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Abstract—Privacy-preserving data mining techniques are useful for analyzing various information, such as Internet of Things data and
COVID-19-related patient data. However, collecting a large amount of sensitive personal information is a challenging task. In addition,
this information may have missing values, which are not considered in the existing methods for collecting personal information while
ensuring data privacy. Failure to account for missing values reduces the accuracy of the data analysis. In this article, we propose a
method for privacy-preserving data collection that considers many missing values. The patient data are anonymized and sent to a data
collection server. The data collection server creates a generative model and a contingency table suitable for multi-attribute analysis
based on expectation–maximization and Gaussian copula methods. Using differential privacy (the de facto standard) as a privacy
metric, we conduct experiments on synthetic and real data, including COVID-19-related data. The results are 50–80%more accurate
than those of existing methods that do not consider missing values.

Index Terms—COVID-19, differential privacy, missing values, multi-dimensional analysis, privacy-preserving data collection
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1 INTRODUCTION

TO control a pandemic such as the coronavirus disease
2019 (COVID-19), we require the age, gender, family

structure, and medical history of the infected individu-
als [1], [2]. Although such data may be provided to medi-
cal institutions by the patients themselves, the information
is highly sensitive. If this information is anonymized, it
can be shared among researchers worldwide without iden-
tifying the patients, which would help to elucidate the
state of the pandemic and predict its course with greater
accuracy.

Even when anonymized, a large amount of sensitive per-
sonal information is difficult to acquire. Moreover, this
information may have missing values, as individuals who
are willing to provide all confidential information are fewer
than those who are willing to provide incomplete informa-
tion. Researchers have proposed several methods that col-
lect personal information while ensuring data privacy [3],
[4], [5], [6]. In most of these methods, the privacy model is

the !-differential privacy [7], the de facto standard of privacy
assurance [8]. Although these methods achieve differentially
private data collection, they do not consider missing values.
Consequently, the accuracy of the data analysis is signifi-
cantly reduced, especially in multi-attribute analysis involv-
ingmanymissing values.

In this paper, we propose a method for privacy-preserving
data collection that considers many missing values. The
patient data are anonymized on the patient’s device and/or
computer in authorized hospitals, and are sent to a data col-
lection server. Each patient can select which data to share or
not share. The data collection server creates a generative
model and contingency table suitable for multi-attribute anal-
ysis based on expectation–maximization andGaussian copula
methods.

We considered that if the value distribution of one or two
attributes can be restored, the error in each attribute can be
limited even when there are several missing values. Copula
enables data generation when certain information (such as
correlation and mutual information) is available for each
pair of attributes. We thus combined the features of copula
with those of data recovery using differential privacy. To
our knowledge, this idea is novel to privacy-preserving
data collection.

Applying a copula model to differentially private data
collection with many missing values is our first contribu-
tion. The main technical contribution is as follows. To gener-
ate a copula model, a value distribution of each attribute
and mutual information of all attributes are required. How-
ever, the server cannot collect original data, rather it collects
noised data. Therefore, if the server generates value distri-
butions and mutual information from the collected data, the
generated copula model will be collapsed. Therefore, a tech-
nique to mitigate differentially private noise is necessary
(described in Sections 4.2.1 and 4.2.2.)
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The remainder of this paper is organized as follows.
Section 2 presents a motivating example and the assump-
tions of this study. Section 3 describes related work and
Section 4 discusses the proposed method in detail. In Sec-
tions 5 and 6, we evaluate the results and discuss several
practical considerations, respectively. Conclusions are pre-
sented in Section 7.

2 BACKGROUND

2.1 Motivating Example
Fig. 1 presents a typical application of the proposed privacy-
preserving data collection method. The data of each patient,
such as age, gender, and medical history, are provided to
authorized entities such as hospitals. The patients decide
the information provided to the data collection server,
which will be shared with researchers worldwide. Patients
can also provide information not provided to hospitals,
such as family structure and salary.

