a large number of tags that appear only once. When the test
samples include a large proportion of these tags, the precision fluctuates.

11.4 Summary

In comparison with traditional recommender systems, tagging recommender Sys-
tems involve more semantic information that directly discloses users’ preferences,
therefore, the potential privacy violation involved is more serious than traditional
violations. Consequently, how to preserve privacy in tagging recommender systems
is an emerging issue that needs to be addressed. Simply apply the naive differential
privacy mechanism cannot achieve the desired privacy-preserving goals for a
tagging recommender system. This chapter presented a private topic-based tagging
release (PriTop) algorithm to address the privacy issues in tagging recommender
systems. The algorithm generates a synthetic dataset that retains the relationship
among tags, resources and users rather than releasing simple statistical information,

Precision

Precision

11 Privacy Preserving for Tagging Recommender Systems

—+— FR Non-private|
—o— epsilon=1.0
—*— epsilon=0.5
—+— sigma=0.8
—4&— sigma=0.6

—— FR Non-private]
—o&— epsilon=1.0
—— epsilon=0.5
—+— sigma=0.8
—4&— sigma=0.6

Precision

Precision

—+— FR Non-private|
—&— epsilon=1.0

—*— epsilon=0.5 1
4+ sigma=0.8
—&— sigma=0.6

—+— FR Non-private]
—o&— epsilon=1.0

—<—epsilon=05
—+— sigma=0.8
—4&— sigma=0.6

— A ';' e
A X + -
0.04F —a A T
=
—4
0.03 0.08
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
N N
(c) (d)

Fig. 11.4 FolkRank precision result. (a) Del.icio.us. (b) MovieLens. (¢) Last.fm. (d) Bibsonomy

and shrinks the randomized domain decrease noise. The PriTop algorithm can
publish all users’ profiles by masking their exact tags and weights under the notion
of differential privacy, and a novel private topic model-based method is used to
structure the tags and to shrink the randomized domain.

Current evaluation only concentrates on one recommender algorithm, FolkRank,
with other recommendation techniques, such as the tensor decompositions method,
requiring further investigations. Also we would like to explicitly explore the
semantic similarity in tags to help improve the tradeoff of privacy and utility.

Chapter 12
Differentially Location Privacy

12.1 Introduction

The advances in sensor-enable devices, such as mobiles and wearable techniques
have allowed for the location information to be available in social media. The
popularity of location-based services has resulted in a wealth of data on the
movements of individuals and populations. However, the places that people visit
will disclose extremely sensitive information about their behaviours, home and work
locations, preferences and habits. Location privacy is an emerging issue that needs
to be addressed.

Although location information brings added value for personalizing the con-
sumers’ experience, it is widely believed that such uses of location data are invasions
of privacy. People may feel reluctant to disclose their locations to others because of
privacy concerns. Through analysing these data, it is possible to infer an individual’s
home location, political views and religious inclinations, etc. Moreover, if location
databases are abused by authorized users or broken by intruders, adversary can then
attempt security attacks. Accordingly, the ability to preserve the privacy of users as
the location information is involved is an essential requirement for social networks
and LBSs.

Differential privacy applies the randomized mechanism to add controlled noise
into numeric or non-numeric values, and has been proven effective in sensitive
data release. Recently, a number of works have attempted to bring differential
privacy into location data release [36], though three challenges with this strategy
still remains open:

e The first challenge occurs when differential privacy utilizes the randomized
mechanism to preserve privacy, it usually introduces a large amount of noise
due to the sparsity of the dataset. For a dataset with millions of locations, the
randomized mechanism will result in a large magnitude of noise.

© Springer International Publishing AG 2017 151
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_12

152 12 Differentially Location Privacy

Table 12.1 Application settings

Application Location based service

Input data Trajectory

Output data Synthetic trajectory

Publishing setting Non-interactive

Challenges High sensitivity; data sparsity

Solutions Adjust sensitivity measurement, using clustering to shrink the domain
Selected mechanism Dataset partitioning

Utility measurement Error measurement

Utility analysis Union bound

Privacy analysis Parallel composition

Experimental evaluation | Performance measured by distance error

* The second challenge lies in the measurement of sensitivity. For a location
dataset, the randomization mechanism is associated with distance measurements.
However, if we just measure the sensitivity by the traditional way, which involves
the maximal distance between locations, the sensitivity will be very large. To
achieve a rigorous privacy guarantee, a large magnitude of noise has to be added,
and this will significantly decrease the utility of the location dataset.

* The third challenge is the semantic retaining of the location data. When random-
izing a location dataset, the traditional differential privacy mechanism does not
consider the semantic of the locations. Typically, only the distance-based mea-
sure was used to perturb the location regardless of which town/city/country
it belongs to. For example, the locations in Niagara Falls (on the border
of USA and Canada) could likely be perturbed into a different country if not
considering the semantics.

All these challenges imply that differential privacy should not be adopted to
location dataset in a straight forward manner. Previous work [36] can only solve
parts of these challenges. A novel mechanism is in high demand. This chapter
proposed two basic methods, Geo-indistinguishability [36] and synthesization
method [97]. After that, a hierarchical location publishing method [242] is proposed
in detail. Table 12.1 shows the application settings.

12.2 Preliminary

Let D be a location dataset as shown in Table 12.2. Each record contains a user with
all the locations where he/she visited. U is the set containing all the users, and |U]| is
the number of the users. A location set is denoted as .2~ and each location is a point
xe .

12.3 Basic Location Privacy Methods 153

Table 12.2 Location dataset User | Locations

uy < X11, Y11 >, < X12, Y12 >, ...

U < X21,Y21 >, < X22,¥22 >, ...

Uju| < Xnl>Ynl > < Xp2, Yn2 >, ...

T(u,) is the set of locations where u, has ever been, and |T(u,)| is the number
of those locations. A query f is a function that maps the data set D to an abstract
range R: f : D — R. We typically consider of R as the set of possible outputs of a
mechanism performed on a dataset. For example, If f is a count query, the abstract
range will fall into a real number domain R. A group query is represent by F.

Table 12.2 shows an example of location dataset, in which each user may
travels to different locations and a location can appear several times for the same
user. Apparently, the statistical information on a location dataset, say, a histogram
indicating the frequency of each location, is potentially valuable for location
knowledge discovering. In data analysis or mining mechanism, aggregate results are
abstracted from the statistical information to response the queries such as “which
locations are the most attractive?” and “how many users requested LBS at an
attractive location?”

To achieve the privacy preserving, answers to the queries should be obfuscated.
The goal of this work is to propose an efficient method for location data release with
differential privacy while maintaining adequate utility.

12.3 Basic Location Privacy Methods

There are two possible queries for a location-based service: snapshot and continuous
queries [207]. A snapshot query is a request submitted once by the user. For
example, Where is the closest Sushi bar? A continuous query is submitted at discrete
time points by the same user. For example, Continuously send me gas price coupons
as I travel the interstate highway. Both types of queries are prevalent nowadays in
location based systems. Location privacy preserving ensures that from these queries,
adversary cannot infer the current location (from snapshot query) or the trajectory
(from continuous query) of the user. For location-based services, location privacy
calls for methods that preserve as much as the quality of the desired services, while
hindering the undesired tracking capacities of those services.

154 12 Differentially Location Privacy
12.3.1 Snapshot Location Privacy: Geo-Indistinguishability

Some types of snapshot queries can use existing differential privacy mechanisms.
For example, when a location based server would like to hide the number of
people in a particular region, a typical range query publishing mechanism can be
used. Cormode [49] applied spatial decomposition methods, which is a type of
dataset partitioning mechanism, to decrease noise. They instantiated a hierarchical
tree structure to decompose a geometric space into smaller areas with data points
partitioned among the leaves. Noise is added to the count for each node. Similarly,
Zhang et al. [253] applied spatial decomposition methods in the problem of private
location recommendations, which is the extension of range queries. Quadtree is used
to partition the region and noise is added to protect users’ historical trajectories.

Some location based applications need to hide the exact locations of individuals.
Chatzikokolakis et al. [36] proposed a new notion, geo-indistinguishability, which
protects an individual’s exact location, while disclosing enough location information
to obtain the desired service. Its main idea relates to a differential privacy level of
the radius that the individual has visited: for any radius r > 0, an individual will
have (e, r)-privacy.

Most aforementioned work are concerned with the applications involving aggre-
gate location information about several people. For the protection of a single
person’s location, Dewri [56] incorporated differential privacy to k-anonymity by
fixing an anonymity set of k locations. The proposed method requires that the
probability of outputting the same obfuscated location from any set of anonymized
k locations should be similar. This property is achieved by adding Laplace noise to
each coordinate independently.

Geo-indistinguishability considered a query to provider for nearby Sushi bar
in a private way [36], i.e., by disclosing some approximate information z instead
of his exact location x. The method solve the problem of what level of privacy
guarantee can the user expect in this scenario? They considered the level of privacy
within a radius r. A user has a £-privacy with r, in which £ represent user’s privacy
level proportional to radius. The smaller £ is, the higher the privacy. Therefore,
Andrés et al. define geo-indistinguishability as follows: A mechanism satisfies e-
geo-indistinguishability iff for any radius r > 0, the user has er-privacy within r.
This definition shows that a user is protected within any radius r, but with a level
{ = er with the distance. Suppose ¢ is fixed, when r = 1km, £ is small, which
means the user enjoys a higher privacy level. Figure 12.1 illustrates the idea of
privacy levels decreasing with the radius .

The key idea of geo-indistinguishability is to make two points in radius r
indistinguishable, which is defined by a probabilistic model.

12.3 Basic Location Privacy Methods 155

Fig. 12.1
Geo-indistinguishability
privacy level

A

12.3.1.1 Probabilistic Model

Suppose there are 2 of point of interest, which might be user’s possible locations,
Z is set as user’s reported values, which can be arbitrary. Assuming user has visited
x € Z, but report z € Z. The attacker’s background information is modeled by
a prior distribution = on 2", where m(x) is the probability assigned to location
x. As the perturbed location z can be obtained by adding random noise to the
actual location x, z can be considered as a probabilistic value. The mechanism
K is a probabilistic function assigning each location a probability distribution on
Z . For example, K(x)(Z) is the probability of reported point of x in Z € Z.
Each observation Z € % of a mechanism K induces a posterior distribution
0 = Bayes(w,K,Z) on K, defined as

_ K@@
> K@) @)

Multiplicative distance is defined to measure the distance between two distribu-
tion on some set .7”:

0
02(9) |

dy(01,02) = supse.s |In (12.2)

12.3.1.2 Geo-Indistinguishability Definition

Based on the probabilistic model, the geo-indistinguishability guarantees that for
any x and x’, whose Euclidean distance d(x, x) is less than r, the distance between

156 12 Differentially Location Privacy

Fig. 12.2 B
Geo-indistinguishability et -Z- el T S
definition e ey X,
7 K(X) SN KX) N
4 4 \ AY
1 1 \ \
1 1 \ \
i X 1 [} X [}
1 1 1 1
: O o e ® !
\ Ld(x, x)<rf ,,'

two distributions, K(x) and K(x’), should be less than £. Figure 12.2 illustrate
definition. When x and x’ are fixed, two circles are used to represent distributions of
K(x) and K(x') in point set Z. The distance of K(x) and K(x’) should be bounded
in the privacy level £. When meeting with two set of points tuples x; = xo, ... and
X2 = Xp, . . ., the distance between two tuples are defined by the maximum distance
between two points in these two tuples.

Definition 12.1 (Geo-Indistinguishability) A mechanism K satisfies e-geo-
indistinguishability iff for all x, x’:

d,(K(x), K(x')) < ed(x,x). (12.3)

According to Eq. (12.2), the definition can be formulated to
Kx)(Z) < e®dx, X K(x')(2Z) (12.4)
forallx,x’ € 2 ,and Z C %.

12.3.1.3 Geo-Indistinguishability Method

Step 1: Laplace Mechanism in Continuous Plane Laplace noise is added to
points to achieve geo-indistinguishability in the continuous plane. When user’s
actual location is xo € R?, planar Laplace noise will be added to the point.
Equation (12.5) shows the mechanism:

2
K(x0)(x) = ze—ﬂe—fdw, (12.5)

62 . . .
~ 1is a normalization factor.

where 2
v 4

Step 2: Discretizated Step to Achieve Geo-Indistinguishability in the Discrete
Domain One common way to analyze trajectories on a continuous domain (and to
limit the size of the model) is using discretization on the space. After defining a grid
@ of discrete Cartesian coordinates, remap x = K (xo)(x) to the closest point x on &.

12.3 Basic Location Privacy Methods 157

g

- ~ ' o
~ N
/’ A V/ N
4 /7 N\ \
/ / \ \
’ \
U / N
Vi \ \
T T A
1 1 \ y \
1 X 1 \ X \
I 1 1 1
1 e 1 1 1
1 O T [I
! J 1 1
\ U 1 1
\ \ ' O, ;
\ \ S
\ ; O)/ [
\ \
. 4 g/ ;
N b/ \",
N N
\\ /)\ //

Fig. 12.3 Geo-indistinguishability mechanism

Step 3: Truncated Step to Obtain Finite Regions The Laplace mechanisms
described in the previous sections have the potential to generate points everywhere
in the plane, but in most cases, users are only interested in location with finite region.
In this step, a finite set A € R? is defined. All reported points X will be mapped to
the closest point in A (9.

Figure 12.3 shows the three steps mechanism. The orange region represent the
planar Laplace noise added to points x and x". The step 2 decretizated the Laplace
noise in grid ¢, and dot line circles denote the truncated region A in step 3. Geo-
indistinguishability is an specific instance of differential privacy, uses an arbitrary
metric between secrets.

12.3.2 Trajectory Privacy

The trajectory has several properties that make the privacy preserving a chal-
lenge [97]. Firstly, individual’s trajectories are highly unique. This indicates the
difficulty of achieving properties such as k-anonymity, where at least k individuals
have the same trajectory. Secondly, the trajectory is predictable in most cases. The
release of an individual’s location data can make him susceptible to privacy attacks.
Existing techniques for privacy-preserving location data release are derived using
partition-based privacy models, which have been shown failing to provide sufficient
privacy protection. Differential privacy is considered as a suitable privacy model
that can provide a rigorous privacy guarantee.

158 12 Differentially Location Privacy

Ho et al. [99] took advantage of the property of prediction in trajectory
release and proposed an e-differentially private geographic location pattern mining
approach by a partition-aggregate framework. The framework utilizes the spatial
decomposition to limit the number of records within a localized spatial partition and
then applies noise-based clustering to discover the interesting patterns in location
datasets. Laplace noise is added in both steps with the aim to mask the count of
records in a region and the centroid of these records. Chen et al. [40] presented a
data-dependent solution for sanitizing large-scale trajectory data. They developed
a constrained inference technique to increase the resulting utility. He et al. [97]
presented a system to synthesize mobility data based on raw GPS trajectories. They
discretize raw trajectories using hierarchical reference systems to capture individual
movements at differing speeds. They then propose an adaptive mechanism to select
a small set of reference systems to construct prefix tree counts. Lastly, a direction-
weighted sampling is applied to improve utility.

He et al. [97] showed a practical way to publish synthesize GPS trajectories in
the constraint of differential privacy. The major difference between independent
location points and the trajectory is the correlation between locations in trajectory.
The key idea of He et al.’s work is map the original locations to anchor points in
various grid, defined as reference systems. And create sequential data is the order
Markov process that generates the next location of trajectory based on the previous k
locations. Laplace noise is added to the transitive probabilities to achieve differential
privacy.

They consider D as a trajectory dataset, in which each individual has a personal
trajectory table, denoted by PT with each tuple representing a regular trajectory,
t. It is possible for an individual to have multiple trajectories, of varying lengths,
where length is defined as the number of points in the trajectory. A uniform grid
¥, is generated over the space and choosing the centroid as anchor points, where
v denotes the length of the side of each grid cell. They use c(t,x) to denoted
occurrence of x in 7. Figure 12.4 shows an example. In a grid G, suppose a user has
two trajectories #; and t,, both trajectory has passed the locations x;, c(t1,x;) = 1,
while ¢(u, x;) = 2. In the figure, point a is an anchor point that may replace nearby
points x;. The background coordinate is another G with the same trajectories but
different resolution.

Two major steps involved into the DPT method. Step 1: Decritization by
hierarchical reference systems: In this step, Markov processes is first applied to
model correlations between contiguous locations in a trajectory.

Definition 12.2 (Markov Process) A regular trajectory < xj,...,xy >€ Z is
said to follow an order ¢ Markov process if forevery ¢ <i <d,x € Z

Pr(xiq1 = x|x1...xi) = Pr(xiy1 = x|Xi—g41 ... Xi). (12.6)

The probability Pr(xjy1 = xX|xi—p+1...%;) is a transition probability that is
estimated by ¢- and ¢ + 1 length counts.

12.3 Basic Location Privacy Methods 159

Fig. 12.4 Trajectory count G c(t1, xi)=1; c(u, xi)=2

Anchor point a
® _x

Trajactory t1

Xi

t2

oo ¢

Hierarchical reference
system with different v

Trajactory

Trajactory
00
Discretization ._./'é

Fig. 12.5 Hierarchical reference system

The size of v in grid G is tricky as there are several problems: (1) a user may
travel in different speeds so that some anchor points may not be estimated in a
same scale. (2) Large v leads to huge utility loss, while small v leads to significant
number of parameters in the Markov process. Therefore, a hierarchical reference
system, shown as Fig. 12.5, is applied to variate the size of v, with geometrically
increasing resolutions. Given a point x, there are two ways to map x to the next
anchor point a;+; where (1) a;+ is a neighboring cell of g; in the same G; or (2)
ai+1 1s the parent or a child of g; in a different G. After mapping trajectory in grids,
step 1 outputs mapped trajectory such as r = ay, . . . ag4, in which anchor points may
be derived from different grid with various v.

Step 2 selects the private model. One particular trajectory may have various
mapping in the first step. This step will select the most suitable perturbed trajectory
based on the transitive probabilities in Markov process. To preserve privacy, Laplace
noise is added to the count of locations, which changes the transitive probabilities.

160 12 Differentially Location Privacy

As noise may hide the direction of the trajectory, weights are calculated by
previous directions in a windows size w. Then the weighted sampling process will
help to improve the utility.

12.4 Hierarchical Snapshot Location Publishing

When addressing the issues of privacy in location dataset, the main challenge is to
obtain a trade-off between the level of privacy and the utility of the released dataset.
Most traditional privacy preserving methods lack of a rigid privacy guarantee on the
released dataset. Hence, Xiong et al. [242] proposed a Private Location Publishing
algorithm, with the aim to preserve the privacy for individuals while maximizing
the utility of the released dataset. Specifically, they attempt to address the following
issues:

* How to decrease the large magnitude of noise when using differential privacy? In
a sparse location dataset, the key method to decreasing the noise is to shrink the
scale of the randomization mechanism. Previous work focuses on methods that
generalized a particular location to a vague one, but this results in high utility
loss.

* How to calibrate the sensitivity for hierarchical structure dataset? As mentioned
earlier, the traditional sensitivity will be very large due to the large distance
between locations.

* How to design a release mechanism that retains the semantic information of the
location data?

12.4.1 Hierarchical Sensitivity

Before proposing the hierarchical sensitivity, they first analyze the source of
redundant noise according to the definition of sensitivity in differential privacy.
For a location dataset, the distance between locations is continuous, in order to
preserve privacy, the sensitivity of a query has to be calibrated by the maximal
distance between locations, which could completely mask the true distance and
render the utility of dataset useless. They observe that a location dataset maintains
a hierarchical structure, which defines the different semantic on each level. For
example, country, city and street can be considered as levels of the location
dataset, and each level has its own semantic. In this hierarchical structure, users
may have diverse requirements on different levels of location. Some of them just
need to hide the street, or hide the city, few of them need to hide the county.
Hence, they can associate the hierarchical structure of the dataset with users’ various
requirements.

12.4 Hierarchical Snapshot Location Publishing 161

Based on this observation, they define the hierarchical sensitivity for differential
privacy mechanism, it is calibrated by the maximal distance between two locations
on the same level of location. Let L represent the level of the structure that user
intends to preserve, they then have the follow definition:

Definition 12.3 (Hierarchical Sensitivity) For a given L, the hierarchical sensi-
tivity of L is

HS; = mLaxd(ti,tj), (12.7)

where d(1;, t;) represent the distance between #; and ;.

The user can choose their requirement of the privacy level L and the hierarchical
sensitivity is generated according to Definition 12.3. For example, to preserve the
city level privacy, the sensitivity is measured by the maximal distance within this
city. Then the differential privacy mechanism will mask the city of the user rather
than the country of the user. By this way, the randomized dataset can reduce the
amplitude of the noise.

They illustrate the concept of hierarchical sensitivity using an example. Giving a
map consisting of three difference cities, which denoted by three circles C, C, and
C3, as shown in Fig. 12.6. The distances between cities are d(Cy, C,), d(C,, C3) and
d(Cy, C3), respectively. Let nodes S;, S, and S in each circle represent streets, and
d(S1,S82), d(S2, S3) and d(Sy, S3) be the distances between corresponding streets. If
a user chooses a city level privacy, it means that he wants to hide the city he has
travelled. The neighboring dataset should be a graph with revising the location of a
city. The hierarchical sensitivity is then measured by the maximal distance between
cities: HS sy = max(d(Cy, C2),d(Cs, C3),d(Cy, C3)). Similarity, if the use chooses
the street level privacy, there will be HSe.; = max(d(Sy, S2), d(S2, S3),d(S1, S3))-

Fig. 12.6 Distance between
streets and cities

V
A Country

162 12 Differentially Location Privacy

They consider the privacy level L as a configuration in a software or a service.
When a user intends to use a software with location information or a location based
service, he/she can set this parameter based on his/her own preference. It can either
be configured before the service or during the service. They can also set a default
value if the user skips this setting procedure. In the following sections, they assume
that the privacy level L and the related hierarchical sensitivity have been generated
in advance. They then simplify the notation from HS;, to HS.

12.4.2 Overview of Private Location Release

In a location dataset D, the information about a user, say u,, can be represented
by a profile P(u,) =< T(u,), W(u,) >, where T'(u,) is the set of all locations in
this dataset, and W(u,) is the weight vector representing the frequency distribution
of these locations. If an adversary has partial information on P(u,), he/she may
re-identify user u, in the location dataset by searching those known locations.
More background knowledge will lead to higher probability of re-identifying a user.
Hence, traditional privacy approaches hardly provide sufficient protection to users,
due to the difficulty in modeling background knowledge [84].

Differential privacy assumes that all locations in the dataset have same proba-
bilities to appear in a user’s profile. Specifically, locations in P(u,) are represented
by T(us) = {t1,...,t1}, where |T| is the total number of locations appeared in D,
and the weights are denoted as W(u,) = {wi,...,wq}, where w; = 0 indicates
that location #; has never been visited by this user. Differential privacy then utilizes
the randomized mechanism to add noise into the weight W (u,) and releases a noisy
profile ﬁ(ua) =< T(uy), W(ua) > In this case, W(u,) is a sparse vector as a user can
only visit a limited number of locations. When applying the randomized mechanism,
W(ua) will contain a large amount of noise because lots of weights in W(u,) will
change from zero to a positive value.

One strategy to reduce the noise is to shrink the randomized domain, which refers
to the diminished number of zero weights in the profile. To achieve this objective,
they structure the locations on each level into 1 clusters and each user is represented
by a cluster-based profile Pc(u,) =< Tc(ua), We(ua) >, where the subscript C
means clustering based. In the profile, Tc(us) = {T¢,(ua), ..., Tc,(ua)} is the
locations grouped by clusters, where T¢,(u,) represents the ith location cluster of
ug. We(ug) = {we, (ua), - .., we, (ua) } is a weight vector representing the frequency
summary grouped by the clusters. Namely, wc;, (u,) is the total frequency of the jth
location cluster visited by u,. Then the noise is added to the frequency based on each
cluster instead of every particular location. Compared to W (u,), Wc¢(u,) is much less
sparse. Because the noise added to each we, € Wc(u,) equals to w; € W(u,), the
total noise added to W¢(u,) will significantly decreased.

In this section, they propose a Private Location Release (PriLocation) algorithm
to address the privacy issues in location dataset. They first present an overview of
the algorithm, then provide details of its operations.

12.4 Hierarchical Snapshot Location Publishing 163
12.4.3 Private Location Release Algorithm

The PriLocation algorithm aims to publish all users’ profiles by masking the
exact locations and weights under the notion of differential privacy. Three private
operations are introduced to ensure that each individual in the releasing dataset
cannot be re-identified by an adversary.

* Private Location Clustering: This creates location clusters and masks the exact
number of locations as well as the centers of each cluster. From the clustering
output, the adversary cannot infer to which cluster a location exactly belongs.

* Cluster Weight Perturbation: This operation masks the weights of the locations
in a user’s profile to prevent an adversary from inferring how many locations a
user has visited in a certain cluster.

* Private Location Selection: This aims to mask a user’s profile that an adversary
cannot infer the locations visited by this user.

Based on these private operations, the proposed PriLocation algorithm generates
a sanitized location dataset, and its pseudocode is provided in Algorithm 1. Firstly,
step 1 divides the privacy budget into three parts, corresponding to the three private
operations. Step 2 groups all locations into 71 clusters, and in step 3 the weight
for each cluster is perturbed by Laplace noise. After privately selecting the new
locations to replace the original ones in step 4, the sanitized dataset D is released in
the last step.

Algorithm 1 Private Location Release (PriLocation) Algorithm
Require: D, privacy parameter €, 7).

Ensure: D
1. Divided privacy budget into €/2, € /4 and €/4;
2. Private Location Clustering: cluster locations into 1 groups with € /2 privacy budget;
for each user u, do
3. Cluster Weight Perturbation: add Laplace noise to the group weights with € /4 privacy
budget;

~ 4
W(ua) = W(ua) + Laplace(;)”.

for each Cluster C, in P(u,) do
4. Private Location Selection: Select locations according to the W(ua) with €/4 privacy
budget;
end for
end for
5. Output D;

These three private operations simultaneously guarantee a fixed e-differential
privacy and retain the acceptable utility of dataset. Details for the Private Location
Clustering operation is presented in Sect. 12.4.3.1, followed by the Cluster Weight
Perturbation in Sect. 12.4.3.2 and the Private Location Selection in Sect. 12.4.3.3.

164 12 Differentially Location Privacy

12.4.3.1 Private Location Clustering

In this subsection, they describe the Private Location Clustering operation that
privately groups locations into clusters. Private Location clustering categorizes
unstructured locations on each level into groups to shrink the randomized domain
for privacy purposes. According to the notion of differential privacy, this operation
ensures that deleting a location will not significantly affect the clustering results.
This means that an adversary cannot infer to which group a location belongs from
the clustering output. This objective can be achieved by adding Laplace noise in the
distance measurement during the clustering process.

As one of the most popular models, k-means is easy to be extended for privacy
preserving, especially for differential privacy [28]. Therefore, they apply k-means as
the baseline clustering algorithm and introduce the differential privacy to generate
a private cluster algorithm. Blum’s initial work in SuLQ framework claims that
a private clustering method should mask the cluster center and the number of
records in each cluster. Following this work, they conceptualize the Private Location
Clustering in two steps:

* Defining a quantitative measure of distance between locations.
* Adding noise in each iteration to privately cluster all locations.

As the location is defined by the longitude and latitude, The distance between
locations can be measured by Euclidean distance:

d(t, 1) = \/(xi —x)? + (i —)% (12.8)

The next step introduces differential privacy into k-means, which is essentially
an iterated algorithm for grouping data observations into 7 clusters. Let ¢; denote
the center of the cluster C;. Equation (12.9) shows the objective function g, which
measures the total distance between the location and the cluster center it belongs to.

Tl n

g= > yud(t.cp. (12.9)

i=1 I=1

where y is an indicator defined as follows.
1 t; € C
il = 12.10
Vit % 0 4dC ()

When combined with differential privacy, Laplace noise is calibrated by the
hierarchical sensitivity HS of the objective function G and the privacy budget.
For the privacy budget, they separate €/2 into p parts, where p is the number of
iterations. So the private objective function G is defined as following:

12.4 Hierarchical Snapshot Location Publishing 165

G Xm:i d(ts. 1) + Laplace | 22115 (12.11)

= ud(li, ¢ aplace . .
i=1 I=1 " : ! €

After p iterations, the Private Location Clustering outputs C = {Ci,...,Cy}.

Details of this operation are shown in Algorithm 2.

12.4.3.2 Cluster Weight Perturbation

After generating the cluster-based user profile P¢(u,), Laplace noise will be added
to mask the counts of locations in each cluster.

- 4\"
We(ug) = Welu,) + Laplace (—) . (12.12)
€

Noise added on the weight W (u,,) implies the revision of the locations in T¢(u,).
Positive noise indicates that new locations are added to the T¢(u,), while negative
noise indicates that some locations have been deleted from the list. For positive noise
in the cluster Cj, the operation will choose the location close to the cluster center.
For negative noise, the operation will delete the location with the largest distance to
the cluster center. Namely,

Algorithm 2 Private Location Clustering Operation

Require: Location set T, privacy parameter €/2, iteration round p, numbers of clusters 1
Ensure: C = {Ci,....C}
1. Randomly select centers ¢y, ..., ¢y}
for 1:p do
2. Assign all the locations to 1 clusters and get their indicators;
3. Measure the private objective function

~ & 2p - HS
G = ,'d l,‘, L l ,
;;yl (17.¢)) + Laplace(=——)
4. Update clustering centers according to 6;
end for
5.0utput C = {Cy,...,Cy};
Te,(ua) = Te,(ua) + trew, (12.13)
where f,,.,, = argmingec, d(t;, ¢1).
Tc,(ua) = Tc,(tta) = detete- (12.14)

where 410 = argmaxyec, d(t;, ci).

166 12 Differentially Location Privacy

After perturbation, they use Ff’c (ug) =< FTVC (uq), Wc (u,) > to represent the noisy
cluster-based user profile. However, the Pec (u,) still has the high probability to be re-
identified because it retains a major part of the original locations. The next operation
will replace all locations in Tec (u,) to preserve privacy.

12.4.3.3 Private Location Selection

The Private Location Selection operation replaces original locations with selected
new locations. The challenge is how to select a new location from the related
clusters. For a location ¢; € TC, (u,), uniformly random location selection within
?C, (u,) is unacceptable due to significant utility detriment. The intuitive approach to
retaining utility is to replace with the most similar location. However, this approach
is also insecure because the adversary can easily figure out the location most similar
using simple statistical analysis. Consequently, the Private Location Selection needs
to: (1) retain the utility of locations, and (2) mask the similarities between locations.

To achieve these requirements, Private Location Selection adopts the exponential
mechanism to privately select locations from a list of candidates. Specifically, for a
particular location #;, the operation first locates the cluster C; to which it belongs, and
all the locations in ?C, (u,) are then included in a candidate list /. Each location in /
is associated with a probability based on the score function and its related sensitivity.
The selection of locations is performed based on the allocated probabilities.

The score function is defined by the distance between locations. They define the
score function ¢ for a candidate location #; with the target location #; as follows:

qi(l, 1) = (HS — d(1;, 1)), (12.15)

where [is location #;’s candidate list, and #; € [is one candidate location for
replacement. Each location #; has a score according to Eq. (12.15).
The sensitivity for score function g is measured by the maximal change in the
distance between #; and #;. Here, they will use the hierarchical sensitivity HS.
Based on the score function and the sensitivity, the probability arranged to each
location #; is computed by Eq. (12.16) with the privacy budget 7.

exp (632;’))

eqily)\’
thel exp(8-HSJ)

Pryei(t)) = (12.16)

They then select a location ¢; from C; to replace the #; according to this probability.

Eventually, the algorithm output ?C(ua). The pseudocode of Private Location
Selection is presented in Algorithm 3.

12.4 Hierarchical Snapshot Location Publishing 167

Algorithm 3 Private Location Selection

Require: i,’]\:c (ug),
Ensure: /T\C (ug) .
for each location #; in T'¢(u,) do
1. locate the ¢; in cluster C;;
for each location #; in C; do
2. Allocate probability as:

eqi(L.t)
exp(SHS)
eqily)\’
Yjec exp(SHS)

end for

3. Select a location #; from C; to replace the #; according to the probability;
end for
4. Output T (uy);

12.4.4 Utility and Privacy
12.4.4.1 Utility Analysis

The utility of dataset D highly depends on the user profile. The closeness between
the user’s original profile and the perturbed profile is the key factor that determines
the utility level. Given a target user u,, they set the original profile P,, as a
baseline. By comparing the replaced locations in the user’s profile ’IBM(‘ with the
corresponding ones in the baseline P,,, they can evaluate the utility level of the
proposed algorithms. The distance between P, and Ea is referred to as the distance
error, which is a direct measurement on the difference between the locations before
and after the randomization.

PRI ()
= ZreTcl) 77 (12.17)
HS - |Tc(ug)|

Ua

where7 is the new location replacing the original # and HS is a fixed pre-determined
hierarchical sensitivity.
For the entire dataset D, they have the average distance error as Eq. (12.18).

DE = ﬁ Z(DEMH). (12.18)

u, €U

The error measurement can be applied to evaluate the utility of D in terms
of distance error. They consider the PriLocation algorithm as query set F and
prove that with a high probability it is less than a certain value «. The following
Theorem 5 provides the bound of o, which implies the minimal distance error of
the PriLocation algorithm. The « indicates the least utility loss that needs to be
sacrificed, if a certain level of privacy needs to be achieved.

168 12 Differentially Location Privacy

Theorem 5 For any user u, € U, for all § > 0, with probability at least 1 — B,
the distance error of the released dataset is less than o. The lower bound of o is
presented by Eq. (12.19)

Z,ie?c(ua)'rjecxi E(d(ti’ tj))
o < max

= (12.19)
el HS-[Tc(ud)| - B

where E(d(t;,t;)) denote as the expectation of d(t;, t;).

Proof The distance error DE is proportion to the distance between the original
location and the selected location. Given a user u, who has a set of locations 7T'(1,),
for each original location ¢#;, the probability of being replaced by a privately selected
location ¢ is defined by Eq. (12.16). Based on this probability, they can estimate the
scale of DE,, for user u,.

According to Marlkov’s inequality, for user u,, they have

E(DE,
Pr(DE,, > o) < u
oy
E(DE,
= Pr(DE,, <oa,) >1— u
a(l
According to Definition 14.9, they estimate the Pr(DE,, < «,). Let 1 — % =
1 — B, they have
o < max — U UEG . (12.20)

w€U HS-|Tc(ug)| - B

For all users, « is determined by the maximal value, o = max,, ey .

They can have one step to further estimate the expectation E(DE,,). According
to Eq. (12.16), there will be

ex (E'(Hsfd(t,-.t,))
E(DE,)= Y. dt.y) P el
" HS - [Te(u,)| pi

~
L E€Tc(ua) i ECy;

where p is the normalization factor depending on the cluster to which #; belongs to.

The proof shows that the distance error for each user mainly depends on
the privacy budget and the normalization factor p;. According to Eq.(12.16), the
normalization factor p; for a particular location #; is defined as

€ - (HS — d([l‘, l‘j))
| = E —_— . 12.21
8 P (8|TC(M¢1)| -HS) ()

1€T ¢ (ug) i €Cy,

12.4 Hierarchical Snapshot Location Publishing 169

Table 12.3 Privacy budget
allocation in PriLocation
algorithm

Operations Privacy budget
Private location clustering | €/2
Cluster weight perturbation | €/4
Private location selection €/4

Therefore, the size of p; is depended on the cohesion inside cluster Cy;, in which
the compact cohesion results in small p; and less distance error. Further analysis
shows that the cohesion is determined by the privacy budget € in the private location
clustering operation. It can be concluded that the privacy budget affects on the utility
level of PriLocation.

12.4.4.2 Privacy Analysis

The PriLocation algorithm contains three private operations: Private Location Clus-
tering, Cluster Weight Perturbation and Private Location Selection. The privacy
budget € is consequently divided into three pieces, as illustrated in Table 12.3.

Because the Private Location Clustering operation is performed on the entire
dataset and will have effect on all users, they allocate more privacy budget (¢/2) than
other two operations. The other two operations only perform on individuals, and less
privacy budget are required. They allocate the rest €/2 to these two operations (/4
for each).

Based on the privacy compositions and the privacy budget allocation in
Table 12.3, they measure the privacy level of our algorithm as follows:

» The Private Location Clustering operation is performed on the whole dataset
with the privacy budget 5. According to the parallel composition, this operation
preserves 5-differential privacy.

» The Cluster Weight Perturbation applies the Laplace mechanism to the weights

n
of clusters. The noise is calibrated by Lap (m) and preserves ¢ -differential

privacy for each user. Furthermore, as a user’s profile is independent, replacing
a user’s locations has no effect on other user profiles. The Cluster Weight
Perturbation preserves ¢-differential privacy as a whole.

» The Private Location Selection adopts the Exponential mechanism. For one user
u, each location in the profile is replaced by a privately selected location until
all locations have been replaced. Each selection is performed on the individual
location, therefore according to parallel composition, for each user, the selection
guarantees g-differential privacy. Similar to the previous operation, every user
profile can be considered as a subset of the entire location dataset. Thus, the
Private Location Selection guarantees §-differential privacy.

Consequently, they can conclude that the proposed PriLocation algorithm pre-
serves e-differential privacy.

170 12 Differentially Location Privacy

12.4.5 Experimental Evaluation
12.4.5.1 Datasets

To obtain a thorough comparison, they conduct the experiment on four datasets:
GeoLife, Flickr, Diversification and Instagram. All datasets are
structured in the form of (User, Country, City, Street, Latitude and
Longitude).

GeoLife Geolife is a location-based social networking service, which enables
users to share life experiences and build connections among each other using
human location history. GeoLi f e dataset contains 17,621 traces from 182 users,
moving mainly in the north-west of Beijing, China, in a period of over 5 years
(from April 2007 to August 2012).

Flickr The Flickr dataset is crawled from www.flickr.com. The dataset con-
tains 1692 individual users, with 26,616 records. The City attribute of the
dataset covers New York, Paris, Melbourne, Hong Kong, and Macau.

Div400 This dataset was validated during the 2013 Retrieving Diverse Social
Images Task at the MediaEval Benchmarking Initiative for Multimedia Evalua-
tion footnotehttp://www.multimediaeval.org/. It contains 43,418 records related
to 396 locations.

Instagram They also crawled a sample of public Instagram photos with
locations.! The dataset contains 2015 individual users, with 28,767 records.

12.4.5.2 Estimation of Distance Error

To maintain the consistency with previous research, they thoroughly compare the
distance error of PriLocation with the traditional differential privacy (DP) algorithm
as well as the k-anonymity approach on the four datasets. For the PriLocation
algorithm, they first fix the street privacy level, and set € from 0.1 to 1.0 with a
step of 0.1. They set the number of cluster = 10, 40 and 80. For the traditional
differential privacy mechanism, they also set € from 0.1 to 1.0 with a step of 0.1.
For the k-anonymity approach, as it adopt k to control the privacy level, rather than
€, they set two empirical values, £ = 10 and 50.

Figure 12.7 shows the results on those four datasets. It can be observed that the
distance error of the PriLocation algorithm in a variety of 7 is less than that of the
traditional differential privacy with different privacy budgets, and this indicates that
PriLocation outperforms naive differential privacy on all the datasets. Specifically,
the PriLocation algorithm obtains a considerably lower distance error when € = 1.
For example, in Fig. 12.7a, when n = 80 and € = 1, the distance error is 0.0239,
which is 69.14% lower than that of traditional differential privacy. Even in a higher

Thttp://instagram.com.

www.flickr.com
http://www.multimediaeval.org/
http://instagram.com

12.4 Hierarchical Snapshot Location Publishing 171

—*—DP k=50 —+*—DP

—=24— PriLocation with n=10 —=4— PriLocation with n=10]|
—— PriLocation with n=40 ——— PriLocation with n=40
—=<— PriLocation with n=80 —=— PriLocation with n=80|

0.7

0.6

S g os
= =
w w g
3 Boaf 7T TN T T T T
c c
5] 5]
k7] @ g3 e
o o
0.2
0.1
T
S
[} 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
€ €
(a) (b)
1 0.9 T T
—#+—DP —+—DP
0.9 —=4— PriLocation with n=10 0.8 —4— PriLocation with n=10)
—— PriLocation with n=40 —— PriLocation with n=40
0.8 =— PriLocation with n=80 07 =— PriLocation with =80

Distance Error
Distance Error

0.1 S o T~ 4

(©) ()

Fig. 12.7 Distance Error on different datasets with Street level privacy. (a) Distance Error
in Flickr. (b) Distance Error in GeolLife. (¢) Distance Error in Div400. (d) Distance Error in
Instagram

privacy level (¢ = 0.1), the distance error is still lower than that of the traditional
differential privacy by 67.81% when n = 80. This trend retains when 7 equals to
other values, thus illustrates the effectiveness of PriLocation in terms of the distance
information retained in the randomized dataset. Similar trends can also be observed
in Fig. 12.7b—d. All figures show that PriLocation obtains a stable reduced distance
error comparing with the naive differential privacy.

They also compare the PriLocation algorithm with k-anonymity approach.
Figure 12.7 shows that k-anonymity has diverse performances in different datasets.
For Flickr dataset, Fig. 12.7a shows that the distance error of k-anonymity is 0.2446
when k = 10. This result outperforms PriLocation with ¢ < 0.4. However,
when € > 0.4, n = 80, PriLocation outperforms k-anonymity with k = 10.
When k = 50, k-anonymity has higher distance error (DE = 0.6980) than
all settings of PriLocation. In Fig. 12.7b. when k = 10, k-anonymity still has
higher distance error comparing with PriLocation. When k = 50, k-anonymity
has a poor performance (DE = 0.7802) comparing with PriLocation. They can
observe that the performance of k-anonymity depends on the size of the datasets.

172 12 Differentially Location Privacy

A larger dataset with smaller value of k has a better performance than a smaller
dataset with larger k. Flickr dataset has 1692 individual users and GeoLife only
contains 182 users, so that the performance of k-anonymity in Flickr is better than
in GeoLife with the same value of k. This observation is confirmed by Fig. 12.7c,
d. They shows that Instagram has a relative lower distance error comparing with
PriLocation while Div400 has higher distance error. This is because that Instagram
has 2015 individuals while Div400 only has 396. These results also demonstrate that
PriLocation has a stable performance that is independents of the size of a dataset.

12.5 Summary

In the last a few years, providers of location-based services have collected a wealth
of data of individuals and populations on the movement because of the popularity of
such LBSs. However, the places that people visit will disclose extremely sensitive
information such as their daily behaviours, home and work locations, preferences
and habits, etc. Location privacy is, therefore, an urgent issue that needs to be
addressed. The main aim of a location privacy LBS is to preserve as much as the
quality of the desired services, while hindering the undesired tracking capacities of
those services.

Although differential privacy has been considered as a promising solution to
provide a rigid and provable privacy guarantee for data publishing, the straightfor-
ward differential privacy solution for location data still suffers from three important
deficiencies: (1) it introduces a large volume of noise due to the sparsity of location
dataset, which significantly affects the performance; (2) the definition of sensitivity
in differential privacy can not be used directly in location data release because that
it causes unacceptable noise.

This chapter describes three methods that apply differential privacy to achieve the
aim of a location privacy LBS through various angles. Finally, a private publishing
algorithm is proposed to randomize location dataset in differential privacy, with the
goal of preserving users’ identities and sensitive information. The algorithm aims to
mask the exact locations of each user as well as the frequency that the user visit the
locations with a given privacy budget.

Chapter 13
Differentially Private Spatial Crowdsourcing

13.1 Introduction

Crowdsourcing has been a successful business model ever since it was first
introduced in 2006 [179]. It refers to employers outsourcing tasks to a group of
people [179], and with the increasing use of smart equipment with multi-modal
sensors. Spatial crowdsourcing (SC) [119] is a particular form of crowdsourcing
where workers perform their assigned tasks at an exact location. The tasks might
include taking photos, recording videos, reporting temperatures, etc. [216].

Within crowdsourcing platforms, tasks are uploaded by a requester to a spatial
crowdsourcing server (SC-server) which assigns the tasks to registered workers
using task-assigning algorithms. Workers submit their location in longitude/latitude
form, to the SC-server, and taking the probability of a worker accepting a task
into consideration, the server assigns each task to the most suitable workers to
ensure a high assignment success rate with minimal cost. However, this process
poses a privacy threat as the worker’s location data may be released by the SC-
server for further analysis, thus compromising the workers’ privacy. Studies have
demonstrated that published location information may be exploited to deduce
sensitive personal information such as home location, political views, and religious
inclinations [12, 100, 154].

Differential privacy has attracted attention in recent years in spatial crowdsourc-
ing. Some algorithms, such as DPCube [238] and AG [145], have been proposed
that allow the release of spatial datasets, while preserving privacy. The central
idea of these algorithms is to decompose a large map into many cells of varying
sizes and add noise into the count of users in each cell. These algorithms work
well in scenarios of that answer range queries on location datasets, however, many
weaknesses remain when applied directly in SC.

First, existing methods hide a worker’s exact location in a cloaked region
and suppose that workers are distributed uniformly within it. We argue that this
assumption is invalid unless the size of the region is very small. In large regions,

© Springer International Publishing AG 2017 173
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_13

174 13 Differentially Private Spatial Crowdsourcing

Table 13.1 Application settings

Application Crowdsourcing

Input data Trajectory

Output data Synthetic trajectory

Publishing setting Non-interactive

Challenges High sensitivity; data sparsity

Solutions Adjust sensitivity measurement, using clustering to shrink the domain
Selected mechanism Dataset partitioning

Utility measurement Error measurement

Utility analysis Union bound

Privacy analysis Parallel composition

Experimental evaluation | performance measured by distance error

people may gather into small areas, because aggregation is a basic feature of human
society. The algorithms also tend to decompose the whole map into a group of cells
of varying sizes, yet maintain a similar worker count for each cell. Given a task
in a large cell, an uneven distribution will cause a huge error when the density of
workers around the task point is evaluated.

Second, existing methods generally consist of two steps—decomposing the map
into a grid and adding noise for each cell—and each step consumes a certain amount
of the privacy budget. Since the budget used for the noise-adding step is only a
portion of the total budget, the noise volume will be significant.

To fix these weaknesses, this chapter first proposed a basic method of differ-
entially private crowdsourcing. Based on that, the chapter present a reward-based
spatial crowdsourcing, in which workers accept tasks in exchange for rewards and,
at the same time, differential privacy is preserved. Table 13.1 shows the application
settings.

13.2 Basic Method

13.2.1 Background of Crowdsourcing

SC can be categorized into two modes, worker selected tasks mode (WST) and
server assigned tasks mode (SAT) [119].

In WST, the requester uploads tasks to the SC-server, and workers select their
favorite tasks autonomously. WST is easy to implement but inefficient. Given
workers always select the nearest tasks, the tasks with few workers nearby are
accepted with low probability, which leads a low global task acceptance rate.