If the patient data are sufficiently detailed, researchers
can identify patients from the information provided even
when all identifiers are removed. However, if the informa-
tion is insufficiently detailed, the effectiveness of the data
analysis is significantly reduced. To solve this problem, we
propose a differential privacy model.

Hospitals also apply a differential privacy mechanism
to the information provided by each patient. The differen-
tial privacy mechanism can process any additional infor-
mation provided by the patient. The differentially private
information, including the additional differentially private
information, is sent to the data collection server, which col-
lects the differentially private information from several
hospitals. The server then constructs a generative model
that should be similar to a generative model created using
true information, which is unknown to the server. Apply-
ing the generative model, researchers can construct a con-
tingency table, mine the association rules, and perform
machine learning with a suitable model such as a deep
neural network.

2.2 Assumptions
In the COVID-19 scenario, we assume that all patients pro-
vide their information to the data collection server through
authorized entities such as hospitals. The same assumption
is made in COVID-19 contact tracing applications [9]. For
example, the Ministry of Health, Labor, and Welfare in
Japan launched a smartphone application called COVID-19

Contact-Confirming Application (COCOA).1 When a
COCOA user is confirmed to be infected with COVID-19,
an authorized health center issues a code that the user can
enter into COCOA. Only users with valid codes can register
their infection.

Our proposed method can be used in other scenarios,
such as crowd-sensing applications. In these applications,
participants provide information such as their location and
accelerometer data. Because smartphones can be used for
health monitoring and cognitive function assessment [10],
they can provide a medical-information portal to the data
collection server. When the involvement of authorized enti-
ties is difficult, incentive and trustworthiness mechanisms
such as those proposed in [11], [12] can be used.

We also assume many missing values in the collected
data. As reported in the literature, many individuals hesi-
tate to provide all their information [13], [14]. The rate of
missing values ranges between 25% and 55% and may even
be higher [13]. We also assume that the data collection
server is honest-but-curious. That is, the server honestly fol-
lows the proposed scheme but attempts to reveal as much
personal data as possible. Furthermore, we assume that the
data collection server constructs a generative model and a
contingency table. For this purpose, the server requires cate-
gorical attribute values. If the original value is a numerical
value, it is classified into a predefined category in advance.

Several privacy-protection studies assume that users
want to receive services from a service provider based on
their attribute values. In such cases, the service provider
requires the precise information on each user’s attribute val-
ues [15]. However, in our scenario, all individuals voluntar-
ily provide anonymized values to the data collection server
and do not expect services from the data collection server
based on their attribute values, although the server may
provide various incentives such as financial rewards. The
data collection server aims to create a dataset that can be sta-
tistically analyzed without precise information about each
individual’s attribute values.

3 RELATED WORK

3.1 Differential Privacy
Differential privacy models [7] have been actively studied in
the data mining field [16], [17]. Differential privacy ensures

Fig. 1. Example application of the proposed privacy-preserving data collection method.

1. https://play.google.com/store/apps/details?id¼jp.go.mhlw.
covid19radar&hl¼en_US (accessed June 26, 2020)
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that the output of the anonymization algorithm does not
heavily rely on the data of a particular individual. Each
individual can make a well-informed decision about
whether to provide the data, and the risk of information
leakage is controlled by the privacy budget !.

A randomized algorithm A satisfies !-differential privacy
if and only if for all pairs of individual values s1 and s2 and
for allR # RangeðAÞ, the following equation holds:

P ðAðs1Þ 2 RÞ & e!P ðAðs2Þ 2 RÞ: (1)

Our research targets privacy-preserving data collection
from each person. In this scenario, each datum from person
can be considered as a database with one record. In this
case, the privacy model is also known as !-local differential
privacy. Our research targets !-local differential privacy. In
this paper, “!-differential privacy” refers to “!-local differ-
ential privacy.”