SAT is much more efficient. To ensure a high assignment success rate, workers
must report their locations to the SC-server and tasks are assigned to the most
suitable workers according to their position. Obviously, due to location exposure,
this mode contains an inherent a privacy concern, and forms the main concern on
the community.

13.2 Basic Method 175

The privacy issues in location-based services have been widely investigated.
Many location-based privacy-preserving methods have been presented in recent
decades, such as spatial cloaking [46, 163, 175] and dummy-based methods [124,
149]. Additionally, some studies have attempted to use these methods to solve
location privacy problems in SC. For example, using the spatial cloaking method,
Pournajaf et al. [183] presented a twofold approach. In the first step, cloaked areas
are reported to SC-server rather than exact locations, and global task assignments
are solved with uncertain locations. In the second step, workers refine the results
of the first stage according to their exact location. Agir et al. [9] presented a
location-obfuscation solution to preserve privacy. Obfuscation areas are generated
dynamically, to replace exact locations, according to the parameters of personalized
privacy requirements.

However, the main shortcoming of these methods is that their reliability is highly
dependent on an adversary’s background knowledge. A priori knowledge about an
attack’s objectives can be exploited to break privacy definitions [57].

13.2.2 Differentially Private Crowdsourcing Methods

To et al. [216] proposed a framework for protecting workers’ locations by intro-
ducing the cellular service provider (CSP) as a trusted third party. As shown in
Fig. 13.1, the CSP locates workers first and, because the SC server is assumed to be
unreliable, the CSP’s partition algorithm generates a private spatial decomposition
(PSD) instead of publishing the workers’ location information. The entire spatial
region is decomposed into grid of indexed cells, each containing a count of the SC
workers within. Laplace noise is then added to the count of each cell according
to the definition of DP. Thus, a PSD represents a sanitized distribution of workers
in the SC region. Anyone, including the SC-server, is unable to identify a user’s

Fig. 13.1 An framework for Workers
private spatial crowdsourcing > >
Exact Task
locations assinment
((p)
‘ PSD

csp SC-server

176 13 Differentially Private Spatial Crowdsourcing

rTTTTTTTo A: count=100/ B: count=100/----

C: count=300/ D: count=40

Level 2

Fig. 13.2 Two-level adaptive grid method

location using a PSD. The PSD is then published to the SC-server instead of exact
locations. Finally, the SC-server assigns the tasks to the workers according to the
published PSD.

The entire process can be divided into two steps: Step 1: building the work
private spatial decomposition (PSD) A PSD should be designed carefully for task
assignment at the SC-server. They used a two level adaptive grid and variable cell
granularity to avoid over or under-partition the space. The space is partitioned in
larger granularity in the first level, and each cell is further partitioned based on the
density of the workers. Figure 13.2 shows an example of the adaptive grid method.
The first level uniformly partitions the region, while second level further partitions
the region into smaller region according to the number of workers in each region.
At this stage, Laplace noise is added to the count of workers at each level.

Step 2: task assignment. When a request for a task is posted, the SC-server
queries the PSD and determines a geocast region, where the task is disseminated.
The goal is to obtain a high success rate for task assignment. while at the same time
preserve the system utility. To achieve the goal, three utility measurements have
been proposed:

» Assignment Success Rate (ASR). ASR measures the ratio of tasks accepted by a
worker to the total number of task requests.

¢ Worker Travel Distance (WTD). The total distances of workers need to travel to
complete the task.

* Average number of notified workers (ANW). A significant metric to measure
overhead of the system.

Based on the guide of these utility measurements, the geocast region should (1)
contain sufficient workers such that task is accepted with high probability, and (2)
keep a small size. The geocast region construction algorithm initially select a cell
that covers the task, and determines its utility values. If the utility values are lower

13.3 Differential Privacy in Reward-Based Crowdsourcing 177

than thresholds, the algorithm expands the region by adding neighboring cells, until
either when the utility of the obtained region exceeds the utility threshold. The
construction algorithm is a greedy heuristic, as it always chooses the candidate cell
that produces the highest utility increase at each step.

To et al. [217] presented a tool box, PrivGeoCrowd, to display the framework in
a visual, interactive environment. System designers can use the tool box to obtain
satisfactory results by tuning the parameters and allocation strategy.

13.3 Differential Privacy in Reward-Based Crowdsourcing

Though spatial crowdsourcing is a hot topic, only a limited number of studies have
focused on its rewards. Dang et al. [52] considered the types of tasks given the varied
expertise of workers. They defined a maximum-task minimum cost assignment
problem and, by solving this problem, tasks could be assigned to the most expert
workers, while minimizing the given reward. Wu et al. [233] concentrated on
the relationship between crowdsourcing quality and payment. Their analyses are
based on a 2D interior design task, and the evaluation results show that increasing
monetary rewards does not significantly improve the average design quality, rather
it increases the probability of excellent solutions from the crowd. Luo et al. [150]
designed an incentive mechanism based on all-pay auctions. They transform the
task assignment problem into a profit maximization problem, and introduce a
contribution-dependent prize to model workers’ contributions. Similarly, Shah-
Mansouri et al. [199] propose an auction-based incentive mechanism, ProMoT, to
maximize the profit of the platform while providing satisfying rewards to smart-
phone users. Thepvilojanapong et al. [215] took advantage of microeconomics,
proposing SenseUtil, a participation-aware incentive mechanism with various utility
functions to increase the number of sensors while keeping payments low.

While all the aforementioned works make contributions to their specified sce-
narios, few consider privacy issues when assigning a task. Moreover, most of these
works regard reward allocation as an optimization problem, and do not integrate
task assignment well.

Xiong et al. [241] presented a novel method for reward-based SC with a
differential privacy guarantee, that uses a contour plot as a new sanitized rep-
resentation of location distribution. They also propose a reward-based allocation
strategy for achieving a specified assignment success probability in reward-based
SC applications.

The major idea of this method is to split the entire area into smaller regions
and apply a differential privacy mechanism to each region. As mentioned in
Sect. 13.1, splitting regions is a non-trivial task. Previous literature assumes that
worker’s locations are distributed uniformly, but this may not be the case in real-
world scenarios. The proposed method adopts a contour plot to illustrate workers’
locations and determine an assignment task radius. In this way, the method arranges
tasks with a better success rate and a privacy guarantee.

178 13 Differentially Private Spatial Crowdsourcing

They follow the framework that To et al. [217] provided, which has been shown
in Fig. 13.1. The CSP collects the true locations of workers, and generates a contour
plot with a DP guarantee. The plot is then submitted to the SC-server. Because
the exact worker locations will not be submitted, the privacy of each worker is
preserved. The SC-server estimates the location region for each task, according to
the contour plot (a circle is used to represent this region), and all workers within the
circle are selected for the task.

13.3.1 Problem Statement

The fundamental goal of crowdsourcing is to arrange tasks for a group of workers
efficiently. Efficiency is normally measured by an assignment success rate, indicat-
ing that the method has to ensure that each task has a high probability of being
accepted. The assignment success probability (ASP) and an acceptance probability
are defined to illustrate this.

Definition 13.1 (Assignment Success Probability) Given a task, 7, and a set of
workers, P, ASP is the probability that at least one worker in P accepts task z.

In addition, the expected assignment success probability, E4sp, is defined as the
minimum threshold every task must satisfy.

Definition 13.2 (Acceptance Probability 6) 6 = Pr(p accepts t) shows the
probability of a worker, p, accepting a task, .

The acceptance probability is dominated by the reward, w, and the distance
between p and ¢. For a fixed distance, a higher reward means a higher 6. Conversely,
a shorter distance results in a higher 6 when the reward has been determined.
Because the SC-server is unawares of the true location of a worker, it allocates
the task to several workers who are located in a particular region. The center of the
region is the task’s location, and any workers within this circle will be chosen for
the task.

Therefore, giving an entire reward, W, how to generate the differentially private
region with radius r for # while ensuring the ASP is larger than threshold E4sp, is the
problem that must be solved.

Notations are showed in Table 13.2.

13.3.2 Building a Contour Plot with DP Guarantee

To perform task assignment and guarantee a high ASP, the SC-server must be
aware of workers’ location distribution, but submitting accurate worker locations
may violate personal privacy. Traditional privacy-preserving algorithms assume that
workers are uniformly distributed in an area, yet in real-world, this may not be
the case.

13.3 Differential Privacy in Reward-Based Crowdsourcing 179

Table 13.2 Notations A task that need to be assigned

A set of tasks

A worker registered for crowdsourcing
A set of workers

Euclidean distance between p and ¢

A piece of reward

Total amount of reward

tbg§ IS VRS TR R

The probability that a worker accept a task
@i A circle region that has center ¢ and radius r

The proposed method uses a contour plot to represent a workers’ location
distribution. The objective of applying a contour plot is to estimate the user density
of a given point more accurately. In traditional grid-based approach, with the
assumption of uniform distribution, the user density of a point is set to be the value
of the cell which the point belongs to. Comparing to the grid-based approach, a
contour plot also shows the trend of gradient variation of the user density, which
can be used for calculating the user density of any point with a higher precision.

In practice, the map is decomposed into a m x n grid with equal-sized cells. The
size of a cell can be set according to the scale of the map and the exact location
distribution of workers, for example, a 0.3km x 0.3km with the area 0.09 km?.
To add noise, the exact number of workers 7., 1S counted in each unit cell, then
Laplace noise is added as shown in Eq. (13.1)

S
Nyuoisy = Nexact + Laplace (_) s (13.1)
€

where S is the sensitivity. After this step, a noisy count 7,,;, is obtained for each
unit cell. Finally, a contour plot can easily be created by connecting the cells with
the same noisy count.

Figure 13.3 illustrates an example of building a contour plot with 6 x 6 unit cells.
The entire area is split into 6 x 6 disjoint cells, shown with dash lines. The exact
number of workers in each cell is labeled at the bottom right. Noise is added to each
count number during the privacy-preserving process, resulting in noisy counts, as
shown in Fig. 13.3b. Finally, the cells with the same noisy count are connected, e.g.,
the cells with noisy counts 36, 58, 65 in Fig. 13.3c. In this way, the contour plot in
Fig. 13.3d is generated. This contour plot helps the server to allocate tasks with a
differential privacy guarantee.

As an example, a worker distribution and count method is shown in Fig. 13.4.
The horizontal and vertical directions represent longitude and latitude. The solid
curves are contour lines with positive noisy counts, and the exact noisy counts are
labeled on these contour lines.

It can be proven that the proposed contour method provides a solid DP guarantee.
As shown in Fig. 13.3, the entire data domain is split into disjoint cells. Laplace

180 13 Differentially Private Spatial Crowdsourcing
540 sl i i
| /o m
SRR 7 5 "
-5=-= :
: |
1
1
1
1

Fig. 13.3 Generation of a contour plot with 6 X 6 cells. (a) Exact Count. (b) Noisy Count.
(¢) Contour Lines. (d) Contour Plot

38.60

38.58

38.56

38.54 K

38.52}

38.50 y
=76.20 -76.18 -76.16 -76.14 -76.12 -76.10

Fig. 13.4 Worker distribution and count mechanism

noise is added to the count of workers in each cell; independently, with a privacy
budget of €, = €. According to parallel composition (Definition 2.1), the sequence
of the Laplace mechanism over the set of disjoint cells provides max{e;}-differential
privacy. As each ¢; is equal to €, the contour method is therefore e-differentially
private.

The contour plot is constructed at the CSP and submitted to the untrusted SC
server, serving as an approximate distribution of workers. It prevent the SC server
from identifying any worker with his/her location, while the SC server can assign
the tasks to the workers according to the contour plot.

13.3 Differential Privacy in Reward-Based Crowdsourcing 181
13.3.3 Task Assignment

After splitting the entire area into small cells, a radius, r, and a reward, w, are
specified for each task. These two factors have a great impact on both the acceptance
probability and the ASP.

13.3.3.1 Modeling Acceptance Probability and ASP

Intuitively, whether a worker will accept a task mainly depends on the reward, w,
and the distance, d. Therefore, the acceptance probability 8 (0 < 6 < 1) can be
calculated by a function, f, with d and w, which is shown in Eq. (13.2)

0 = f(w.d). (13.2)

However, because of the complicated individual differences between workers,
it’s infeasible to define an optimal function to model the acceptance probability.
Therefore, for simplicity, the features of the acceptance probability is first analyzed,
and then a function that meet the requirements of these features is presented as a
model of the acceptance probability.

Considering the natural properties of w and d, the function, f, has following
features:

e 6el0,1];

e If w < wy or d is larger than the maximum travel distance (MTD), which is
the distance that a high percentage of workers are willing to travel [216]), then
0 =0;

e When w (w > wy) is fixed, 6 will be increased with the decreasing of d;

* When d is fixed, 8 will be increased when w is enhanced,;

* When d is fluctuant, revising w ensures 6 keeping on the same level.

The first statement clarifies that the non-negative probability, 0, is always less
than 1. The second statement emphasises that w has a lowerbound of wy, and d’s
upperbound is the MTD, which defines the necessary conditions for a user to accept
a task. Intuitively, when the reward for a task is too low, or the distance is too long,
the task has a very small probability of being accepted. A lower bound of reward, wy,
is defined as a threshold that a task will be accepted with a probability greater than 0
when the reward for the task is larger than wy, otherwise the probability is equal to 0.
Similarly, the MTD is the upper bound of the travel distance—a task will definitely
be refused by all users when the distance of the task is larger than the MTD. The
third and fourth statements indicate the relationship between acceptance probability
and distance, and reward, respectively. Finally, the last statement specifies the trade-
off between the distance and the reward.

To model 6 with the requirements mentioned above, we adopt the hyperbolic
tangent function [11], defined in Eq. (13.3).

182 13 Differentially Private Spatial Crowdsourcing

\Y
1

e -e*

=5
€ e

=
X
T e B T
Fig. 13.5 Hyperbolic tangent function
e —e "
=thy = ——. 13.3
y o (13.3)

It has the natural property that y € [0, 1) when x € [0, 400), and the horizontal
asymptote, y = 1, when x — +oo. This means the function can be regarded
as a mapping from non-negative numbers to probabilities. Hyperbolic tangent
functions have been widely investigated because of these properties. In the field of
engineering, Wang et al. [224] proposed a nonlinear transformation strategy based
on hyperbolic tangent functions. Given a specific hyperbolic tangent function, the
curve can be determined and the peak-to-average power ratio of transmitted signals
in orthogonal frequency division multiplexing systems can be reduced effectively,
with low degradation in the bit error rate. In addition, through translation and
stretching, hyperbolic tangent functions can be transformed into the famous logistic
Sfunction (thx = 2logistic(x) — 1), which has been widely studied and applied in the
field of statistic [218]. The curve of the function is depicted in Fig. 13.5.

To model workers’ acceptance probability, the hyperbolic tangent function can be
applied as a framework of f. However, it will converge to 1 rapidly when x increases,
i.e, the function value grows to its supremum in a small interval from the origin. the
functions’ values can be considered as probabilities. In practice, fast convergence
will make the probabilities approximate to 1 for many x, and this does not fit with
real-world scenarios. To overcome this shortcoming, we introduce parameter c; to
control the scalability of the function, i.e.,

f = th(c1x). (13.4)

The function f is considered as a bivariate function of distance, d, and reward, w, to
characterize this combined relationship. Inspired by Ted’s definition of benefit-cost
ratio [213], widely used in investment analysis, the ratio of w and d of a task
is a dominant factor that impacts the willingness of a user to accepting a task.
Benefit-cost ratio is expressed as a ratio, where the numerator is the amount of
monetary gain realized by performing a project, and the denominator is the amount

13.3 Differential Privacy in Reward-Based Crowdsourcing 183

it costs to execute the project. The higher the benefit-cost ratio, the better the project.
In spatial crowdsourcing, u is proportional to the ratio of w and d. It measures how
attractive a task is for users,
=cp-—, 13.5

/,L C2 d ()
where ¢, is used for tuning the scale of the ratio. A larger value of x implies a more
attractive task, which may accepted with a higher probability.

According to Eq. (13.4), when w > wy, we have

y =th(ci - p) =th (Cl'Cz'g) =th (c-g), (13.6)

where c is the dot product of ¢ and c;, namely, ¢ = ¢ - ¢;.
Finally, based on the hyperbolic tangent function and the distance-reward ratio
1, the acceptance probability model is created by Eq. (13.7)

th(c - %), if w> wgandd < MTD;

0, otherwise.

6 =f(w.d) = § (13.7)

The acceptance probability, 8, belongs to [0, 1] for all w and d. Moreover, 8 = 0
if either w or d does not meet its threshold. Moreover, the partial derivatives satisfy
Eq.(13.8)

of f

o™ >0, % > 0, (13.8)
when w > wy and d < MTD. The proposed function f satisfies all the requirements
put forward above, and therefore is suitable for simulating the relationships between
reward, w, distance, d, and acceptance probability, 6.

With the definition of acceptance probability in Eq.(13.7), 6 can be calculated
given w and d, and the ASP can be evaluated according to 6.

The following assumptions are made: (a) in a circle region @'r with radius, r,
and the center, ¢, there are n workers; and (b) all the tasks and all the workers are
independent from each other. Therefore, whether a task is accepted by a worker
follows binomial distribution. Inspired by To et al. [216], given a task ¢ in @i, the
proposed ASP probability model is defined by Eq. (13.9)

ASP=1—(1-0)". (13.9)

In Eq. (13.9), 1 — 6 represents the probability that a worker refuses ¢, (1 — 6)" shows
the probability that n workers in the circle refuse the task. Therefore, 1 — (1 — 6)"
indicates the probability that at least one worker will accept the task, namely, the
ASP of 1.

184 13 Differentially Private Spatial Crowdsourcing

13.3.3.2 Optimized Strategy and Radius Estimation

To assign tasks efficiently, we must obtain the minimum radius, r, for task, ¢. It
is obvious that when the ASP of each task is equal to a given threshold E4sp, the
minimum radius, r, for ¢ can be solved.

We summarize our proposed strategy in the following steps, then provide the
details of each step with theoretical analyses:

1. Input E4sp and a contour plot, evaluate the worker density den; for each task #;
according to the task location and contour lines in contour plot;
2. Setw; = W/|T|, compute r; with Eq. (13.16) for the given tasks;
i

3. Reset w; = wo + —7— (W — wo|T), where wy is the lower bound of reward.

Iy,

Then return to step 21t_01 re-compute r; with the tuned w;.

Specifically, the worker density is evaluated for each task in Step 1: if the location
of #; is on a contour line, the density is the value of the contour; when #; is between
two contour lines, the density is approximated by the mean of those two contour
values. Step 2 calculates r; with the mean reward. Step 3 tunes w; for each task in
proportion to the pre-computed r;, namely, increase the reward for the tasks with
large r; while decrease the reward for the ones with small #;. Then r; is calculated
again. Finally, the workers who are located in area @;’l will be informed to perform
task ¢; with the reward w;.

Before solving Eq. (13.9), the SC-server has to measure the distance, d, and the
number of the workers in @; Without additional prior knowledge, it is natural to
assume all workers are distributed uniformly in @; Suppose worker, p, is at the
coordinates (x,y), the expectation of /(x2 + y2) can be considered with respect
tod,i.e,

E(r)=// Fcz_,_yZ).#dxdy: %r, (13.10)
Of

The total number of workers in an area is calculated by the worker density, den,
in @tr, which is shown in Eq. (13.11).

n=nr’-den, (13.11)

where 777 is the area of @tr, as shown in Fig. 13.6.

Four equations, Eqgs.(13.7) and (13.9)—(13.11), contain the relationships with
reward, distance and acceptance probability. As the objective is to determine the
radius, r, within which workers should be informed of each task, these equations
are used to generate r.

Combining Eqs. (13.9) and (13.11) and eliminating n, we have

1 — Eqgp = (1 — G den, (13.12)

13.3 Differential Privacy in Reward-Based Crowdsourcing 185

.000

p=J T A4 .
m © o S

15_000

18.000

21.000

2. 4. 000

.00

Q
N
0 08

.0
I\ /=

Fig. 13.6 Estimate number of workers with contour plot

Then, taking a logarithmic transformation on both side of Eq. (13.12), we have

In(1 — Epsp)
7T - den

=2 -In(l —6). (13.13)

Given we have modelled the acceptance probability, 0, as a function of reward, w,
and distance, d, incorporating Eq. (13.7) into Eq. (13.13) and substituting d with
Eq. (13.10), we have the following equation,

3ew

In(1 — E 41

_In(1 —Exsp) _ w1 (13.14)
7T - den 2

Solving Eq.(13.14) gives radius, ». However, this equation is a transcenden-
tal equation, which means it cannot be solved through traditional mathematical
deduction. Practically, there are two ways to solve transcendental equations. The
first is to set an accuracy threshold and design a greedy algorithm to search a
wide solution space. This type of method usually leads to expensive computational
costs. Alternatively, Taylor’s formula can approximate the right side of the equation
denoted as h(r), set ro = 1, and thus we have

h(r) ~ h(ro) + W (ro)(r — ro). (13.15)

186 13 Differentially Private Spatial Crowdsourcing

Therefore, after derivation, we have

_In(l = Easp) 2_1nek+1_k‘ et L 1ne’<+1_k_ ek
7 - den 2 ek +1 ’

where k = 3cw. Equation (13.16) is an affine function that can be solved.

In summary, the proposed method first builds a contour plot with full privacy
budget, then models acceptance probability and ASP based on hyperbolic tangent
function. Taylor’s formula is used to solve the model’s equations. Finally, the task-
informing radius is calculated with an optimized-reward distribution, as opposed to
the traditional uniform reward.

13.3.4 Experimental Evaluation
13.3.4.1 Performance on DE

The variation in the tendencies of DE for the Gowalla dataset, along with other
parameters is shown in Fig. 13.7. Specifically, Fig. 13.7a shows that DE increases
as the E4sp increase, because achieving a larger E4sp requires a larger number of
workers participate in task assignment and thus leads to more distance error. In
addition, the distance errors in the proposed optimized-reward method are generally
less than those of the uniform-reward method, which indicates that the total distance
error can be reduced by shrinking the radius distribution of the tasks in a smaller
interval.

Figure 13.7b shows that the distance error decreases when the total reward is
increased. Obviously, when a task’s reward is much higher, the probability of a
worker accepting it will be higher too. Thus, less workers are needed to achieve the
E4sp, and this leads to a small distance error. However, once the reward is increased
to a certain level, the probability of a worker accepting the task becomes stable,
leading to an approximately fixed number of workers who will accept the task. Thus
the latter half of the curve flattens. Given difference between the amount of the

5000
@ ¢ Uniform Reward w-m Optimized Reward ¢ Uniform Reward @@ Optimized Reward } (@@ Uniform Reward w-m Optimized Reward

00
v = . —et
* t .
: 0 L PSP i |
o O o oI AW GOW 06w GrW SeW CeW W 81 62 03 04 05 66 67 08 09 10
Total Reward

(a) (b) (©)

Fig. 13.7 DE estimation with Gowalla dataset. (a) DE VS Eugp. (b) DE VS Reward. (¢) DE
VS €

13.3 Differential Privacy in Reward-Based Crowdsourcing 187

(a) (b) (©)

Fig. 13.8 DEFE estimation with T-driver dataset. (a) DE VS Ejgp. (b) DE VS Reward. (¢) DE
VS €

total rewards, distance errors in the proposed optimized-reward method were always
smaller than those of the uniform-reward methods.

Figure 13.7c illustrates the change in DE when the privacy budget varies.
A smaller ¢ means more volume of noise is added to each cell, which leads to a
larger distance error. Increasing the privacy budget, caused the volume of noise to
decrease to a stable level, thus the distance error levels off at the end of the curve.