3.2 Anonymized Data Analysis With Differential
Privacy

Mobile crowd-sensing is one application of anonymized
data collection, and privacy-preserving techniques can
incentivize participants [18]. Erlingsson et al. [19] proposed
a privacy-preserving technique called Randomized Aggre-
gatable Privacy-Preserving Ordinal Response (RAPPOR).
Subsequently, Kairouz et al. [3] analyzed two algorithms,
k-ary RR and RAPPOR, and extended them as O-RR and O-
RAPPOR, respectively. O-RAPPOR outperformed k-ary RR,
RAPPOR, and O-RR over the usual range of ! values. O-
RAPPOR uses space-efficient probabilistic data structures
called Bloom filters [20], which are changed at random to
ensure differential privacy. However, as these methods do
not consider missing values, all records with missing values
must be removed before applying the methods.

Sei et al. [4] proposed S2Mb, which enhances the random-
ized response scheme [21], and proposed a method for esti-
mating true counts from values with several errors [5]. They
assumed a single attribute without missing values; if there
were multiple attributes without missing values, they were
converted into one attribute in advance. Several other studies
on privacy-preserving data collection have been pub-
lished [22], [23], [24], [25], [26]. However, all methods for dif-
ferentially private anonymized data collection are heavily
influenced by the number of records in the database. Thus,
when the number of records is small, the accuracy of data
analysis by thesemethods is significantly reduced.

Wang et al. proposed a differentially private deep neural
network platform for sensitive crowd-sourced data [27].
This platform develops a deep neural network model using
the sensitive data and publishes the trained model. How-
ever, attackers can use model inversion attacks [28], [29]
and membership inference attacks [30], [31] to infer the sen-
sitive raw data from the trained model. To protect these
data, the platform adds noise in the training phase. Never-
theless, Wang et al. assumed that the platform is a trusted
entity that can collect true information about sensitive data.

3.3 Missing Value Imputation
Wei et al. analyzed and compared the imputation accura-
cies of eight imputation methods [32]. The best-performing

models were random forest and quantile regression imputa-
tion of left-censored data. In another study, Deb and Liew
proposed an imputation method applicable to traffic acci-
dent data [33]. Their approach identifies a set of correlated
records using a decision tree. The missing values are
imputed from the correlation between the missing and non-
missing attributes. Their method also samples several poten-
tial imputed values with high similarity.

Many imputation methods use fuzzy clustering algo-
rithms. For example, Rahman et al. proposed a missing value
imputation framework based on fuzzy expectation–maximi-
zation and fuzzy clustering [34]. This method searches and
uses records with highest similarity to the record with miss-
ing values. The search is performed by a general fuzzy c-
means clustering algorithm. Based on the membership
degrees of all clusters, the missing values are then imputed
by a fuzzy expectation–maximization algorithm [35], which
is a modification of the regular expectation–maximization
algorithm. Meanwhile, Sefidian and Daneshpour proposed
the Gray-based fuzzy c-means and mutual information fea-
ture selection imputation method [36]. While executing the
clustering algorithm, the distance between records is calcu-
lated using the gray relational grade and the highly related
attributes (in terms of mutual information) are selected. Raja
and Thangavel proposed a rough k-means centroid-based
imputation method [37] that can handle inconsistencies and
uncertainties in datasets. They reported that their proposed
method outperforms the simple k-means and fuzzy c-means
clusteringmethods.

All of the aforementioned methods assume that the
obtained values represent the true values. However, the
present study assumes that the server obtains disguised val-
ues because the true values are changed by differential pri-
vacy techniques. The structure of the disguised values
depends on the applied differential privacy techniques. The
structure can be a Bloom filter [3] and a set of dummy val-
ues [4]. Therefore, the existing missing value imputation
methods are inapplicable to differential privacy scenarios.