Experimental results conducted on the T-Driver dataset are shown in Fig. 13.8,
where the total reward is 0.1W and € = 0.3 in Fig. 13.8a, E4sp = 0.88 and € = 0.4
in Fig. 13.8b, Easp = 0.9, the total reward is 0.1W in Fig. 13.8c. The results show
the same variation tendency of the DE as the other parameters, and demonstrates
the reliability of the proposed method.

13.3.4.2 Performance on Re¢jR

This experiment studies the RejR with different values for: E4sp, the total reward and
the privacy budget in optimized-reward and uniform-reward strategies, respectively.
Results show that the optimized-reward method significantly outperformed the
uniform-reward method against the metric, RejR.

Figure 13.9b shows results for the Gowalla dataset, where the total reward is
0.1W and privacy budget is 0.3. As shown in Fig. 13.9a, the average travel distance
of each task, namely 2r/3, was distributed in a wide interval when we applied the
uniform-reward method, while the distribution was suppressed into a quite narrow
range with the optimized-reward method. Therefore, when MTD is defined as the
distance that 90% of workers are willing to travel, represented by the horizontal
line in Fig. 13.9a. The RejR of the uniform-reward method was approximately 0.1,
while it was 0 with the optimized-reward method. We achieved the same results
when the value of E4gp was varied from 0.80 to 0.90, as shown in Fig. 13.9b.

We also conducted the experiments with a different total reward and privacy
budget, the results were almost the same as Fig. 13.9b. This demonstrates that the
proposed optimized-reward method can efficiently decrease the average distance of
a task by increasing its reward, thus ensuring that tasks with sparse workers can be
accepted with a high probability.

188 13 Differentially Private Spatial Crowdsourcing

2000, 0.2 ;
4 ¢ Uniform Reward w-m Optimized Reward
1900 B
1800
= [0 | it G SR covsa@erncan
1700 * i
5. 1600 D
1500
0.0n - - - - 1
1400
1300/ o
i . -0
1200 Uniform Reward Optimized Reward &BO 0.82 0.84 0.86 0.88 0.90
Esp
(a) (b)

Fig. 13.9 RejR with Eysp. (a) The Boxplot of 3r.(b) RejR VS Ejsp

.. Reward @@ Optimized Reward 4 b e eward @@ Optimized Rews .. Rewsrd @@ Optimized Rews

Fig. 13.10 EC estimation with Gowalla dataset. (a) EC VS Egp. (b) EC VS Reward. (¢) EC
VS €

13.3.4.3 Performance on EC

Experimental results on the Gowalla dataset show that EC increases when the
E4sp is increased, and decreases when the total reward and the privacy budget is
increased.

Figure 13.10a illustrates the relationship between EC and Egp, with a total
reward of 0.1W and € = 0.2. The reason that EC increases with an increasing
E4sp is that a higher E4sp is achieved by assigning the task to more workers which
leads to a larger assignment radius. Given a fixed E4gsp, the radius generated with
the proposed optimized-reward method varies within a small range, resulting in a
smaller EC, compared to that of the uniform-reward method.

Figure 13.10b shows the value of EC with the total reward varying from 0.1W to
W. If the total reward is doubled or tripled, from the beginning, the EC decreases
significantly, because a higher reward, logically, increases the probability that a
worker will accept the task. When the probability reaches a high enough level to
become stable, the stimulating effect of reward gradually fades and the EC curve
flattens.

We also investigated the behavior of EC with different values for €, a fixed reward
and a fixed E4gp. As shown in Fig. 13.10c, when the E4gp was set to 0.9, the total

13.4 Summary 189

¢ Uniform Reward @ @ Optimized Rewa: @ ¢ Uniform Reward m-@ Optimized Rewa: & ¢ Uniform Reward m-@ Optimized Rewa:

(a) (b) (c)

Fig. 13.11 EC estimation with T-driver dataset. (a) EC VS Ejgp. (b) EC VS Reward. (¢) EC
VS €

reward was 0.1W, and € was increased from the beginning, the EC decreased but
tended to become stable quickly. This implies that the total execution cost, as an
aggregate metric, is insensitive to noise. The result also shows that the total EC
caused by the proposed optimized-reward method is always smaller than that of the
uniform-reward method, and that the EC can be diminished by tuning the reward
allocation properly.

Experiments on the T-driver dataset are given in Fig. 13.11. They show that EC
has similar variation tendency when the parameters are changed, which demon-
strates the efficiency of the proposed method.

In the above discussions, we present and analyse the variation tendency with
various Essp, W and €. We conclude that optimized reward outperforms uniform
reward in the execution cost.

13.4 Summary

Privacy issues are becoming increasingly concerning with the popularity of spatial
crowdsourcing. The main challenge in applying differential privacy to spatial
crowdsourcing is to achieve an optimal trade-off between privacy and effectiveness.
This chapter present an existing method, trusted third party, to preserving privacy.
Based on that, a reward-based SC is proposed to address this challenge. This method
first constructs a contour plot with a differential privacy guarantee to minimize the
magnitude of by fully using the given privacy budget so as to achieve accurate
task assignments. Then two models to calculate the assignment success probability
and the acceptance probability, respectively, are constructed to ensure efficient
task arraignment. The method can dramatically enhance the task acceptance ratio
through adjusting each task’s reward. Future work will extend the proposed method
to scenarios with redundant tasks assignments, and frameworks for SC without a
trusted third party will be explored.

Chapter 14
Correlated Differential Privacy for Non-1ID
Datasets

14.1 Introduction

Although differential privacy has been widely accepted, previous work has mainly
focused on independent datasets which assumes all records were sampled from
a universe independently. Despite this, a real-world dataset often exhibits strong
coupling relations: some records are often correlated with each other, and this
may disclose more information than expected. For example, differential privacy
ensures that deleting a user will not affect the aggregated result. However, in a
social network dataset, users are always interacting with other users, and this kind
of relationship may provide helpful information for identifying those deleted users.
Another example assumes members in the same family may have a high probability
of catching the same infectious disease. If an adversary knows one person gets the
flu, he has a high probability of inferring the health of this person’s family. We refer
to this relationship as correlated information, and the involved records related to
each other are correlated records. An adversary with knowledge on the correlated
information will have a higher chance of obtaining private information [126], and
violating the definition of differential privacy. Hence, how to preserve rigorous
differential privacy in a correlated dataset is an emerging issue that needs to be
addressed.

Over the last decade, limited research has been concerned with correlated
differential privacy. A pioneer study by Kifer et al. [126], confirmed that if
correlated records are ignored, the released data will have a lower than expected
privacy guarantee. Their successive paper proposed a new privacy definition named
Pufferfish [127], which takes the correlated records into consideration, but it does
not meet the requirement of differential privacy. Chen et al. [41] dealt with the
correlated problem in social networks by multiplying the original sensitivity with
the number of correlated records. This straightforward method was not optimal
because it introduced a large amount of noise into the output, that overwhelmed
the true answer and demolished the utility of the dataset. Hence, a major research

© Springer International Publishing AG 2017 191
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_14

192 14 Correlated Differential Privacy for Non-IID Datasets

barrier in correlated differential privacy is that the correlated dataset can provide
extra information to the adversary, which can not be modeled by the traditional
mechanism. In such a situation, satisfying the definition of differential privacy is a
more complicated task.

As advances in correlated data analysis are made, especially with recent devel-
opments in the research of non-iid data [32], it is now possible to overcome the
research barrier mentioned above. The correlated information can be modeled by
functions or parameters that can be further defined as background information
in the differential privacy mechanism. For example, Cao et al. [32] utilized the
time interval and correlation analysis to identify correlated records and model
correlated information by inter-behavior functions. This solution can help tackle the
research barrier by incorporating the modeled information to the differential privacy
mechanism.

However, there are still three main challenges with this approach:

* The first challenge is how to identify and represent correlated records. Records
are often correlated in terms of certain relationships that are not obvious. A
deep exploration of the relationship is necessary to understand which records
are correlated and how they interact with others.

e The second challenge lies in the fact that if an algorithm just increases the
sensitivity by multiplying it with the number of correlated records, the new
sensitivity will be large, especially when lots of records couple with each other.
To achieve a rigorous privacy guarantee, a large magnitude of noise has to be
added, and this will significantly decrease the utility of the correlated dataset.

* The third challenge occurs when answering a large number of queries. When the
number of queries is large, the privacy budget has to be divided into many small
parts, which increases the noise for each query. This problem is more serious in
a correlated dataset because the more queries that need to be answered, the more
correlated records that will be involved, and the larger the amount of noise that
will be introduced.

All these challenges imply correlated information should not be incorporated
into differential privacy in a straight forward manner, and a novel mechanism is
in high demand. This chapter first presents two basic definition on the correlated
differential privacy: Pufferfish [127] and Blowfish [98], and then proposes a compre-
hensive correlated differential privacy solution, including sensitivity measurement
and mechanism design. Table 14.1 shows the application setting for correlated
differential privacy.

14.2 An Example: Correlated Records in a Dataset

Most existing differential privacy works assume the dataset consists of independent
records. However, in real world applications, records are often correlated with each
other. Kifer et al. [126] pointed out that differential privacy without considering

14.2 An Example: Correlated Records in a Dataset 193
Table 14.1 Application settings
Application Non-IID dataset publishing
Input data Non-IID dataset
Output data Count query answer
Publishing setting Interactive
Challenges Correlated information; large set of queries
Solutions Adjust sensitivity measurement; iteration mechanism
Selected mechanism Iteration
Utility measurement Error measurement
Utility analysis Laplace property
Privacy analysis Sequential composition
Experimental evaluation Performance measured by error distance
Table 14.2 Frequency Attribute | Count
dataset
A 2
B 100
C 200

correlation between records will decrease the privacy guarantee on the correlated
dataset. For example, suppose a record r has influence on a set of other records, and
this set of records will provide evidence on r even though record r is deleted from
the dataset. In this scenario, traditional differential privacy fails to provide sufficient
privacy as it claims.

Suppose we want to publish a dataset D with n records. To simplify the example,
we assume there is only one attribute in D and its values are A, B and C. Dataset
D can then be easily transferred to frequency dataset x in Table 14.2, where the
Attribute column stores the attribute values and the Count column represents the
number of records with each value. The target of privacy preserving is to hide the
true count in x.

To preserve e-differential privacy, the randomization mechanism M will add
independent noise to the count. Since deleting a record will impact the count number
at most by 1, the sensitivity of the count query is 1, and the independent noise will
be sampled from the Laplace distribution Laplace(é).

This process works well when records are sampled independently from domain
Z . However, if some records are correlated with each other, traditional differential
privacy may under estimate the privacy risk [126]. For example, let the frequency
dataset x in Table 14.2 represent a medical report in which Attribute represents the
address and Count denotes the number of patients who have the Flu. Suppose a
patient named Alice and her nine immediate family members are living at the same
address B. When Alice contracts the Flu, the entire family will also be infected. In
this case, deleting the record of Alice in address B will impact nine other records,
and the count of address B will change to 90 (Alice got the Flu) or remain 100
(Alice is healthy). Suppose the noisy count returns 99 and the noise is sampled from

194 14 Correlated Differential Privacy for Non-IID Datasets

Laplace(é). This means there is high probability Alice is healthy because the query
answer is close to 100. Specifically, the answer 99 is e!'*¢ times more likely than
the probability of Alice to get the Flu. Compared to the independent records with
privacy bounded in e€, correlated records have a probability of ten times more likely
to be disclosed. In this instance, traditional differential privacy seriously mismatches
the reality for correlated records.

We define the problem as a correlated differential privacy problem. To deal with
this, one possible solution is to design a new sensitivity measurement based on the
relationship between records. A naive way to measure the sensitivity is to multiply
global sensitivity with the number of correlated records. In the above mentioned
example, while deleting Alice will impact at most ten records, the sensitivity is re-
measured as 1 x 10, and the noise will be sampled from Laplace(%).

This naive sensitivity measurement can be extended to differential scenarios.
For instance, if A, B, C in Table 14.2 are linear dependent, thatis A + B = C,
deleting a record in A will eliminate 1 count in A and 1 count in C at the most,
and sensitivity will be measured to 2. If we have A *x B = C, deleting a record
in A will at most change the count of 100 in C, so the sensitivity is measured as
max(count(A), count(B)). It is obvious that in some cases, sensitivities will be very
high, leading to considerable redundance noise. This naive solution is not optimal
in correlated differential privacy. How to define new sensitivity in a proper way is a
problem of critical importance.

In summary, a major disadvantage of traditional differential privacy is overlook-
ing the relationship between records, which means the query result leaks more
information than is allowed. If we deal with the problem by simply multiplying
the number of correlated records to the sensitivity, the query result will contain
redundant noise and damages the utility of the dataset. Consequently, a sophisticated
solution to the correlated differential privacy problem is urgently needed.

To deal with this problem, Kifer et al. successive paper proposed a new privacy
framework, Pufferfish [127], which allows application domain experts to add extra
data relationships to develop a customized privacy definition.

14.3 Basic Methods

14.3.1 Pufferfish

A Pufferfish privacy framework has three components: set S of secrets, a set Q €
S x S of secret pairs, and a class of data distributions ®, which controls the amount
of allowable correlation in the data.

Secret S is a set of potential sensitive statements, for example, Alice is in the
dataset D, and she got Flu. Discriminative pair Q are mutually exclusive pair of
secrets such as Alice got Flu, Alice got diabetes. Each 6 € ©® represents a belief
that an adversary hold about the data. The selection of ® is tricky. If it is too

14.3 Basic Methods 195

restrictive, the privacy may be not guaranteed sufficiently. If ® is too broad, the
privacy mechanisms will lead to little utility.

Definition 14.1 (Pufferfish Privacy) A privacy mechanism M is said to be e-
Pufferfish private with parameters S, Q and O if for all datasets D with distribution
6 € ©, and for all secrete pairs (s, 5;) € O, and for all possible output ¢, we have

—c < P(M(D) =¢|si’9) < ¢,
~ P(M(D) = ¢ls;. 0)

(14.1)

where P(s;|0) # 0, and P(s;|0) # 0.

As Pufferfish privacy definition proposes ® that can capture the correlation
within dataset, the framework is used widely in the correlated differential privacy
analysis. Differential privacy is a special case of Pufferfish, when every property
about an individual’s record in the data is kept secret, and ® is a set of all
distributions where each individuals private value is distributed independently (no
correlation) [226].

14.3.2 Blowfish

Based on Pufferfish, He et al. [98] developed Blowfish framework to provide
more parameters to curators, who can extend differential privacy using a policy.
Policy specifies which information must be kept secret about individuals, and what
constraints may be known publicly about the data.

The secret is defined by a discriminative secret graph G(V, E), where V is the
set of all values that an individual’s value record can take, and E denotes the set of
discriminative pairs.

Definition 14.2 (Policy) A policy is a triple P(Q, G, I¢), where G = (V,E) is
a discriminative secret graph with V. € Q. § is the set of secrets and the set of
discriminative pairs is defined as Q € S x S. I¢ denotes the set of databases that are
possible under the constraints C that are known about the dataset.

Definition 14.3 (Blowfish Privacy) A privacy mechanism M is said to be €, P-
Blowfish private with P(Q, G, I¢) if neighboring datasets (suppose x in D and y
in D') in the constraint of P, and for all possible output ¢, we have

L _PMD) =¢) _

s 14.2
= PMD) = ¢) (142)

where P(s;|0) # 0, and P(s;|0) # 0.
For any x and y in the domain, Eq. (14.3) can be interpreted as Eq.(14.3.2) as
follows:

196 14 Correlated Differential Privacy for Non-IID Datasets

pmedx) < P(M(D) = ¢) < eg.d(x,y), (14.3)
PMDD') = ¢)

where d(x,y) is the shortest distance between x and y in graph G. Adversary is

allowed to distinguished between x and y that appear in different disconnected

component in G.

When addressing the privacy issue in a correlated dataset, the essential problem
is how to model the extra background information introduced by correlated records.
This problems can be addressed with the development of correlated data analysis.
Unlike pufferfish, Zhu et al. [259] proposed a practical way to achieve differential
privacy with less noise. The solution will be investigated in the following sections.
More specifically, the authors attempt to address the following research issues:

* How to identify correlated records in a dataset?
* How to calibrate the sensitivity for correlated records?
* How to design a correlated data publishing mechanism?

14.4 Correlated Differential Privacy

14.4.1 Correlated Differential Privacy Problem

For simplicity, correlated, relationship and correlation are interchangeable in this
chapter. If a record r; € D is correlated to other k — 1 records, this group of k
(k < |D|) records are called as correlated records, which is denoted by a set rj =
{rj € D|all r; are correlated to r;}. Dataset D is then referred to as a correlated
dataset. The i.i.d dataset is a special case of a correlated dataset, in which k = 1.
k varies from different datasets and is independent to queries. Query is denote by
f and a group of queries is denoted as F. The set of records g that are related to a
query f is referred to as the query’s responding records.

If a correlated dataset D contains d attributes, it is more convenient to map D to
a histogram x over domain 2. Each bin b represents the combination of attributes,
and the number of bins is denoted by N. The frequencies in a histogram is the
fraction of the count of bins, which are denoted by x(b;), (i € N). For example,
Table 14.2 is actually a histogram with bins A, B and C, whose frequency x(A) =
0.0066, x(B) = 0.3311 and x(C) = 0.6623, respectively. Formally, the histogram
representation can be defined as follows:

Definition 14.4 (Histogram Representation) A dataset D can be represented by
a histogram x in a domain Z": x € N 12 |, Two datasets D and D’ are defined as
neighboring datasets if and only if their corresponding histograms x and x’ satisfy
lx=xIl = 1.

Another important notion is correlated degree. The naive multiple method assumes
deleting a record will definitely change other records in a correlated dataset.

14.4 Correlated Differential Privacy 197

However, most records are only partially correlated, and deleting a record may have
a different impacts on other records. These impacts is defined as the correlated
degree of records.

Definition 14.5 (Correlated Degree) Suppose two records 7; and 7; are correlated
to each other. This means the relationship between them is represented by the
correlated degree §; € [—1,1] and |§;| > 8o, where J¢ is the threshold of the
correlated degree.

Corollary 14.1 If§; < 0, r; and r; have a negative coupling; if §; > 0, they have a
positive coupling; § = 0 indicates no relationship. If |3;| = 1, record r; and rj are
fully correlated with each other.

The correlated degree represents the impact of a record on another record. The
smaller absolute value of §;; illustrates a weak coupling, and indicates that deleting
r; will have a low possibility of impacting r;. When §; is closed to 1 or —1, the
coupling is strong, and deleting r; will greatly impact r;. However, in real world
applications, few records are fully correlated, and this observation can be useful in
our proposed method.

From the perspective correlated data analysis, it is possible to list all relationships
between records and maintain a correlated degree matrix A, in which § € A.

811 612 ... S1n
A= 821 822 - 82n (144)
8711 8n2 o (Snn

Here are four properties of A: (1) It is symmetrical with §; = 8;;, which indicates
the relationship between two records is irrelevant to their sequence; (2) Elements on
the diagonal are equal to 1, which implies every record is fully correlated with itself;
(3) A threshold &y is defined to filter the weak correlated degree. In A, |§;] > &o. If
|8;] < 8o, 8;; is set to zero; (4) It is sparse. Only parts of records are correlated with
each other.

The above terms and correlated degree matrix will help solve the correlated
differential privacy problem.

14.4.2 Research Issues and Challenges

Privacy preserving on a correlated dataset is challenging because of its special
dataset structure and corresponding privacy requirement. Introducing differential
privacy to a correlated dataset, brings three major challenges.

* How to identify correlated records in a dateset?
It is often hard to identify correlated records and correlated degree . Different
types of datasets may have various ways to couple with their records. Moreover,

198 14 Correlated Differential Privacy for Non-IID Datasets

several records may mix together and have exponential possible relationships,
thus making correlated analysis very complex.

e How to calibrate sensitivity for correlated records?
Traditional global sensitivity may not be suitable for correlated datasets due
to large noise. In our previous Flu example, global sensitivity introduces ten
times larger noise to the count output in a correlated dataset. In addition, local
sensitivity can not be used because it still only relates to an individual record
without considering coupling information.

* How to re-design the differential privacy mechanism?
Even correlated sensitivity can significantly decrease noise compared to large
noise when answering a large set of queries for global sensitivity. When dealing
with the correlated dataset, the traditional mechanism may not be suitable for a
correlated dataset. A new mechanism is expected to satisfy differential privacy,
as well as retain sufficient utility for future applications.

14.4.3 Correlated Dataset Analysis

Several studies on correlated data analysis have attempted to identify and model
correlated information. Correlated information can be identified by correlated
analysis including time interval analysis, attribute analysis, or similarity analysis.
Cao et al. [33] presented a correlated Hidden Markov detection model to detect
abnormal group-based trading behaviors. They defined a time interval and assumed
behaviors falling into the same interval as correlated behaviors. Song et al. [204]
proposed a hybrid coupling framework, which applied some particular attributes
to identify relationships among records. Zhang et al. [250] identified the network
traffic correlated record using an IP address. They presented a correlated network
traffic classification algorithm.

Correlated information can be modeled in varies ways. Cao et al. [33] modeled
correlated information using the inter-couple and intra-couple behavior functions.
These functions were adopted in the correlated framework to represent the corre-
lated degree between behaviors. Zhou et al. [255] mapped the correlated records to
an undirected graph and proposed the multi-instance learning algorithm.

These approaches help to model background information for differential privacy.
An advanced differential privacy releasing mechanism will be proposed with the
aim of guaranteeing a sufficient privacy level as well as decreasing extra noise.

Correlated analysis is carried out to generate the correlated degree matrix A for
a correlated dataset. This can be done in various ways depending on the background
knowledge of the curator or the characteristics of the dataset. Typical methods can
be conceptualized into two categories.

The first type of correlated analysis assumes the curator or the attacker obtained
the background knowledge in advance. The correlated degree matrix A is pre-
defined as background knowledge. Taking Table 14.2 as an example. The curator
or attacker discover there are full coupling relationships among A, B and C, e.g.

14.4 Correlated Differential Privacy 199

A+ B = CorAxB = C. A can then be created according to the background
information. Identifying a full coupling relationship among records is relatively
easy. But for some weak couplings, they needs further domain knowledge or
determination by an expert.

Another type of correlated analysis can be carried out without any direct
background knowledge. The correlated degree will be defined in various ways.

1. Attribute analysis. This utilizes certain particular attributes to discover the
relationships among records. When the values of these attributes are the same
or similar to each other, records with those values are considered as correlated
records. For example, the address attribute can be used to determine family
members in a survey dataset. In a network traffic dataset, the IP-address
attribute can help identify traffic coming from the same host. Moreover, the
similarity in attribute values can be adopted to measure the correlated degree;
a high similarity implies a strong coupling. This method can identify correlated
records effectively and accurately. However, it can hardly be implemented when
no attribute is available to disclose the relationship.

2. Time interval analysis. This method pre-defines the size of a time interval to
identify the correlation in the stream dataset. Records falling into the same
interval are considered as correlated records. For instance, Cao et al. [33]
aggregated the behaviours within time intervals and modeled the coupling
between these activities. This method can figure out the multiple records mixed
together but is only suitable for a time related dataset.

3. Pearson Correlation analysis. If the dataset contains no proper attribute or
time information to identify the correlated information, the Pearson Correlation
Coefficient is an efficient way to discover correlated records. It extracts all or
parts of an attribute in a correlated dataset and calculates the Pearson Correlation
Coefficient between records. By defining the threshold 8y, the correlated degree
matrix can be generated according to the correlation coefficient. Other correlation
or distance measurements can also be applied. For example, Song et al. [204]
applied KL divergence to measure the correlated degree between records.
However, this type of method can only identify the linear correlation between
records.

Other strategies also exist for correlated analysis. However, no matter what
methods are applied, the target is to define the correlated degree matrix A, which
plays an essential role in correlated differential privacy.

14.4.4 Correlated Sensitivity

Traditional global sensitivity will result in redundant noise derived from both
records and queries. For the record, as analyzed earlier, the traditional method
assumes records are fully correlated with each other, and therefore, it just multiplies
the global sensitivity with the maximal number of correlated records leading to

200 14 Correlated Differential Privacy for Non-IID Datasets

large noise. For a query, the traditional method uses a fixed global sensitive
without considering the prosperity of different queries. In actual fact, only some
of the responding records are correlated with others, and the curator only needs
to consider the correlated information within these responding records. Hence,
sensitivity should be adaptive for both the correlated record and the query.

Based on this observation, correlated sensitivity can defined, which takes both
record and query into consideration. The notion of record sensitivity is relating to
the correlated degree of each record. Based on this notion, the correlated sensitivity
associated with the query is proposed.

Definition 14.6 (Record Sensitivity) For a given A and a query f, the record
sensitivity of 7; is

CSi = Y 18l(IlF @) — F@)]), (14.5)

=0

where §; € A.

The record sensitivity measures the effect on all records in D when deleting a
record r;. §; € A estimates the correlated degree between records r; and r; € D.
This notion combines the number of correlated records and the correlated degree
together. If D is an independent dataset, CS; is equal to the global sensitivity.

Definition 14.7 (Correlated Sensitivity) For a query f, correlated sensitivity is
determined by the maximal record sensitivity,

CS, = mEaX(CSi), (14.6)
i€q

where g is a record set of all records responding to a query f.

Correlated sensitivity is related to a query f. It lists all the records g responding
to f and selects the maximal record sensitivity as the correlated sensitivity. The
advantage of the measurement is that when a query only covers the independent or
weak correlated record, correlated sensitivity will not bring extra noise.

After defining correlated sensitivity for each query f, the noisy answer will
eventually be calibrated by the following equation:

F(D) = f(D) + Laplace (%) . (14.7)

Correlated sensitivity CS, will be smaller than global sensitivity GS and local
sensitivity LS. Both assume each record is fully correlated with each other and the
correlated degree is also ignored.

Lemma 14.1 For a query f, correlated sensitivity is equal to or less than the global
sensitivity GS and the local sensitivity LS.

14.4 Correlated Differential Privacy 201

Proof Suppose there are at most k correlated records in a dataset D, then we have
GS = k- maxpp ([lf(D) — f(D)]1), and CS; = 37, §;(IF (D)) — FDO)|]h).
Because at most k records are correlated, we have } ., 8; = Z;;l 8 < k. As
[If (D)) —f(D7)||1) < maxpp (||[f(D) —f(D)]||1), we have CS; < GS. As any CS;
are less or equal to GS, for a query f, we have CS, < GS.

For the local sensitivity LS = k-maxp (||f(D) —f(D')||1), we also have ||f (D) —
F(D)||1) < maxp (||f(D) —f(D)||;) and 27:1 8 = Z]lle 8; < k, then we have
CSy < LS.

Correlated sensitivity CS can be used in various types of data releasing mecha-
nisms. If records in the dataset are independent, the CS will be equal to the global
sensitivity, while for the correlated dataset, the CS will introduce less noise than GS
and LS.

14.4.5 Correlated Iteration Mechanism

Even though correlated sensitivity decreases the noise compared with global
sensitivity, when dealing with a large number of queries, the answers still have
high noise because the privacy budget has to be divided into several small parts.
This is especially so when the records are strongly correlated with others and the
noise is significantly higher than the independent dataset. To tackle the problem, an
iterative-based mechanism will be adopted to limit the noise in the query answer.

The iterative-based mechanism was first proposed by Hardt et al. [92] who
constructed a dataset sequence to answer all queries by iteratively updating the
datasets. When a given query witnesses a significant difference between the current
dataset and the true dataset, the mechanism updates the current dataset in the next
iteration [92]. The main advantage of this mechanism is that it can save the privacy
budget and decrease the noise when confronting lots of queries. Hence, it will be
suitable for data releasing in the correlated dataset.

In this section, a Coupled Iteration Mechanism (CIM) is proposed to answer a
set of queries on the correlated dataset.

14.4.5.1 Overview of Correlated Iteration Mechanism

The CIM aims to release the results of a set of queries by iteratively updating
the dataset under the notion of differential privacy. In this procedure, a dataset
is represented by a histogram x with length N. Let ¢ be the round index, and the
histogram be represented by x; at the end of round ¢. The curator is given a query set
F and select a f; in each round ¢. Let a; denotes the true answer and d; denotes the
noisy answer:

ar = f,(x), (14.8)

202 14 Correlated Differential Privacy for Non-IID Datasets

CS
a; = f,(x) + Laplace (—q') . (14.9)
€

The difference between the true answer given by x,—; and the noisy answer from x;
is denoted by d;:

d, = f(x—1) —a,. (14.10)

This is utilized to control the update round in each iteration. At a high level,
CIM maintains a sequence of histogram xp, xi,..., x;, which gives increasing
approximation to the original dataset x.

The mechanism is shown in Algorithm 1. Firstly, the privacy budget is divided
into several parts and the histogram is initialized as the uniform distribution xy.
In each round ¢, curators select a query f; € F, using x, to generate the answer
a; = f;(x;) and the noise answer a;. The distance 3, between the query f; on x,—;
and the noisy answer @, is computed. If |2,| is less than a threshold T, the x,—; is
considered to be a good approximation of x on query f;. Curators will release the
fi(x;—1) directly and put the x,_; into the next iteration. If the distance is larger
than the threshold, the histogram x,—; will be improved in this round. Curators
will release @, and use an correlated updating function U to generate the new
histogram x;.

The CIM aims to answer a large group of queries with limited privacy budgets
on a correlated dataset. In summary, this mechanism has the following features:

 First, it takes the relationship between records into consideration. It applies not
only correlated sensitivity, but more importantly, it develops a correlated update
function to improve the histogram in each iteration.

* Second, it decreases the total amount of noise. The CIM maintains a histogram
sequence to answer a set of queries F, rather than using a single histogram to
answer all queries. One histogram in the sequence roughly corresponds to one
query in F. This way, each histogram can approximate the close answer to the
true answer.

* Finally, more queries can be answered than the traditional mechanism with the
same privacy budget. Only the update steps will consume the privacy budget.
Algorithm 1 indicates that even for a very large set of queries, the number of
update rounds is still less than the total number of queries.

14.4.5.2 Correlated Update Function

This section defines a correlated update function U in the histogram context. For a
histogram x,_;, the function U firstly identifies all responded records » € ¢;. For
each record in g, all correlated records are listed and denoted as superset ;. The
update function U then identifies a set of bins b that contain q; and re-arranges the

14.4 Correlated Differential Privacy 203

Algorithm 1 Correlated Iteration Mechanism

Require: x, ¢, F =fi,....f, L, A, T.
Ensure: F(x)

67]28% .

1. €) = m,
fori=1,..,Ndo

2.x(b) = 1/N;
end for

for each round 7 <— 1...L do
3. select a query f;;
4. sample A, from Laplace(CS,, /€);
5. compute the noise answer a;, = f;(x) + A;;
6. Computeﬁ, =fi(x—1) —az
if [d, < T then
7. x, = x,—1, output f;(x,—1);

8. continue;
else
9.x, = U(x,—1), output’c'z\,;
end if
end for

Algorithm 2 Correlated Update Function

Require: x,_l,ﬁ,f,, A, n.
Ensure: x,.
1. Identifying g;;
2. Identifying the correlated record set qy;
3. Identifying the bin set b contains qy;
for For each bin b; € b do
4. Update the frequency of x(b;);
end for
5. Normalization of x;

frequency of each bin in b according to Eq. (14.11). The final frequency of the x;
will be normalized so they sum to 1.

Definition 14.8 (Correlated Update Function) Let x(, x5, ..., x; be a histogram
sequence, and function U is defined as a correlated update function if it satisfies
x; = U(x,—1). The U is defined as:

x/(bi)) = x—1(by) - exp(—=n - 8y, - yi(x—1)). (14.11)

where y;(x,—1) = fi(xi—1) if d > 0 and otherwise, ye(x—1) = 1 — fi(x;—1). n is an
update parameter associated with the number of maximal update rounds.
Algorithm 2 shows the detailed procedure.

The correlated update function is based on the intuition that if the answer derived
from x,— is too small compared with the true answer, the frequency of the relative
bins will be enhanced. Otherwise, curators will decrease the frequency if the answer
is too large.

204 14 Correlated Differential Privacy for Non-IID Datasets

14.4.5.3 Parameters Discussion

This section discuss the estimation of parameters in CIM. As mentioned earlier,
only the update round consumes the privacy budgets. To measure the parameters 7'
and 7, curators need to estimate the maximal number of update rounds u,,,, and the
possible number of update rounds ur. The u,,,, helps determine the privacy budgets
in each iteration. In addition, the ur for F is related to the accuracy.

First, curators measure the maximal number of update rounds u,,,,. Given a
dataset x, the u,,,, can be measured based on the following lemma.

Lemma 14.2 Given a histogram x with length N, the umq, for correlated update
function U, defined by Eq. (14.12) is

logN

. 14.12
o5 (14.12)

Umax =

Proof Give the original histogram x and the initial update histogram x,, the CIM
will update the xj in each round ¢ until x, = x. The u,,,, depends on how many steps
that x(can be transferred to x. The method follows the update strategy of Hardt et
al. [92], who define the distance between x(and x in terms of relative potential:

¢ = RE(x||x;) = Y x(b) log (%) . (14.13)

Based on Eq.(14.13), ¢ < log N. When ¢, drops to zero, the update will be

terminated and x,=x. According to Hardt et al. [92], the potential drops in each
round is at least 7%83, therefore there are at most ;‘;gg rounds in the CIM.
0
The w4, is utilized to determine the privacy budget €y in each round. Equa-
tion (14.14) shows the calculation of €y:

8%
~ logN’

€o (14.14)

Compared to the traditional data releasing mechanism, which divides the privacy
budget € according to the number of queries, the algorithm can easily demonstrate
that €y > €/|F|.

Lemma 14.2 also indicates u,,,, is associated with parameter 7 and the couple
parameter threshold 8. If the curator wants to successfully answer more queries,
he/she can choose a smaller 7 to allow more rounds. However, this will lead to
larger noise in each query answer because the privacy budget €, in each round will
also be diminished.

Second, to estimate the possible number of update rounds ur for a query set F,
let the probability of updating be p; and the probability of non-updating be p,, the
algorithm has the follow Lemma:

14.4 Correlated Differential Privacy 205

Lemma 14.3 When both the privacy budget €, in each round and the parameter T
are fixed, the probability of the update will be

—&|T —af
= _, 14.15
P1 eXp(: cs,) ()

and the probability of the non-update will be

—€o|T —]
=1-), 14.16
e () o

where o bounds the accuracy of the CIM.

Corollary 14.2 Given a query set F, the up will satisfy Eq. (14.17)

—€0|T—Ol|)

14.17
. (14.17)

ur = |f| exp(

Proof Suppose we have |F| queries, and altogether |F| rounds. The probability of
the update is Pr(|d;| > T). We have

Pr([d,| > T) = Prlf,(x) + A — fixim)| > T).

Let |f;(x) —f;(xi—1)| < o, and A, be sampled from Laplace(eo/CS,) according to the
property of Laplace distribution:

Prly| > 1) =Pr(y > 1) + Pr(y <1) = Z/OOxexp (—g) dx = (14.18)
=am(—é) (14.19)

Cs,
Because 0 = 6—0", we have

~ eola—T)
Pr(ld,| >T) < — .
(@l 1) < exp (25
If there are |F| queries, the algorithm will update at most |F|exp (%CS({)

rounds.

Lemma 14.3 shows the probability of the update is related to 7" and «. If parame-
ter 7' is much smaller than «, the update probability will be very high and the noise
will increase simultaneously which will affect the accuracy of the answer. However,
if T is very large, even though we decrease the number of update rounds, but the
output answer is always far away from the true answer, which also decreases the
accuracy, we can conclude the accuracy of CIM is related to T. Section 14.4.7 uses
the experiment to demonstrate the trade-off between 7" and the accuracy of CIM.

206 14 Correlated Differential Privacy for Non-IID Datasets
14.4.6 Mechanism Analysis

The proposed CIM aims to obtain an acceptable utility with a fixed e differentially
privacy budget. In this section, we will first prove the algorithm is satisfied with
e-differential privacy, and then analyze the utility cost.

14.4.6.1 Privacy Analysis

To prove CIM is satisfied with differential privacy, one needs to analyze which steps
in CIM will consume the privacy budget. Algorithm 1, accesses the histogram and
generate a noisy answer in each round. However, the noisy answer is only used
to check whether the current histogram is accurate enough to answer the query.
In most rounds, the algorithm does not release the noisy answer, and therefore the
algorithm consumes no privacy budget. The noisy answer is only released in the
update round when the current histogram is not accurate enough. Consequently, the
privacy budget is only consumed in the update step and the privacy analysis can be
easily limited in the correlated update functions.

The sequential composition accumulates privacy budget € for each step when a
series of private analyses is performed sequentially on the dataset. As mentioned
earlier, given a x, we have u,,, = 7728 2logN. The privacy budget €y allocated
to each round is €y = jg;f{z} According to the sequential composition, the released
answers for the query set F' will consume the €, * up privacy budget. Because up <
Umays W€ have €p * up < €. Consequently, the proposed CIM algorithm preserves
e-differential privacy.

14.4.6.2 Utility Analysis

For the utility analysis, error measurement is used. In CIM, the utility is measured by
a set of released query answers. Accordingly, the error is measured by the maximal
distance between the original and the noisy answer.

Definition 14.9 ((«,)-Accuracy for CIM) The CIM is («,f)-accuracy for a set
of query F, if: with probability 1 — 8, for every query f € F and every x, we have

max |CIM;(x;) — fi(x)| < «, (14.20)
feF1eL

where CIM,(x,) is the output of CIM in round .
Based on the definition, we will demonstrate CIM mechanism is bounded by a
certain value o with a high probability.

Theorem 14.1 For any query f € F, for all § > 0, with probability at least 1 — B,
the error of CIM output is less than o. When

14.4 Correlated Differential Privacy 207

cs, pi1p2L T
> —11 —,
o> 2 (og B + 5

the CIM is satisfied with («, B)-accuracy.

Proof The value of CIM,(x,) is determined by the d, which results in the non-
update round or the update round. Both scenarios will be considered in the utility
measurement. Let erroryon-updare rEpresents the error introduced by non-update
rounds and error,,q.. denotes the error introduced by update rounds. According
to the union bound, we have
Pr(max |CIM;(x;) —fi(x)| > o) < p1 * Pr(erroruon-update >)
fEF.1EL
+ p2 * Pr(errorypdae > @).
Ifd <T,itwillbea non-update round and CIM will output f; (x,—1).
ErroTnon-update = |CIM(-xI‘) _ﬁ(-x)| = lft(-xl‘—l) _ﬁ(x)l

Because

i = [fi(o-1) =@l < T,
we have

[fi(x—1) = i) =T + A4,

CSy
&

where A; ~ Laplace() According to the property of Laplace distribution

Laplace(b), we have

Pr(errotuon-updare >) = Pr(maLx IT+ Al >a) <LxPr(|T + A| > @),
te

and

—|o —Tleo
skesp\ =@)
q

where CS; = max;eq,. n CSy,.
If d > T, it will be an update round and CIM will output a,. We have

errorypaae = |CIM(x;) — fi(x)| = [fi(x) + A, = fi(x)] = [A4].
Then we have

Pr(errorypgae >) = Pr(maLx Al > @) < L% Pr(|A] > @),
te

208 14 Correlated Differential Privacy for Non-IID Datasets

and

—e€p
< Lexp(s) .
q

Accordingly,

—la—-T -
Pr(max |CIM,(x;) — f;(x)| > o) < Lp; exp M + Lp; exp <o .
feF.teL CS,

Let

—|la —Tle —oE
Lpy exp (%) +Lp> eXP(0) <8,
q

we have

—|a —Tleo N —ac\ _ B
ex EEEE— (.€ —
P1 exp Cs, P2 €Xp cs,)~ L
B
L

(T — 20()60
=1 — <1
ogp1p2 + cs, = log
S, p1p2L T
> 74 (] Z
= e (o 8 +

14.4.7 Experiment and Analysis
14.4.7.1 Datasets and Configuration

The experiments involve six datasets:

Adult The Adult dataset from the UCI Machine Learning repository' origi-
nally had 48,842 records and 14 attributes. After deleting the missing records
and filtering the attributes, the experiment eventually had 30,162 records with 15
dimensions.

IDS This dataset was collected by The Third International Knowledge Discovery
and Data Mining Tools Competition that aimed to build an Intrusion Detection
System (IDS). The experiment sampled a subset with 40,124 records and 65
dimensions.

Thttp://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/

14.4 Correlated Differential Privacy 209

NLTCS The National Long-Term Case Study (NLTCS) dataset was derived
from StarLib.? Tt contained 21,574 records with 16 binary attributes, which
corresponded to 16 functional disability measures. These are six activities of
daily living and ten instrumental activities of daily living.

Three other datasets were derived from Hay’s work [96], which have been
widely used in the differentially private histogram release test.

Search Logs This synthetic data set was generated by interpolating Google
Trends data and America Online search logs. It contained 32,768 records, each
of which stored the frequency of searches with the keyword Obama within a
90 min interval between January 1, 2004 and August 9, 2009.

NetTrace This contained the IP-level network trace at a border gateway of a
university. Each record reported the number of external hosts connected to an
internal host. There were 65,536 records with connection numbers ranging from
1 to 1423.

Social Network Thisrecords the friendship relations among 11,000 students
from the same institution, sampled from an online social network web site. Each
record contains the number of friends of certain students. There were 32,768
students, each of who had at most 1678 friends.

All datasets contained no pre-defined correlated information. The Pearson
Correlation Coefficient is used to generate the correlated degree matrix A with
the threshold §, = 0.6. Approximately all datasets had a quarter of their records
correlated with some other records, and the maximal size of the correlated group
was around 10. For each dataset, a query set F was generated with 10,000 random
linear queries and each answer fell into [0, 1]. The accuracy of results was measured
by Mean Square Error (MSE).

F
MSE = % > (Filw) — fix)) (14.21)

fieF

A lower MSE implies a better utility for the corresponding mechanism.

14.4.7.2 The Performance of CIM

The performance of the CIM mechanism was examined in this section through
comparison with the state-of-the-art naive Laplace Mechanism (LM) [62]. To show
its effectiveness, correlated sensitivity (CS) in both CIM and LM was tested, and are
denoted as CIM&CS and LM&CS, respectively. The experiments were conducted
on all datasets and the privacy budgets varied from 0.1 to 1. Two parameters, 7" and
n, were set to 0.3000 and 7.0000, respectively.

Zhttp://lib.stat.cmu.edu/.

http://lib.stat.cmu.edu/

210 14 Correlated Differential Privacy for Non-IID Datasets

As shown in Fig. 14.1, CIM has lower MSE than LM on all datasets. Specifically,
for the Adult dataset in Fig. 14.1a, when ¢ = 0.4, the CIM achieves a MSE of
0.3593 while LM achieves 0.5171. Thus, CIM outperfroms LM by 43.84%. When
€ = 1, CIM achieves a MSE of 0.0491 which outperformed LM by 73.12%. These
results illustrate that in correlated datasets, CIM outperforms LM when answering a
large set of queries. The improvement by CIM can also be observed in Fig. 14.1b—
f. The proposed CIM has better performance because it only consumes the privacy
budget in the update rounds, which is less than the total number of queries | F|. While
the traditional LM mechanism consumes the privacy budget when answering every
query, this actually leads to inaccurate answers. The experimental results show the
effectiveness of CIM when answering a large set of queries.

In the context of differential privacy, the privacy budget € serves as a key param-
eter to determine privacy. Figure 14.1 shows the impact of € on the performance
of CIM. According to Dwork [62], ¢ = 1 or less would be suitable for privacy
preserving purposes. For a comprehensive investigation, the CIM’s performance is
evaluated under various privacy preserving levels by varying the privacy budget €
from 0.1 to 1 with a 0.1 step on six datasets. It was observed that as € increases, the
MSE evaluation becomes better, which means the lower the privacy preserving level,
the larger the utility. In Fig. 14.1a, the MSE of CIM is 5.5350 when € = 0.1. Even
though it preserves a strict privacy guarantee, the query answer is quite inaccurate.
When € = 0.7, the MSE drops to 0.1025, retaining an acceptable utility of the result.
The same trend can be observed on other datasets. For example, when € = 0.7, the
MSE is 0.1894 in Fig. 14.1b, and is 0.1733 in Fig. 14.1c. These results confirm the
utility will be enhanced as the privacy budget increases.

Moreover, it is observed that the MSE decreased much faster when € ascends
from 0.1 to 0.4 compared to when € ascends from 0.4 to 1. This indicates a larger
utility cost is needed to achieve a higher privacy level (¢ = 0.1). It is observed that
the performance for both the CIM and LM mechanism was stable when € > 0.7.
This indicates the CIM was capable of retaining the utility for data releasing while
satisfying a suitable privacy preserving requirement.

In addition, the MSE of CIM with the non-privacy release is compared. If the
curator answers all queries without any privacy guarantee, the MSE is 0. Figure 14.1
shows the MSE of CIM was very close to 0 when ¢ > 0.7. This was because
CIM applied iterative steps and correlated sensitivity to reduce the magnitude of
introduced noise. This result confirms correlated differential privacy can ensure
rigorous privacy with an acceptable utility loss.

The evaluation shows the effectiveness of CIM on several aspects.

1. The proposed CIM can retain a higher utility of released data compared with the
LM.

2. As the privacy budget increased, the performance of CIM was significantly
enhanced. A suitable privacy guarantee can be selected to achieve a better
tradeoff.

3. When we have a sufficient privacy budget, the utility loss of released data is
small.

14.4 Correlated Differential Privacy

211

——CIM/C
8 —A—LM/CS

7 0.4
6 0.3
w 4
2 02 _‘
5
3 01 \'\\.\
s, o
0.6 0.7 0.8 0.9 1
3 €
2

0.9

()

35

—*—CIM/C!
—A—LM/CS

MSE

& o

4

0.1 02 03 04 05 06 07 08
€

(e)

0.9

45

—+—CIM/C:
—A—LM/CS

08 09 1

(b)

—+—CIM/C!
—A—LM/CS

08 09 1

(C))

—+*—CIM/C!
—A—LM/CS

Fig. 14.1 Effectiveness of CIM. (a) Adult. (b) NLTCS. (¢) IDS. (d) Search Log. (e)

NetTrace. (f) Social Network

212 14 Correlated Differential Privacy for Non-IID Datasets

Table 14.3 The maximal

; Datasets k
size of correlated groups
Adult 15
NLTCS 10
IDS 10
Search Log 10
Net Trace 10

Social Network |20

14.4.7.3 Correlated Sensitivity vs. Global Sensitivity

In this subsection, the performance of the correlated sensitivity is measured. In order
to show the effectiveness of correlated sensitivity, the experiment selected the LM to
answer the query set F' and compared its performance of correlated sensitivity with
global sensitivity (GS). To deal with the correlated dataset, global sensitivity was
multiplied by k, the maximal number of records in a correlated group. Table 14.3
lists the size k of different datasets.

Figure 14.2 shows the results in which the sensitivities are termed CS and GS,
with the privacy budget varying from 0.1 to 1.0. It can be observed that all MSE
measures of correlated sensitivity on all six datasets were less than MSE of global
sensitivity with different privacy budgets. These results imply correlated sensitivity
leads to less error than global sensitivity in the context of correlated datesets.
Specifically, as shown in Fig. 14.2a, when € = 1, the LM with CS achieves an MSE
at 0.0850. This outperforms the LM result with a GS of 0.2293. The performance
of improvement is more significant as the privacy budget decreases. When € = 0.3,
the MSE of CS is 0.8906, which is much lower than MSE of the LM with a GS of
2.4785.

Moreover, it is clear MSE of correlated sensitivity is close to 0, which indicates
correlated sensitivity can achieve the privacy preserving purpose while retaining a
high utility of query answers.

Similar trends can be observed on other datasets as shown in Fig. 14.2b—f. For
example, in Fig. 14.2b, the LM with CS leads to an MSE of 0.5222, which is much
smaller than 3.1534 from the LM with GS. These results illustrate CS is independent
to the characteristics of datasets.

The experimental results illustrate that even with the naive mechanism, corre-
lated sensitivity can lead to a better performance than global sensitivity. It confirms
the conclusion in Lemma 14.1, which proves the magnitude of correlated sensitivity
is equal to or less than the global sensitivity.

14.4 Correlated Differential Privacy 213

104

80f

60y

MSE

40,

20

01 02 03 04 05 06 0.7 08 09 %.1 02 03 04 05 06 07 08 09
€ €

(a) (b)

01 02 03 04 05 06 07 08 09
€

(d)

200
180
160
140

120

2100

80
60
404
20

0 .
01 02 03 04 05 06 07 08 09 1 %.1 02 03 04 05 06 07 08 09 1
€ €

(e) ()

Fig. 14.2 Effectiveness of Correlated Sensitivity. (a) Adult. (b) NLTCS. (¢) IDS. (d) Search
Log. (e) NetTrace. (f) Social Network

214 14 Correlated Differential Privacy for Non-IID Datasets
14.5 Summary

Traditional differential privacy mainly focuses on independent datasets, failing to
offer sufficient privacy guarantees for correlated datasets. Solving the correlated
differential privacy problem is challenging as we need to find out the correlated
records, measure the correlated sensitivity, and re-design the differential privacy
release mechanism to answer a large number of queries. The correlated differential
privacy solution presented in this chapter addressed these challenges effectively. It
first categorizes possible correlated record analysis methods for different types of
datasets, then the definition and analysis of correlated sensitivity are presented to
measure the sensitivity of the query on the correlated records. Finally an effective
correlated data releasing mechanism is described to enhance performance when
answering a large group of queries. This chapter proposes two popular definitions,
pufferfish and blowfish, on correlated dataset, and proposes a solution to correlated
differential privacy with the following contributions:

* The problem of correlated differential privacy is identified. The correlated
problem can be extended to more complex applications, such as a correlated
private recommender system or correlated location privacy.

* Novel correlated sensitivity is proposed to deal with correlated records. Com-
pared to global sensitivity, it guarantees more rigorous privacy while retaining an
acceptable utility.

* A novel data releasing mechanism is proposed to enhance performance when
answering a large group of queries. This mechanism has proven to ensure better
query results than Laplace mechanism.

These provide a practical way to apply a correlated privacy notion to differential
privacy with less utility loss. The experimental results also show the robustness and
effectiveness of the proposed solution.

Chapter 15
Future Directions and Conclusion

While previous chapters provide a thorough description on differential privacy
and presents several applications in reality, many interesting and promising issues
remain unexplored. The development of social networks provides great opportu-
nities for research on privacy-preserving but also presents a challenge in effective
utilization of the large volume of data. There are still other topics that need to be
considered in differential privacy, and we consider a few directions that are worthy
of future attention.

15.1 Adaptive Data Analysis: Generalization in Machine
Learning

Adaptive data analysis creates a connection between differential privacy and
machine learning. The machine learning theory has been well developed based on
the assumption that a learning algorithm operates on a freshly sampled dataset.
However, data samples are often reused and the practice of learning is naturally
adaptive. This adaptivity breaks the standard generalization guarantees in machine
learning and in the theory of hypothesis testing. It is easy to overfit the data when
the adaptive data analysis is done using direct access to the dataset.

The property of differential privacy can partly solve this adaptive problem.
Dwork et al. [65, 66] proposed the technique for performing arbitrary adaptive data
analyses together with rigorous generalization guarantees. The authors claimed that
differential privacy is an algorithmic stability guarantee, and algorithmic stability is
known to prevent over-fitting. They provided an error bound quantitatively in terms
of generality.

© Springer International Publishing AG 2017 215
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6_15

216 15 Future Directions and Conclusion

This line of research proves that the differential privacy has a generalization prop-
erty that can be applied in statistical analysis and machine learning [16, 174] though
at this early stage, many new possibilities on generalization need to be explored.

15.2 Personalized Privacy

It is common that data owners have quite different expectations regarding the
acceptable level of privacy for their data. Consequently, differential privacy may
lead to insufficient privacy protection for some users, while over-protecting others.
If we can relax the level of privacy for some data owners, a higher level of utility
can often be achieved. To this extend, a personalized differential privacy is required,
in which users can specify a personal privacy for their data [111].

Ebadi [76] proposed a Personalized Differential Privacy (PDP) framework that
arranges various privacy budgets to each record. When a query is performed on the
dataset, the privacy level will be determined by the summary of privacy budgets
of all responding records. Alaggan et al. [10] considered the privacy expectation
not only for the individual user, but also for the individual item. They introduced
a concept of heterogeneous differential privacy as opposed to previous models that
implicitly assume uniform privacy requirements. Koufogiannis [129] introduced a
situation of releasing sensitivity when the privacy level is subject to change over
time. Its intuition can guide the privacy level allocation on personalized privacy
problem.

These are tentative frameworks on personalized privacy, but how to determine
the privacy budget for each record or individual still need to be tackled.

15.3 Secure Multiparty Computations with Differential
Privacy

Most existing work is concerned with the centralized model of differential privacy,
in which a trusted curator holds the entire private dataset, and computes it in a
differentially private way. If a dataset is divided among multiple curators who
are mutually untrusting each other, however, how can they compute differentially
private messages for communication between themselves? Mironov et al. [158]
explored a two-party scenario by showing a lower bound for the problem of
computing the hamming distance between two datasets. Mohammed et al. [159]
presented a two-party protocol based on the exponential mechanism. Both solutions
are unlikely to be valid when the number of curator’s lies is more than two.

How to preserve distributed differential privacy within multiple parties is a future
topic for open-ended theoretical exploration. The solution will involve with inter-
discipline techniques, including privacy preserving, security protocol designing and

cryptography.

15.5 Differential Privacy in Genetic Data 217
15.4 Differential Privacy and Mechanism Design

Mechanism design is the field of algorithm design where the inputs to the mecha-
nism are controlled by strategic agents who may manipulate their inputs [15]. In this
setting, the design of the mechanism must convince agents to provide their correct
inputs to the mechanism.

A typical application of mechanism design is the auction design. Considering
a scenario in which a data analyst wishes to buy information from a population
to estimate some statistical information, while the owners of the private data
experience some cost for their loss of privacy, agents between the sellers and the
buyers wish to maximize their profit, so the goal is to design a truthful auction
mechanism while preserving the privacy of the dataset.

Differential privacy limits any individual’s influence on the result. If the mech-
anism satisfies differential privacy, agents will have little incentive to deviate from
truthful behavior since they can only change the selected equilibria to a small degree.

McSherry [157] first proposed designing auction mechanisms using differentially
private mechanisms as the building blocks. This private mechanism is only approx-
imately truthful. Nissim et al. [173] showed how to convert differentially private
mechanisms into exactly truthful mechanisms. Cummings et al. [51] studied the
multi-dimensional aggregative games and solved the equilibrium selection problem.
Barthe et al. [15] introduced a relational refinement type system for verifying
mechanism design and differential privacy.

These series of research work focus on the mechanism design based on the
differential privacy, which take advantage of the property of differential privacy.
The direction lies at the intersection of differential privacy, mechanism design and
probabilistic programming languages.

15.5 Differential Privacy in Genetic Data

As the advances of Genome sequencing technology, highly detailed genetic data is
being generated inexpensively at exponential rates. The collection and analysis of
such data has the potential to accelerate biomedical discoveries, and to support var-
ious applications, including personalized medical services. Despite all the benefits,
the broad dissemination of genetic data has major implications on personal privacy.
According to Erlich and Narayanan [77], the privacy of sensitive information was
ranked as one of their top concerns and a major determinant of participation in
a study. The privacy issues associated with genetic data are complex because of
its wide uses as well as information on more than just the individual from which
the data was derived. Erlich and Narayanan [77] analysed the privacy breaching
techniques that involve data mining and combining distinct resources to gain private
information that is relevant to DNA data, and further categorized them into identity
tracing attack, attribute disclosure attacks using DNA (ADAD) and completion

218 15 Future Directions and Conclusion

attack. Naveed et al. [168] reviewed the mitigating strategies for such attacks, as
well as contextualizing these attacks from the perspective of medicine and public
policy.

In the context of Genome-wide association studies (GWAS), several initial
studies have explored the capability of differential privacy methods in the release
of statistics for GWAS data, or shifting the original locations of variants. Johnson
and Shmatikov [110] developed a framework for ab initio exploration of case-
control GWAS that provide privacy-preserving answers to key GWAS queries. They
designed the operators to differentially private output the number of SNPs associated
with the disease, the location of the most significant SNPs, and the p-values for
any statistical test between a given SNP and the disease, etc. By considering the
protection against set membership disclosure, Tramer et al. proposed a relaxation
of the adversarial model of differential privacy, and shown that this weaker setting
achieves higher utility [220].

However, currently the differential private data release is still impractical,
because it introduces a large amount of noise even for a few singe-nucleotide
polymorphism locations (SNPs) in a given population. It is uncertain whether
there is a calibrated noise adding mechanism for GWAS data, which satisfies the
requirement of differential privacy [77].

15.6 Local Differential Privacy

As we mentioned in Chap. 1, the privacy model can be inserted between trusted
curators and public users. This scenario is defined as centralized differential privacy,
in which the differential privacy mechanism performs on the centralized data
before sharing with public users. When the privacy model is inserted between data
contributors and untrusted curators, the differential privacy mechanism perform
on individual data before submitting to curators. This is because existing privacy-
preserving strategies such as differential privacy and secure multiparty computation
are less reliable in a distributed context for the following reason: In the centralized
settings, the data curator is considered as a trusted agent who has the full access
to all users’ data. However in the distributed setting, data acquisition is more like
conducting a questionnaire survey, and the data curator should be considered as
an un-trusted investigator who can request responses from users but without free
access to all data. Although centralized mechanism such as differential privacy can
be adopted here to design secure and privacy-preserving data sharing framework
such as DistDiffGen [160], CELS [101], or DP-SUBN [209], the extensive time and
computation cost makes it impractical when encountering big data.

Recently, the Local Differential Privacy (LDP) model has been proposed to
address the above issue in an effective and efficient way. As shown in Fig. 15.1, in
the centralized settings, the trust data curator acquires and aggregate all the accurate
user data, and then employs the DP mechanisms to sanitize the data for public
sharing. In the local setting, by contrast, the un-trusted data curator acquires all the

15.6 Local Differential Privacy 219

Users Curator

(0]

. 20

Cc.antrallzgd Dataset

Differential 50 ’ bP Statistics
Privacy @ 90

Users Curator

Local @ L
Privacy @ | 97 |

Fig. 15.1 Comparing LDP with DP models

noisy user data, then conducts post-process on them to obtain acceptable statistics
which can be further shared with the public. Herein the statistics types which are
available for the data curator to obtain would be limited to the population statistics
and depend on both the design of local perturbation mechanism and post-process
mechanism. That is to say, with the support of LDP model, the un-trusted data
curator can estimate the approximate information of all users such as the prevalence
rate in a population without inferring that which user has suffered from this sensitive
disease.

Local privacy model was first formalized in [115], and then a theoretic upper
bound under the LDP model was given by Duchi et al. [60]. Typically two main
research questions are investigated:

1. How to design acceptable LDP mechanisms for different original data types
generated by distributed users? For example, the ranges of data types can be
from the single attribute data to multiple attribute data and even the set-valued
data.

2. How to design acceptable LDP mechanisms that can achieve different analysis
targets such as value estimation, distribution estimation and more complex
machine learning tasks?

In the local differential privacy setting, the local perturbation mechanism con-
ducted by each user should be a type of non-trivial differentially private noisy
adding mechanism, such that it provides the data curator the ability to estimate
certain statistics of the user population while satisfying differential privacy. In
existing related research works, the non-trivial differentially private noisy adding
mechanisms referred above are all based on Randomized Response technique. In the
past several years, related LDP work have been on all three aspects of data life cycle:
the data types existed in user node (Original Data Type), the data types submitted to
data curator by users (Uploaded Data Type) and the targets that we want to achieve
via analysing the uploaded data (Post-process Target). Table 15.1 gives an overview
of above three aspects.

220 15 Future Directions and Conclusion

Table 15.1 Three aspects of data life cycle in local differential privacy

Original data type | Uploaded data type Post-process target

Single numeric or | Noisy attribute value Value estimation [230]; distribution
categorical attribute estimation [78]

Multiple numeric or | Noisy attributes values Value estimation [230]; mean and fre-
categorical attribute quency estimation, complex machine

learning tasks [171]; multi-dimensional
joint distribution estimation [192]

Set-valued A random bit of noisy set-valued | Frequent item set estimation [187]; dis-
data data [187]; noisy set-valued | crete distribution estimation [223]

data [223]
Encoding data A random bit of the encoding of | Count estimation [42]

location

15.7 Learning Model Publishing

The difficulty in data publishing lies on the high correlation when meeting with
large set of queries [102]. High correlation between queries leads to large volume
of noise. According to the definition of sensitivity, correlations between m queries
lead to higher sensitivity (normally m multiplied by the original sensitivity) than
independent queries. The noise calibrated by this higher sensitivity will be added
to each query answer. The accuracy of the results will be dramatically decreased
compared to independent queries [140].

Current solutions aim to break the correlation by using transformation mecha-
nism or publishing a synthetic dataset, both of which have been discussed in Chap. 5:
Non-interactive setting. However, both solutions can only partly solve the problem,
and at the same time, a new challenge is arising with the non-interactive setting: how
to deal with unknown fresh queries. As the curator cannot know what users will ask
after the data has been published, he/she has to consider all possible queries and
adds pre-defined noise. When the dimension of the dataset is high, it is impossible
to list all queries. Even if the curator is able to list all queries, this pre-defined noise
will dramatically decrease the utility of the publishing results.

Zhu et al. [257] observed that these two challenges can be overcome by
transferring the data publishing problem to a machine learning problem. They
treated the queries as training samples which are used to generate a prediction
model, rather than publishing a set of queries or a synthetic dataset. For correlations
between queries, they apply limited queries to train the model. These limited queries
have lower correlation than in the original query set. The model is also used to
predict the remaining queries, including those fresh queries. Consequently, the
model publishing method uses a limited number of queries to train an approximate
accurate model and answers other fresh queries.

15.7 Learning Model Publishing 221

There are several advantages to publish a machine learning model:

* Many machine learning models can be applied to the data publishing problem.
For example, we can use linear regression, SVM for regression and neural
network to learn a suitable model M according to the training set. As prediction is
a mature area that has been investigated in machine learning for several decades,
we can choose sophisticated technologies and adjust parameters to obtain a better
performance. In addition, lots of machine learning theories can be applied in this
process.

* Some existing methods can be considered as an extension of model publishing.
For example, the Private Multiplicative Weights (PMW) mechanism [92] is one
of the most prevalent publishing methods in differential privacy. To some extent,
it can be considered as an instance of the model publishing method. In the PMW,
the histogram is a selected model and frequencies in this histogram constitute
parameters of the model. The model (histogram) is trained by the input queries
until it converges or meets the halting criteria. Compared to model publishing,
however, PMW can only answer queries in the training set.

* The noisy model naturally has the property of generalization. Generalization is
an essential problem in machine learning, but the differential privacy mechanism
has proven that it can avoid over-fitting in the learning process [66].

The model publishing method is highly related to machine learning algorithms,
but is different to private learning that mentioned in Chap. 6. Private learning
introduces noise into the original learning algorithms, so that the privacy of the
training dataset can be preserved in the learning process [115]. First, the purpose of
publishing models is different. Model publishing method aims to publish a model for
fresh query prediction, whereas private learning is only used for traditional machine
learning tasks and will not preserve the privacy of fresh samples.

Second, the model publishing method considers pre-defined queries as a training
set while private learning considers records in the original dataset as training
samples. The target of differential privacy is to hide the true value of query
answers, not the records, so the model publishing method considers the query as
the training sample and the model is used to predict query answers rather than the
values of records. In this respect, the model publishing method is totally different
from private learning algorithms. Even though Kasiviswanathan [115] proved that
Kearn’s statistical query (SQ) [120] model can be implemented in a differentially
private manner, the training set still comprises records in the dataset. Consequently,
the SO model is similar to private learning, not the model publishing method.

Finally, as public users normally use count, average or sum query, the model
publishing method normally applies regression algorithms for true value prediction,
while the private learning algorithm is usually specific to classification with labels of
0 or 1. Table 15.2 summarizes the major differences between the model publishing
method and private learning.

With the large set of queries requirement of various applications, the model
publishing method might be a promising method to integrate differential privacy
with diverse applications.

222 15 Future Directions and Conclusion

Table 15.2 The difference between the model publishing method and private learning

Model publishing method Private learning
Model The model is used to predict fresh | The model is used for traditional
query answers for public users machine learning
Training set Queries on the dataset Records in the dataset
Protect target Preserve the privacy of all queries Do not protect future samples
Learning algorithms | Prediction Classification

15.8 Conclusion

This book attempted a multi-disciplinary theories as well as applications of work on
differential privacy. We provided an overview of the huge literature on two major
directions: data publishing and analysis. For data publishing we have identified
different publishing mechanisms and compared them in various natures of data.
For data analysis, we discussed about two basic frameworks and illustrated their
different analysis scenarios. The basic technique in differential privacy looks simple
and intuitively appealing. When combining with specific problems, it is powerful
and has been shown to be useful for diverse applications.

In the application part, we first present several major challenges, such as high
sensitivity, sparsity of datasets, correlated data, etc., and then provide several
solutions on how to solve those problems. Each application includes its background,
and differentially private basic methods for this applications, and finally, we present
a full solution in details.

Differential privacy still has lots of unknown potentials, and literature summa-
rized in this book can be a starting point for exploring new challenges in the future.
Our goal is to give an overview of existing works on differential privacy to show
their usefulness to the newcomers as well as practitioners in various fields. We
also hope the overview can help avoiding some redundant, ad hoc effort, both from
researchers and from industries.

References

—_

. Differential privacy for everyone. download.microsoft.com/download/D/1/F/D1FODFF5-

8BA9-4BDF-8924-7816932F6825/Differential_Privacy_for_Everyone.pdf, 2012.

2. Bose sued over alleged privacy breach. https://www.itnews.com.au, 2017.

3. Telstra breaches privacy of thousands of customers. http://www.smh.com.au/it-pro/security-
it, 2017.

4. Yahoo says 500 million accounts stolen. http://money.cnn.com/2016/09/22/technology/
yahoo-data-breach/, 2017.

5. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov, K. Talwar, and L. Zhang.
Deep learning with differential privacy. In CCS, pages 308-318, 2016.

6. M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, 1. Mironov, K. Talwar, and L. Zhang.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 308-318, 2016.

7. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering,
1IEEE Transactions on, 17(6):734-749, June 2005.

8. C. C. Aggarwal and P. S. Yu, editors. Privacy-Preserving Data Mining - Models and
Algorithms, volume 34 of Advances in Database Systems. Springer, 2008.

9. B. Agir, T. G. Papaioannou, R. Narendula, K. Aberer, and J.-P. Hubaux. User-side adaptive
protection of location privacy in participatory sensing. Geoinformatica, 18(1):165-191, 2014.

10. M. Alaggan, S. Gambs, and A. Kermarrec. Heterogeneous differential privacy. CoRR,
abs/1504.06998, 2015.

11. J. Anderson. Hyperbolic Geometry. Springer, second edition, 2005.

12. M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-
indistinguishability: Differential privacy for location-based systems. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer; Communications Security, CCS ’13,
pages 901-914, New York, NY, USA, 2013. ACM.

13. L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?: Anonymized social
networks, hidden patterns, and structural steganography. In WWW’07, pages 181-190, 2007.

14. B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy,
and consistency too: a holistic solution to contingency table release. In PODS ’07, pages 273—
282, 2007.

15. G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth, and P.-Y. Strub. Higher-order

approximate relational refinement types for mechanism design and differential privacy. In

POPL, pages 55-68, 2015.

© Springer International Publishing AG 2017 223
T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6

https://www.itnews.com.au
http://www.smh.com.au/it-pro/security-it
http://www.smh.com.au/it-pro/security-it
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/
http://money.cnn.com/2016/09/22/technology/yahoo-data-breach/

18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

References

. R. Bassily, A. Smith, T. Steinke, and J. Ullman. More general queries and less generalization
error in adaptive data analysis. CoRR, abs/1503.04843, 2015.

. R. Bassily, A. D. Smith, and A. Thakurta. Private empirical risk minimization: Efficient

algorithms and tight error bounds. In FOCS, pages 464-473, 2014.

A. Beimel, S. P. Kasiviswanathan, and K. Nissim. Bounds on the sample complexity for

private learning and private data release. In TCC, pages 437-454. 2010.

A. Beimel, K. Nissim, and U. Stemmer. Characterizing the sample complexity of private

learners. In ITCS, pages 97-110, 2013.

A. Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization: Pure vs.

approximate differential privacy. CoRR, abs/1407.2674, 2014.

A. Beimel, K. Nissim, and U. Stemmer. Learning privately with labeled and unlabeled

examples. In SODA, pages 461477, 2015.

Y. Bengio. Learning deep architectures for Al. Foundations and Trends in Machine Learning,

2(1):1-127, 2009.

S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci. Enhancing privacy and preserving accuracy

of a distributed collaborative filtering. RecSys 07, pages 9-16, New York, NY, USA, 2007.

ACM.

R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering frequent patterns in sensitive

data. In SIGKDD, pages 503-512, 2010.

D. M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77-84, Apr. 2012.

D. M. Blei, A. Y. Ng, and M. 1. Jordan. Latent Dirichlet allocation. The Journal of Machine

Learning Research, 3:993-1022, Mar. 2003.

J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analysis of social

networks via restricted sensitivity. In ITCS, pages 87-96, 2013.

A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the SuLQ framework. In

PODS, pages 128138, 2005.

A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database

privacy. In STOC, pages 609-618, 2008.

J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov. "you might also

like: " privacy risks of collaborative filtering. In SP’/1, pages 231-246, 2011.

J. Canny. Collaborative filtering with privacy via factor analysis. SIGIR ’02, pages 238-245,

New York, NY, USA, 2002. ACM.

L. Cao. Non-iidness learning in behavioral and social data. The Computer Journal, 2013.

. L. Cao, Y. Ou, and P. S. Yu. Coupled behavior analysis with applications. IEEE Transactions

on Knowledge and Data Engineering, 24(8):1378-1392, 2012.

T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM Trans.

Inf. Syst. Secur., 14(3):26:1-26:24, 2011.

K. Chandrasekaran, J. Thaler, J. Ullman, and A. Wan. Faster private release of marginals on

small databases. In ITCS 14, pages 387-402, 2014.

K. Chatzikokolakis, C. Palamidessi, and M. Stronati. Location privacy via geo-

indistinguishability. ACM SIGLOG News, 2(3):46—69, 2015.

K. Chaudhuri and D. Hsu. Sample complexity bounds for differentially private learning. In

COLT, pages 155-186, 2011.

K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In NIPS 2014,

pages 289-296, 2008.

K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk

minimization. Journal of Machine Learning Research, 12(2):1069-1109, 2011.

R. Chen, B. C. Fung, B. C. Desai, and N. M. Sossou. Differentially private transit data

publication: a case study on the Montreal transportation system. In SIGKDD, pages 213-221,

2012.

R. Chen, B. C. Fung, S. Y. Philip, and B. C. Desai. Correlated network data publication via

differential privacy. The VLDB Journal, 23(4):653-676, 2014.

R. Chen, H. Li, A. K. Qin, S. P. Kasiviswanathan, and H. Jin. Private spatial data aggregation

in the local setting. In ICDE, pages 289-300, 2016.

References 225

43

44

45.
46.

47.
48.

49.

50.

51.

52.

53.
54.

55.

56.
57.
58.
59.
60.
61.
62.
. C. Dwork. Differential privacy in new settings. In SODA '10, pages 174-183, Philadelphia,

64.
65.

66.
67.
68.

69.

. R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai, and L. Xiong. Publishing set-valued
data via differential privacy. PVLDB, 4(11):1087-1098, 2011.

.R. Chen, Q. Xiao, Y. Zhang, and J. Xu. Differentially private high-dimensional data

publication via sampling-based inference. In SIGKDD, pages 129-138, 2015.

S. Chen and S. Zhou. Recursive mechanism: Towards node differential privacy and

unrestricted joins. In SIGMOD, pages 653-664, 2013.

C.-Y. Chow, M. F. Mokbel, and X. Liu. Spatial cloaking for anonymous location-based

services in mobile peer-to-peer environments. Geolnformatica, 15(2):351-380, 2011.

CIFAR-10 and C.-. datasets. www.cs.toronto.edu/ kriz/cifar.html.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for

machine learning. In BigLearn, NIPS Workshop, 2011.

G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu. Differentially private spatial

decompositions. In ICDE, pages 20-31, April 2012.

G. Cormode, D. Srivastava, N. Li, and T. Li. Minimizing minimality and maximizing utility:

analyzing method-based attacks on anonymized data. Proc. VLDB Endow., 3:1045-1056,

September 2010.

R. Cummings, M. Kearns, A. Roth, and Z. S. Wu. Privacy and truthful equilibrium selection

for aggregative games. CoRR, abs/1407.7740, 2014.

K.-H. Dang and K.-T. Cao. Towards reward-based spatial crowdsourcing. In Control, Automa-

tion and Information Sciences (ICCAIS), 2013 International Conference on, pages 363-368.

IEEE, 2013.

W. Day, N. Li, and M. Lyu. Publishing graph degree distribution with node differential

privacy. In SIGMOD, pages 123-138, 2016.

Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique in the crowd:

The privacy bounds of human mobility. Scientific reports, 3:1376, 2013.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W.

Senior, P. A. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In NIPS,

pages 1232-1240, 2012.

R. Dewri. Local differential perturbations: Location privacy under approximate knowledge

attackers. IEEE Trans. Mob. Comput., 12(12):2360-2372, 2013.

R. Dewri. Local differential perturbations: Location privacy under approximate knowledge

attackers. IEEE Transactions on Mobile Computing, 12(12):2360-2372, Dec. 2013.

B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data cubes: Optimizing noise

sources and consistency. pages 217-228, 2011.

I. Dinur and K. Nissim. Revealing information while preserving privacy. In PODS,

pages 202-210, 2003.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates.

In FOCS, pages 429-438, 2013.

C. Dwork. Differential privacy. In ICALP, pages 1-12, 2006.

C. Dwork. Differential privacy: a survey of results. In TAMC’08, pages 1-19, 2008.

PA, USA, 2010. Society for Industrial and Applied Mathematics.

C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86-95, 2011.
C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. Generalization in
adaptive data analysis and holdout reuse. In NIPS, pages 2350-2358, 2015.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. L. Roth. Preserving
statistical validity in adaptive data analysis. In STOC, pages 117-126, 2015.

C. Dwork, K. Kenthapadi, F. McSherry, 1. Mironov, and M. Naor. Our data, ourselves: Privacy
via distributed noise generation. In EUROCRYPT, pages 486-503, 2006.

C. Dwork, FE. McSherry, K. Nissim, and A. D. Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, pages 265-284, 2006.

C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual
observation. In STOC, pages 715-724, 2010.

226

70

71

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

91.

92.

93.

94.

References

. C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-private streaming
algorithms. In Innovations in Computer Science, pages 66-80, 2010.

. C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. Vadhan. On the complexity

of differentially private data release: efficient algorithms and hardness results. In STOC,

pages 381-390, 2009.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found. Trends

Theor. Comput. Sci., 9:211-407, Aug. 2014.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found. Trends

Theor. Comput. Sci., 93–4):211-407, Aug. 2014.

C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In 2010 IEEE

51st Annual Symposium on Foundations of Computer Science, pages 51-60, Oct 2010.

C. Dwork, A. Smith, T. Steinke, and J. Ullman. Exposed! a survey of attacks on private data.

Annual Review of Statistics and Its Application, (0), 2017.

H. Ebadi, D. Sands, and G. Schneider. Differential privacy: Now it’s getting personal. In

POPL, pages 69-81, 2015.

Y. Erlich and A. Narayanan. Routes for breaching and protecting genetic privacy. Nature

Review Genetics, 15:409-421, 2014.

G. C. Fanti, V. Pihur, and U. Erlingsson. Building a RAPPOR with the unknown: Privacy-

preserving learning of associations and data dictionaries. PoPETs, 2016:41-61, 2016.

D. Feldman, A. Fiat, H. Kaplan, and K. Nissim. Private coresets. In STOC, pages 361-370,

2009.

S. E. Fienberg, A. Rinaldo, and X. Yang. Differential privacy and the risk-utility tradeoff for

multi-dimensional contingency tables. pages 187-199, 2010.

M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confidence

information and basic countermeasures. In Proceedings of the 22Nd ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS ’15, pages 1322-1333, New York,

NY, USA, 2015. ACM.

A. Friedman, S. Berkovsky, and M. A. Kaafar. A differential privacy framework for

matrix factorization recommender systems. User Modeling and User-Adapted Interaction,

26(5):425-458, 2016.

A. Friedman and A. Schuster. Data mining with differential privacy. In SIGKDD, pages 493—

502, 2010.

B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A survey

of recent developments. ACM Comput. Surv., 42(4), 2010.

M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and Z. S. Wu. Dual query: Practical private

query release for high dimensional data. In ICML 2014, pages 1170-1178, 2014.

S. Ganta, S. Kasiviswanathan, and A. Smith. Composition attacks and auxiliary information

in data privacy. pages 265-273, 2008.

T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National

Academy of Sciences of the United States of America, 101(Suppl 1):5228-5235, 2004.

A. Gupta, A. Roth, and J. Ullman. Iterative constructions and private data release. In TCC,

pages 339-356, 2012.

A. Haeberlen, B. C. Pierce, and A. Narayan. Differential privacy under fire. 2011.

R. Hall, A. Rinaldo, and L. Wasserman. Differential privacy for functions and functional data.

J. Mach. Learn. Res., 14(1):703-727, 2013.

M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially

private data release. In NIPS, pages 2348-2356, 2012.

M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving

data analysis. In FOCS, pages 61-70, 2010.

M. Hardt and K. Talwar. On the geometry of differential privacy. In STOC 2010, pages 705—

714, 2010.

M. Hardt and J. Ullman. Preventing false discovery in interactive data analysis is hard. In

FOCS, pages 454-463, 2014.

References 227

95

96

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

. M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the degree distribution of
private networks. In /ICDM, pages 169-178, 2009.

. M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private

histograms through consistency. Proc. VLDB Endow., 3(1):1021-1032, 2010.

X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc, and D. Srivastava. DPT:

Differentially private trajectory synthesis using hierarchical reference systems. Proc. VLDB

Endow., 8(11):1154-1165, 2015.

X. He, A. Machanavajjhala, and B. Ding. Blowfish privacy: Tuning privacy-utility trade-

offs using policies. In Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’14, pages 1447-1458, New York, NY, USA, 2014. ACM.

S. Ho and S. Ruan. Differential privacy for location pattern mining. In Proceedings of the

4th ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS,

SPRINGL 2011, November 1st, 2011, Chicago, IL, USA, pages 17-24, 2011.

B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Enhancing security and privacy in traffic-

monitoring systems. /EEE Pervasive Computing, 5(4):38-46, Oct. 2006.

Y. Hong, J. Vaidya, H. Lu, P. Karras, and S. Goel. Collaborative search log sanitization:

Toward differential privacy and boosted utility. IEEE Trans. Dependable Sec. Comput.,
12:504-518, 2015.

D. Huang, S. Han, X. Li, and P. S. Yu. Orthogonal mechanism for answering batch queries

with differential privacy. In SSDBM, pages 24:1-24:10, 2015.

Z. Huang and A. Roth. Exploiting metric structure for efficient private query release. In

SODA, pages 523-534, 2014.

G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright. A practical differentially private

random decision tree classifier. Transactions on Data Privacy, 5(1):273-295, 2012.

P. Jain and A. Thakurta. Differentially private learning with kernels. In ICML, pages 118-126,

2013.

P. Jain and A. G. Thakurta. (near) dimension independent risk bounds for differentially private

learning. In ICML, pages 476484, 2014.

R. Jaschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag recom-

mendations in folksonomies. PKDD 2007, pages 506-514, Berlin, Heidelberg, 2007.

Springer-Verlag.

H. Jiawei and M. Kamber. Data mining: concepts and techniques. San Francisco, CA, itd:

Morgan Kaufmann, 5, 2001.

X.Jin, N. Zhang, and G. Das. Algorithm-safe privacy-preserving data publishing. EDBT ’10,

pages 633-644, New York, NY, USA, 2010. ACM.

A. Johnson and V. Shmatikov. Privacy-preserving data exploration in genome-wide associa-

tion studies. In SIGKDD, pages 1079-1087, 2013.

Z. Jorgensen, T. Yu, and G. Cormode. Conservative or liberal? personalized differential

privacy. In ICDE 2015, pages 1023-1034, 2015.

P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for differential privacy. In

ICML, pages 1376-1385, 2015.

V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. Private analysis of graph

structure. ACM Trans. Database Syst., 39(3):22:1-22:33, 2014.

S. P. Kasiviswanathan and H. Jin. Efficient private empirical risk minimization for high-

dimensional learning. In /ICML, pages 488-497, 2016.

S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we

learn privately? In FOCS, pages 531-540, 2008.

S. P. Kasiviswanathan, K. Nissim, and H. Jin. Private incremental regression. CoRR,

abs/1701.01093, 2017.

S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith. Analyzing graphs with

node differential privacy. In TCC, pages 457-476, 2013.

S. P. Kasiviswanathan, M. Rudelson, A. Smith, and J. Ullman. The price of privately releasing

contingency tables and the spectra of random matrices with correlated rows. In STOC 2010,

pages 775-784, 2010.

228

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

References

L. Kazemi and C. Shahabi. Geocrowd: Enabling query answering with spatial crowdsourcing.
In Proceedings of the 20th International Conference on Advances in Geographic Information
Systems, SIGSPATIAL *12, pages 189-198, New York, NY, USA, 2012. ACM.

M. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45:983-1006,
1998.

M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory.
8(2001):44-58, 1994.

G. Kellaris and S. Papadopoulos. Practical differential privacy via grouping and smoothing.
In PVLDB, pages 301-312, 2013.

G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias. Differentially private event sequences
over infinite streams. Proc. VLDB Endow., 7(12):1155-1166, 2014.

H. Kido, Y. Yanagisawa, and T. Satoh. Protection of location privacy using dummies
for location-based services. In Proceedings of the 21st International Conference on Data
Engineering Workshops, ICDEW ’05, pages 1248-, Washington, DC, USA, 2005. IEEE
Computer Society.

D. Kifer. Attacks on privacy and DeFinetti’s theorem. SIGMOD °09, pages 127-138, New
York, NY, USA, 2009. ACM.

D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In SIGMOD, pages 193-204,
2011.

D. Kifer and A. Machanavajjhala. Pufferfish: A framework for mathematical privacy
definitions. ACM Trans. Database Syst., 39(1):3:1-3:36, 2014.

D. Kifer, A. D. Smith, and A. Thakurta. Private convex optimization for empirical risk
minimization with applications to high-dimensional regression. In COLT, pages 25.1-25.40,
2012.

F. Koufogiannis, S. Han, and G. J. Pappas. Gradual release of sensitive data under differential
privacy. CoRR, abs/1504.00429, 2015.

R. Krestel, P. Fankhauser, and W. Nejdl. Latent Dirichlet allocation for tag recommendation.
RecSys *09, pages 61-68, New York, NY, USA, 2009. ACM.

S. Le Blond, C. Zhang, A. Legout, K. Ross, and W. Dabbous. I know where you are and
what you are sharing: exploiting p2p communications to invade users’ privacy. IMC 11,
pages 45-60, New York, NY, USA, 2011. ACM.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.

Y. Lécun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

J. Lee and C. W. Clifton. Top-k frequent itemsets via differentially private FP-trees. In
SIGKDD, pages 931-940, 2014.

J. Lee, Y. Wang, and D. Kifer. Maximum likelihood postprocessing for differential privacy
under consistency constraints. In KDD, pages 635-644, 2015.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://
snap.stanford.edu/data, June 2014.

C. Li, M. Hay, G. Miklau, and Y. Wang. A data- and workload-aware query answering
algorithm for range queries under differential privacy. Proc. VLDB Endow., 7(5):341-352,
2014.

C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries
under differential privacy. In PODS, pages 123-134, 2010.

C. Li and G. Miklau. An adaptive mechanism for accurate query answering under differential
privacy. Proc. VLDB Endow., 5(6):514-525, 2012.

C. Li and G. Miklau. Optimal error of query sets under the differentially-private matrix
mechanism. In ICDT, pages 272-283, 2013.

C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi. The matrix mechanism: optimizing
linear counting queries under differential privacy. The VLDB Journal, 24(6):1-25, 2015.

N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and 1-
diversity. pages 106 —115, April 2007.

N. Li, T. Li, and S. Venkatasubramanian. Closeness: A new privacy measure for data
publishing. Knowledge and Data Engineering, IEEE Transactions on, 22(7):943-956, July
2010.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

References 229

144.

145.

146.

147.

148.
149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: Frequent itemset mining with differential
privacy. Proc. VLDB Endow., 5(11):1340-1351, 2012.

N. Li, W. Yang, and W. Qardaji. Differentially private grids for geospatial data. In
Proceedings of the 2013 IEEE International Conference on Data Engineering (ICDE 2013),
ICDE 13, pages 757-768, Washington, DC, USA, 2013. IEEE Computer Society.

B. Lin and D. Kifer. Information preservation in statistical privacy and Bayesian estimation
of unattributed histograms. In SIGMOD, pages 677-688, 2013.

J. Lin. Divergence measures based on the Shannon entropy. Information Theory, IEEE
Transactions on, 37(1):145-151, 1991.

Y. Lindell and B. Pinkas. Privacy preserving data mining. pages 36-54, 2000.

H. Lu, C. S. Jensen, and M. L. Yiu. Pad: Privacy-area aware, dummy-based location privacy
in mobile services. In Proceedings of the Seventh ACM International Workshop on Data
Engineering for Wireless and Mobile Access, MobiDE °08, pages 16-23, New York, NY,
USA, 2008. ACM.

T. Luo, H. P. Tan, and L. Xia. Profit-maximizing incentive for participatory sensing. Advances
in artificial intelligence, pages 127-135, 2014.

A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity: Privacy
beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1), Mar. 2007.

A. Machanavajjhala, A. Korolova, and A. D. Sarma. Personalized social recommendations -
accurate or private? PVLDB, 4(7):440-450, 2011.

L. Marinho, A. Hotho, R. Jischke, A. Nanopoulos, S. Rendle, L. Schmidt-Thieme,
G. Stumme, and P. Symeonidis. In Recommender Systems for Social Tagging Systems,
SpringerBriefs in Electrical and Computer Engineering, pages 75-80. Springer US, 2012.

Y. Matsuo, N. Okazaki, K. Izumi, Y. Nakamura, T. Nishimura, K. Hasida, and H. Nakashima.
Inferring long-term user properties based on users’ location history. In Proceedings of the
20th International Joint Conference on Artificial Intelligence, IJCAT’07, pages 2159-2165,
San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

F. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data
analysis. Commun. ACM, 53(9), 2010.

F. McSherry and 1. Mironov. Differentially private recommender systems: Building privacy
into the net. In SIGKDD, pages 627-636, 2009.

F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages 94—
103, 2007.

1. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Computational differential privacy. In
S. Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 126—142. Springer Berlin Heidelberg, 2009.

N. Mohammed, D. Alhadidi, B. C. M. Fung, and M. Debbabi. Secure two-party differentially
private data release for vertically partitioned data. IEEE Trans. Dependable Sec. Comput.,
11(1):59-71, 2014.

N. Mohammed, D. Alhadidi, B. C. M. Fung, and M. Debbabi. Secure two-party differentially
private data release for vertically partitioned data. IEEE Trans. Dependable Sec. Comput.,
11:59-71, 2014.

N. Mohammed, R. Chen, B. C. Fung, and P. S. Yu. Differentially private data release for data
mining. In SIGKDD, pages 493-501, 2011.

P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT: Privacy preserving data
analysis made easy. In SIGMOD, pages 349-360, 2012.

M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new Casper: Query processing for location
services without compromising privacy. In Proceedings of the 32Nd International Conference
on Very Large Data Bases, VLDB 06, pages 763—774. VLDB Endowment, 2006.

J. Murtagh and S. Vadhan. The complexity of computing the optimal composition of
differential privacy. CoRR, abs/1507.03113, 2015.

S. Muthukrishnan and A. Nikolov. Optimal private halfspace counting via discrepancy. In
STOC, pages 1285-1292, 2012.

A. Narayanan and V. Shmatikov. How to break anonymity of the netflix prize dataset. CoRR,
abs/cs/0610105, 2006.

230

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

References

A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. SP *08,
pages 111-125, Washington, DC, USA, 2008. IEEE Computer Society.

M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P. Hubaux, B. A. Malin, and
X. Wang. Privacy in the genomic era. ACM Comput. Surv., 48(1):6:1-6:44, 2015.

M. E. Nergiz, M. Atzori, and C. Clifton. Hiding the presence of individuals from shared
databases. SIGMOD ’07, pages 665-676, New York, NY, USA, 2007. ACM.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in
natural images with unsupervised feature learning. Nips Workshop on Deep Learning &
Unsupervised Feature Learning, 2012.

T. T. Nguyén, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin. Collecting and analyzing
data from smart device users with local differential privacy. CoRR, abs/1606.05053, 2016.
K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data
analysis. In STOC, pages 75-84, 2007.

K. Nissim, R. Smorodinsky, and M. Tennenholtz. Approximately optimal mechanism design
via differential privacy. In Innovations in Theoretical Computer Science, pages 203-213,
2012.

K. Nissim and U. Stemmer. On the generalization properties of differential privacy. CoRR,
abs/1504.05800, 2015.

X. Pan, J. Xu, and X. Meng. Protecting location privacy against location-dependent attack in
mobile services. In Proceedings of the 17th ACM Conference on Information and Knowledge
Management, CIKM 08, pages 1475-1476, New York, NY, USA, 2008. ACM.

R. Parameswaran and D. Blough. Privacy preserving collaborative filtering using data
obfuscation. In Granular Computing, 2007. GRC 2007. IEEE International Conference on
Granular Computing, page 380, Nov. 2007.

J. Parra-Arnau, A. Perego, E. Ferrari, J. Forne, and D. Rebollo-Monedero. Privacy-preserving
enhanced collaborative tagging. [EEE Transactions on Knowledge and Data Engineering,
99(PrePrints): 1, 2013.

J. Parra-Arnau, D. Rebollo-Monedero, and J. Forne. Measuring the privacy of user profiles in
personalized information systems. Future Generation Computer Systems, (0):—, 2013.

S. Peng, Y. Yang, Z. Zhang, M. Winslett, and Y. Yu. DP-tree: Indexing multi-dimensional
data under differential privacy (abstract only). In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages 864—-864, New York,
NY, USA, 2012. ACM.

N. Phan, Y. Wang, X. Wu, and D. Dou. Differential privacy preservation for deep auto-
encoders: an application of human behavior prediction. In AAAI, pages 1309-1316, 2016.

H. Polat and W. Du. Privacy-preserving collaborative filtering using randomized perturbation
techniques. In /ICDM 2003, pages 625-628, nov. 2003.

H. Polat and W. Du. Achieving private recommendations using randomized response
techniques. PAKDD’06, pages 637-646, Berlin, Heidelberg, 2006. Springer-Verlag.

L. Pournajaf, L. Xiong, V. Sunderam, and S. Goryczka. Spatial task assignment for crowd
sensing with cloaked locations. In Proceedings of the 2014 IEEE 15th International
Conference on Mobile Data Management - Volume 01, MDM ’ 14, pages 73-82, Washington,
DC, USA, 2014. IEEE Computer Society.

D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data to sensitivity in private data
analysis. PVLDB, 7(8):637-648, 2014.

W. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for differentially private
histograms. Proc. VLDB Endow., 6(14):1954-1965, 2013.

W. H. Qardaji, W. Yang, and N. Li. Preview: practical differentially private release of marginal
contingency tables. In SIGMOD 2014, pages 1435-1446, 2014.

Z.Qin, Y. Yang, T. Yu, L. Khalil, X. Xiao, and K. Ren. Heavy hitter estimation over set-valued
data with local differential privacy. In SIGSAC, pages 192-203, 2016.

S. Rana, S. K. Gupta, and S. Venkatesh. Differentially private random forest with high utility.
In ICDM, pages 955-960, 2015.

References 231

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

S. Raskhodnikova and A. Smith. Efficient Lipschitz extensions for high-dimensional graph
statistics and node private degree distributions. FOCS, 2016.

V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy: output perturbation for
queries with joins. In PODS, pages 107-116, 2009.

B. Recht, C. Ré, S. J. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In NIPS, pages 693-701, 2011.

X. Ren, C. Yu, W. Yu, S. Yang, X. Yang, J. A. McCann, and P. S. Yu. Lopub:
High-dimensional crowdsourced data publication with local differential privacy. CoRR,
abs/1612.04350, 2016.

Y. Ren, G. Li, and W. Zhou. Learning rating patterns for top-n recommendations. In
ASONAM, pages 472-479, 2012.

Y. Ren, G. Li, and W. Zhou. A learning method for top-n recommendations with incomplete
data. Social Network Analysis and Mining, pages 1-14, 2013.

A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In STOC,
pages 765-774, 2010.

B. L. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft. Learning in a large function space:
Privacy-preserving mechanisms for SVM learning. CoRR, abs/0911.5708, 2009.

P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing
information. page 188, 1998. cited By (since 1996) 101.

A. D. Sarwate and K. Chaudhuri. Signal processing and machine learning with differential
privacy: Algorithms and challenges for continuous data. IEEE Signal Processing Magazine,
30(5):86-94, 2013.

H. Shah-Mansouri and V. W. Wong. Profit maximization in mobile crowdsourcing: A truthful
auction mechanism. In Communications (ICC), 2015 IEEE International Conference on,
pages 3216-3221. IEEE, 2015.

E. Shen and T. Yu. Mining frequent graph patterns with differential privacy. In SIGKDD,
pages 545-553, 2013.

A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke. Personalized recommendation in
social tagging systems using hierarchical clustering. RecSys *08, pages 259-266, New York,
NY, USA, 2008. ACM.

R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In SIGSAC, pages 13101321,
2015.

B. Sigurbjornsson and R. van Zwol. Flickr tag recommendation based on collective
knowledge. WWW ’08, pages 327-336, New York, NY, USA, 2008. ACM.

Y. Song, L. Cao, X. Wu, G. Wei, W. Ye, and W. Ding. Coupled behavior analysis for capturing
coupling relationships in group-based market manipulations. KDD ’12, pages 976-984, New
York, NY, USA, 2012. ACM.

M. Srivatsa and M. Hicks. Deanonymizing mobility traces: using social network as a side-
channel. CCS ’12, pages 628-637, New York, NY, USA, 2012. ACM.

T. Steinke and J. Ullman. Between pure and approximate differential privacy. CoRR,
abs/1501.06095, 2015.

L. Stenneth and P. S. Yu. Mobile systems privacy: ‘mobipriv’ A robust system for snapshot or
continuous querying location based mobile systems. Transactions on Data Privacy, 5(1):333—
376, 2012.

M. Steyvers and T. Griffiths. Probabilistic topic models. Handbook of latent semantic
analysis, 427(7):424-440, 2007.

S. Su, P. Tang, X. Cheng, R. Chen, and Z. Wu. Differentially private multi-party high-
dimensional data publishing. In ICDE, pages 205-216, 2016.

X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in
artificial intelligence, 2009:4, 2009.

L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557-570, 2002.

P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. Tag recommendations based on tensor
dimensionality reduction. RecSys *08, pages 43-50, New York, NY, USA, 2008. ACM.

232

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

2217.

228.

229.

230.

231.

232.

233.

234.

235.

References

E. Ted. Engineering economy: applying theory to practice. Oxford University Press, USA,
third edition, 2010.

A. G. Thakurta and A. Smith. Differentially private feature selection via stability arguments,
and the robustness of the lasso. In Conference on Learning Theory, pages 819-850, 2013.
N. Thepvilojanapong, K. Zhang, T. Tsujimori, Y. Ohta, Y. Zhao, and Y. Tobe. Participation-
aware incentive for active crowd sensing. In High Performance Computing and Commu-
nications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing
(HPCC_EUC), 2013 IEEE 10th International Conference on, pages 2127-2134. IEEE, 2013.
H. To, G. Ghinita, and C. Shahabi. A framework for protecting worker location privacy in
spatial crowdsourcing. Proc. VLDB Endow., 7(10):919-930, June 2014.

H. To, G. Ghinita, and C. Shahabi. Privgeocrowd: A toolbox for studying private spatial
crowdsourcing. In Proceedings of the 31st IEEE International Conference on Data
Engineering, 2015.

K.-A. Toh and W.-Y. Yau. Combination of hyperbolic functions for multimodal biometrics
data fusion. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
34(2):1196-1209, 2004.

Torch7. A scientific computing framework for luajit (torch.ch).

F. Tramer, Z. Huang, J.-P. Hubaux, and E. Ayday. Differential privacy with bounded priors:
Reconciling utility and privacy in genome-wide association studies. In CCS, pages 1286—
1297, 2015.

J. Ullman. Answering n2+O(1) counting queries with differential privacy is hard. In STOC,
pages 361-370, 2013.

J. Ullman. Private multiplicative weights beyond linear queries. In PODS, pages 303-312,
2015.

S. Wang, L. Huang, P. Wang, Y. Nie, H. Xu, W. Yang, X. Li, and C. Qiao. Mutual information
optimally local private discrete distribution estimation. CoRR, 2016.

Y. Wang, J.-H. Ge, L.-H. Wang, and B. Ai. Nonlinear companding transform using hyperbolic
tangent function in OFDM systems. In Wireless Communications, Networking and Mobile
Computing (WiCOM), 2012 8th International Conference on, pages 1-4. IEEE, 2012.

Y. Wang, J. Lei, and S. E. Fienberg. Learning with differential privacy: Stability, learnability
and the sufficiency and necessity of ERM principle. CoRR, abs/1502.06309, 2015.

Y. Wang, S. Song, and K. Chaudhuri. Privacy-preserving analysis of correlated data. CoRR,
abs/1603.03977, 2016.

Y. Wang, Y. Wang, and A. Singh. Differentially private subspace clustering. In NIPS,
pages 1000-1008, 2015.

Y. Wang, Y. Wang, and A. Singh. A theoretical analysis of noisy sparse subspace clustering
on dimensionality-reduced data. CoRR, abs/1610.07650, 2016.

Y. Wang and X. Wu. Preserving differential privacy in degree-correlation based graph
generation. Transactions on data privacy, 6(2):127, 2013.

Y. Wang, X. Wu, and D. Hu. Using randomized response for differential privacy preserving
data collection. In EDBT/ICDT Workshops, 2016.

R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in privacy preserving
data publishing. VLDB ’07, pages 543-554. VLDB Endowment, 2007.

R. C.-W. Wong, A. W.-C. Fu, K. Wang, P. S. Yu, and J. Pei. Can the utility of anonymized
data be used for privacy breaches? ACM Trans. Knowl. Discov. Data, 5(3):16:1-16:24, Aug.
2011.

H. Wu, J. Corney, and M. Grant. Relationship between quality and payment in crowdsourced
design. In Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the
2014 IEEE 18th International Conference on, pages 499-504. IEEE, 2014.

Q. Xiao, R. Chen, and K. Tan. Differentially private network data release via structural
inference. In SIGKDD, pages 911-920, 2014.

X. Xiao, G. Bender, M. Hay, and J. Gehrke. iReduct: differential privacy with reduced relative
errors. In SIGMOD, pages 229-240, 2011.

References 233

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

X. Xiao, Y. Tao, and N. Koudas. Transparent anonymization: Thwarting adversaries who
know the algorithm. ACM Trans. Database Syst., 35(2):8:1-8:48, May 2010.

X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. IEEE Trans.
on Knowl. and Data Eng., 23(8):1200-1214, 2011.

Y. Xiao, J. Gardner, and L. Xiong. Dpcube: Releasing differentially private data cubes for
health information. In Proceedings of the 2012 IEEE 28th International Conference on Data
Engineering, ICDE 12, pages 1305-1308, Washington, DC, USA, 2012. IEEE Computer
Society.

Y. Xiao, L. Xiong, L. Fan, S. Goryczka, and H. Li. Dpcube: Differentially private histogram
release through multidimensional partitioning. Transactions on Data Privacy, 7(3):195-222,
2014.

Y. Xiao, L. Xiong, and C. Yuan. Differentially private data release through multidimensional
partitioning. In SDM, pages 150-168, 2010.

P. Xiong, L. Zhang, and T. Zhu. Reward-based spatial crowdsourcing with differential privacy
preservation. Enterprise Information Systems, 0(0):1-18, 0.

P. Xiong, T. Zhu, W. Niu, and G. Li. A differentially private algorithm for location data
release. Knowl. Inf. Syst., 47(3):647-669, 2016.

J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett. Differentially private histogram
publication. The VLDB Journal, 22(6):797-822, 2013.

S. Xu, S. Su, L. Xiong, X. Cheng, and K. Xiao. Differentially private frequent subgraph
mining. In ICDE, pages 229-240, 2016.

G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Optimizing batch linear
queries under exact and approximate differential privacy. ACM Trans. Database Syst.,
40(2):11:1-11:47, 2015.

C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent itemset mining.
Proc. VLDB Endow., 6(1):25-36, 2012.

J. Zhan, C.-L. Hsieh, I.-C. Wang, T. sheng Hsu, C.-J. Liau, and D.-W. Wang. Privacy-
preserving collaborative recommender systems. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 40(4):472 —476, july 2010.

J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. PrivBayes: private data
release via Bayesian networks. In SIGMOD, pages 1423-1434, 2014.

J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. Private release of graph
statistics using ladder functions. In SIGMOD, pages 731-745, 2015.

J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan. Network traffic classification
using correlation information. Parallel and Distributed Systems, IEEE Transactions on,
24(1):104-117, Jan 2013.

J. Zhang, X. Xiao, Y. Yang, Z. Zhang, and M. Winslett. PrivGene: Differentially private model
fitting using genetic algorithms. In SIGMOD, pages 665-676, 2013.

J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional mechanism: Regression
analysis under differential privacy. Proc. VLDB Endow., 5(11):1364—1375, July 2012.

J. D. Zhang, G. Ghinita, and C. Y. Chow. Differentially private location recommendations in
geosocial networks. In MDM, volume 1, pages 59-68, July 2014.

Z. Zhou and J. Feng. Deep forest: Towards an alternative to deep neural networks. CoRR,
abs/1702.08835, 2017.

Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li. Multi-instance learning by treating instances as non-i.i.d.
samples. In Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, pages 1249-1256, New York, NY, USA, 2009. ACM.

T. Zhu, G. Li, W. Zhou, P. Xiong, and C. Yuan. Privacy-preserving topic model for tagging
recommender systems. Knowledge and Information Systems, 46(1):33-58, 2016.

T. Zhu, G. Li, W. Zhou, and P. S. Yu. Differentially private query learning: from data
publishing to model publishing. CoRR, abs/1606.05053, 2017.

T. Zhu, Y. Ren, W. Zhou, J. Rong, and P. Xiong. An effective privacy preserving algorithm
for neighborhood-based collaborative filtering. Future Generation Comp. Syst., 36:142-155,
2014.

234 References

259. T. Zhu, P. Xiong, G. Li, and W. Zhou. Correlated differential privacy: Hiding information in
non-iid data set. IEEE Transactions on Information Forensics and Security, 10(2):229-242,
2015.

260. T. Zhu, M. Yang, P. Xiong, Y. Xiang, and W. Zhou. An iteration-based differentially private
social network data release. CoRR, abs/1606.05053, 2017.

261. M. Zinkevich, M. Weimer, A. J. Smola, and L. Li. Parallelized stochastic gradient descent. In
NIPS, pages 2595-2603. Curran Associates, Inc., 2010.

Index

C
Cryptography, 131, 216

D
Data
analysis, 5-6, 16, 39, 49-65, 83, 87, 153,
192, 196-198, 215-216, 222
mining, 1, 5, 6, 31, 41, 42, 49, 51, 56, 86,
107, 208, 217
release, 1, 5, 24, 41, 44, 46, 47, 136,
151, 153, 157, 160, 168, 172, 191, 210,
218
sharing, 1, 131, 218
Differentially private data analysis, 6, 49-65
Differentially private data publishing, 6, 17-21,
23-48
Differential policy, 195
Differential privacy, 4-17, 26, 29, 32-35, 40,
41, 4344, 46, 47, 50, 52, 54-60, 62, 63,
65,67,73,74,76, 717, 82, 83, 85-87, 91,
93-98, 101, 102, 108, 112, 113, 115,
119, 122, 123, 125-127, 132, 135-138,
143, 150-154, 157, 158, 160-165,
169-174, 177-186, 189, 191-222

L
Location privacy, 5, 90, 151-172, 175, 214

© Springer International Publishing AG 2017

M
Machine learning, 1, 4, 5, 31, 49, 51, 57, 60,
67, 69, 89, 107, 208, 215, 216, 219-222

(o)
Online social networks (OSNs), 31, 91

P

Privacy, 1, 7, 17, 24, 38, 50, 67, 83-85, 92,
107, 131-173, 191, 216

Privacy preserving, 1-3, 5, 6, 10, 31, 41,
49, 64, 73, 108, 118-120, 128, 129,
131-150, 153, 157, 160, 173, 175, 178,
179, 189, 193, 197, 210, 212, 215, 216,
218

Private learning, 49, 50, 53, 57-65, 83, 90,
221,222

R
Recommender system, 5, 29, 83, 85, 88, 90,
107-129, 131-150, 214

S
Security, 151, 216
Statistical learning, 51, 216, 221

235

T. Zhu et al., Differential Privacy and Applications,
Advances in Information Security 69, DOI 10.1007/978-3-319-62004-6

	Preface
	Acknowledgments

	Contents
	1 Introduction
	1.1 Privacy Preserving Data Publishing and Analysis
	1.2 Privacy Violations
	1.3 Privacy Models
	1.4 Differential Privacy
	1.5 Outline and Book Overview

	2 Preliminary of Differential Privacy
	2.1 Notations
	2.2 Differential Privacy Definition
	2.2.1 The Privacy Budget

	2.3 The Sensitivity
	2.3.1 The Global Sensitivity
	2.3.2 The Local Sensitivity

	2.4 The Principle Differential Privacy Mechanisms
	2.4.1 The Laplace Mechanism
	2.4.1.1 The Gaussian Mechanism

	2.4.2 The Exponential Mechanism
	2.4.2.1 Mechanism Example

	2.5 Utility Measurement of Differential Privacy

	3 Differentially Private Data Publishing: Settings and Mechanisms
	3.1 Interactive and Non-interactive Settings
	3.2 Publishing Mechanism

	4 Differentially Private Data Publishing: Interactive Setting
	4.1 Transaction Data Publishing
	4.1.1 Laplace
	4.1.2 Transformation
	4.1.3 Query Separation
	4.1.4 Iteration
	4.1.5 Discussion

	4.2 Histogram Publishing
	4.2.1 Laplace
	4.2.2 Partition of Dataset
	4.2.3 Consistency of Histogram

	4.3 Stream Data Publishing
	4.3.1 Laplace
	4.3.2 Partition of Dataset
	4.3.3 Iteration
	4.3.4 Discussion

	4.4 Graph Data Publishing
	4.4.1 Edge Differential Privacy
	4.4.2 Node Differential Privacy
	4.4.3 Discussion

	4.5 Summary on Interactive Setting

	5 Differentially Private Data Publishing: Non-interactive Setting
	5.1 Batch Queries Publishing
	5.1.1 Laplace
	5.1.2 Transformation
	5.1.3 Partition of Dataset
	5.1.4 Iteration
	5.1.5 Discussion

	5.2 Contingency Table Publishing
	5.2.1 Laplace
	5.2.2 Iteration
	5.2.3 Transformation

	5.3 Anonymized Dataset Publishing
	5.4 Synthetic Dataset Publishing
	5.4.1 Synthetic Dataset Publishing Basedon Learning Theory
	5.4.1.1 Learning Theory in Differential Privacy
	5.4.1.2 Synthetic Publishing

	5.4.2 High Dimensional Synthetic Dataset Publishing

	5.5 Summary on Non-interactive Setting

	6 Differentially Private Data Analysis
	6.1 Laplace/Exponential Framework
	6.1.1 SuLQ and PINQ Interface
	6.1.1.1 SuLQ
	6.1.1.2 PINQ

	6.1.2 Specific Algorithms in the Laplace/Exponential Framework
	6.1.2.1 Supervised Learning
	6.1.2.2 Unsupervised Learning
	6.1.2.3 Frequent Itemset Mining

	6.1.3 Summary on Laplace/Exponential Framework

	6.2 Private Learning Framework
	6.2.1 Foundation of ERM
	6.2.2 Private Learning in ERM
	6.2.2.1 Output Perturbation
	6.2.2.2 Objective Perturbation
	6.2.2.3 Risk Bound in Different Learning Algorithms
	6.2.2.4 Discussion

	6.2.3 Sample Complexity Analysis
	6.2.3.1 Relaxing Privacy Requirement
	6.2.3.2 Relaxing Hypothesis
	6.2.3.3 Semi-Supervised Learning
	6.2.3.4 Discussion

	6.2.4 Summary on Private Learning Framework

	6.3 Summary of Differentially Private Data Analysis

	7 Differentially Private Deep Learning
	7.1 Introduction
	7.2 Preliminary
	7.2.1 Deep Learning Structure
	7.2.2 Stochastic Gradient Descent
	7.2.2.1 Deep Auto-Encoder

	7.3 Differentially Private Deep Learning
	7.3.1 Basic Laplace Method
	7.3.2 Private SGD Method
	7.3.2.1 Norm Clipping
	7.3.2.2 Grouping Batches
	7.3.2.3 Privacy Composition

	7.3.3 Deep Private Auto-Encoder Method
	7.3.3.1 Deep Private Auto-Encoder Algorithm
	7.3.3.2 Functional Mechanism
	7.3.3.3 Sensitivity Measurements

	7.3.4 Distributed Private SGD
	7.3.4.1 Sparse Vector Technique

	7.4 Experimental Methods
	7.4.1 Benchmark Datasets
	7.4.2 Learning Objectives
	7.4.3 Computing Frameworks

	7.5 Summary

	8 Differentially Private Applications: Where to Start?
	8.1 Solving a Privacy Problem in an Application
	8.2 Challenges in Differentially Private Applications
	8.2.1 High Sensitivity Challenge
	8.2.2 Dataset Sparsity Challenge
	8.2.3 Large Query Set Challenge
	8.2.4 Correlated Data Challenge
	8.2.5 Computational Complexity Challenge
	8.2.6 Summary

	8.3 Useful Public Datasets in Applications
	8.3.1 Recommender System Datasets
	8.3.2 Online Social Network Datasets
	8.3.3 Location Based Datasets
	8.3.4 Other Datasets

	8.4 Applications Settings

	9 Differentially Private Social Network Data Publishing
	9.1 Introduction
	9.2 Preliminaries
	9.3 Basic Differentially Private Social Network Data Publishing Methods
	9.3.1 Node Differential Privacy
	9.3.1.1 Truncation and Smooth Sensitivity
	9.3.1.2 Lipschitz Extension
	9.3.1.3 Iterative Based Mechanism

	9.3.2 Edge Differential Privacy

	9.4 Graph Update Method
	9.4.1 Overview of Graph Update
	9.4.2 Graph Update Method
	9.4.3 Update Function
	9.4.4 Privacy and Utility Analysis
	9.4.4.1 Privacy Analysis
	9.4.4.2 Utility Analysis

	9.4.5 Experimental Evaluation
	9.4.5.1 Datasets and Configuration
	9.4.5.2 Performance Evaluation on Diverse Size of Query Sets

	9.5 Summary

	10 Differentially Private Recommender System
	10.1 Introduction
	10.2 Preliminaries
	10.2.1 Collaborative Filtering
	10.2.2 Neighborhood-Based Methods: k Nearest Neighbors
	10.2.3 Model-Based Methods: Matrix Factorization

	10.3 Basic Differentially Private Recommender Systems
	10.3.1 Differentially Private Untrustworthy Recommender System
	10.3.2 Differentially Private TrustworthyRecommender System
	10.3.2.1 Matrix Factorization with Private Input Perturbation
	10.3.2.2 Private Stochastic Gradient Perturbation
	10.3.2.3 ALS with Output Perturbation

	10.4 Private Neighborhood-Based Collaborative Filtering Method
	10.4.1 KNN Attack to Collaborative Filtering
	10.4.2 The Private Neighbor Collaborative FilteringAlgorithm
	10.4.2.1 The Private Neighbor Selection
	10.4.2.2 Recommendation-Aware Sensitivity
	10.4.2.3 Private Neighbor Selection Implementation

	10.4.3 Privacy and Utility Analysis
	10.4.3.1 Utility Analysis
	10.4.3.2 Privacy Analysis

	10.4.4 Experiment Analysis
	10.4.4.1 Datasets and Measurements
	10.4.4.2 Performance of PNCF

	10.5 Summary

	11 Privacy Preserving for Tagging Recommender Systems
	11.1 Introduction
	11.2 Preliminaries
	11.2.1 Notations
	11.2.2 Tagging Recommender Systems
	11.2.3 Related Work

	11.3 Private Tagging Publishing Method
	11.3.1 User Profiles
	11.3.2 Private Tagging Release Algorithm Overview
	11.3.3 Private Topic Model Generation
	11.3.3.1 LDA Model Construction
	11.3.3.2 Private Model Generation
	11.3.3.3 Topic-Based Profile Generation

	11.3.4 Topic Weight Perturbation
	11.3.5 Private Tag Selection
	11.3.6 Privacy and Utility Analysis
	11.3.6.1 Privacy Analysis
	11.3.6.2 Utility Analysis

	11.3.7 Experimental Evaluation
	11.3.7.1 Datasets
	11.3.7.2 Performance of Tagging Recommendation

	11.4 Summary

	12 Differentially Location Privacy
	12.1 Introduction
	12.2 Preliminary
	12.3 Basic Location Privacy Methods
	12.3.1 Snapshot Location Privacy: Geo-Indistinguishability
	12.3.1.1 Probabilistic Model
	12.3.1.2 Geo-Indistinguishability Definition
	12.3.1.3 Geo-Indistinguishability Method

	12.3.2 Trajectory Privacy

	12.4 Hierarchical Snapshot Location Publishing
	12.4.1 Hierarchical Sensitivity
	12.4.2 Overview of Private Location Release
	12.4.3 Private Location Release Algorithm
	12.4.3.1 Private Location Clustering
	12.4.3.2 Cluster Weight Perturbation
	12.4.3.3 Private Location Selection

	12.4.4 Utility and Privacy
	12.4.4.1 Utility Analysis
	12.4.4.2 Privacy Analysis

	12.4.5 Experimental Evaluation
	12.4.5.1 Datasets
	12.4.5.2 Estimation of Distance Error

	12.5 Summary

	13 Differentially Private Spatial Crowdsourcing
	13.1 Introduction
	13.2 Basic Method
	13.2.1 Background of Crowdsourcing
	13.2.2 Differentially Private Crowdsourcing Methods

	13.3 Differential Privacy in Reward-Based Crowdsourcing
	13.3.1 Problem Statement
	13.3.2 Building a Contour Plot with DP Guarantee
	13.3.3 Task Assignment
	13.3.3.1 Modeling Acceptance Probability and ASP
	13.3.3.2 Optimized Strategy and Radius Estimation

	13.3.4 Experimental Evaluation
	13.3.4.1 Performance on DE
	13.3.4.2 Performance on RejR
	13.3.4.3 Performance on EC

	13.4 Summary

	14 Correlated Differential Privacy for Non-IID Datasets
	14.1 Introduction
	14.2 An Example: Correlated Records in a Dataset
	14.3 Basic Methods
	14.3.1 Pufferfish
	14.3.2 Blowfish

	14.4 Correlated Differential Privacy
	14.4.1 Correlated Differential Privacy Problem
	14.4.2 Research Issues and Challenges
	14.4.3 Correlated Dataset Analysis
	14.4.4 Correlated Sensitivity
	14.4.5 Correlated Iteration Mechanism
	14.4.5.1 Overview of Correlated Iteration Mechanism
	14.4.5.2 Correlated Update Function
	14.4.5.3 Parameters Discussion

	14.4.6 Mechanism Analysis
	14.4.6.1 Privacy Analysis
	14.4.6.2 Utility Analysis

	14.4.7 Experiment and Analysis
	14.4.7.1 Datasets and Configuration
	14.4.7.2 The Performance of CIM
	14.4.7.3 Correlated Sensitivity vs. Global Sensitivity

	14.5 Summary

	15 Future Directions and Conclusion
	15.1 Adaptive Data Analysis: Generalization in Machine Learning
	15.2 Personalized Privacy
	15.3 Secure Multiparty Computations with Differential Privacy
	15.4 Differential Privacy and Mechanism Design
	15.5 Differential Privacy in Genetic Data
	15.6 Local Differential Privacy
	15.7 Learning Model Publishing
	15.8 Conclusion

	References
	Index