3.4 Differentially Private Synthetic Datasets
Generation

The literature includes several studies on differentially pri-
vate data synthesis, such as [38], [39], [40], [41], [42]. These
studies attempt to generate differentially private synthetic
datasets from original (non-privatized) datasets. An exam-
ple scenario is as follows. Assume a company holds an orig-
inal (non-privatized) dataset that it wants to share with
another organization. Because the original dataset contains
sensitive personal information, the company should privat-
ize the dataset. In this scenario, the company can use a dif-
ferentially private data synthesis method before sharing the
dataset.

Zhang et al. [38] proposed PrivSyn, an automatic syn-
thetic data generation method, that calculates correlations
of non-privatized attribute values and calculates multiple
differentially private marginals to capture the characteris-
tics of the non-privatized dataset. From these marginals,
PrivSyn generates a differentially private synthetic dataset.

Vietri et al. [39] proposed two algorithms, FEM and sep-
FEM. Their goal is to create a differentially private synthetic
dataset from a non-privatized dataset that largely maintains
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the answers to a large number of statistical queries.
Although these algorithms follow the same dynamics as
DualQuery [43] and MWEM [44], they could significantly
improve accuracy. Similarly, Harder et al. [41] and Cai et al.
[42] also assume a trusted data server has non-private per-
sonal information. In the framework proposed by Li et al.
[40], the server can be honest-but-curious, but it needs true
information that aggregates personal attribute values. These
methods can release differentially private synthetic datasets
with high accuracy; however, their assumptions and objec-
tives differ from our study (see Fig. 2). We assume that a
server does not have any original personal data, rather we
assume it has differentially private data. The assumption
and the objective of our research are very common in differ-
entially private data collection research [3], [4], [5], [19],
[45]. However, it is important to note that previous studies
do not consider missing values.

The techniques of differentially private synthetic dataset
generation are clearly more accurate than the techniques of
differentially private data collection if the data collection
server has original values; however, in this study, this
assumption is not valid, and hence, a different method is
needed in the present case.

4 PROPOSED METHOD

Based on differential privacy, we anonymize the patient
personal data at the client side. The server collects the ano-
nymized data and reconstructs the distributions of each
attribute and all combinations of two attributes. From the
two-attribute distributions, the mutual information of all
pairs of attributes is calculated. Next, the generative model
of the patient personal data is calculated from the mutual
information using a Gaussian copula [46], [47]. Because our
proposed method requires only the information about the
combination of every attribute pair, it is robust to missing
values. Finally, to visualize the generative model, we con-
struct a contingency table from the generative model and
the distribution of each attribute. The notations used in this
study are listed in Table 1.

In the proposed method, to analyze collected differen-
tially private data, the server constructs a copula model that
mitigates the noise added by the differentially private tech-
nique. Constructing a copula model requires a value distri-
bution of each attribute and mutual information about all

attributes, as described in Section 4.2.3. Therefore, the pro-
posed method first estimates single-attribute distribution
(Section 4.2.1) and then estimates attribute-pair distribution
(Section 4.2.2). Generation of the copula model is described
generated in Section 4.2.3. The copula model can generate
an arbitrary number of data samples without missing val-
ues. From these data samples, a contingency table is con-
structed (Sections 4.2.4 and 4.2.5.)

4.1 Anonymization at the Client Side
Let sij represent the value of attribute Aj of patient i. The
number of attributes is g; that is, patient i has attribute val-
ues si1; . . . ; sig. Some values of sij may be missing. Let fj be
the number of categories of Aj.

We anonymize each non-missing value sij. Let Vj repre-
sent the domain of Aj and Vjk represent the kth value of Vj.
For example, assume that A1 represents the attribute of a
disease {COVID-19, flu, cancer}. In this case, f1 ¼ 3 and
V11; V12; and V13 are COVID-19, flu, and cancer, respectively.

Based on a previous method [4], we create a value set Rij

for each attribute Aj as follows:

Rij¼
fsijg [RanðVjnfsijg; hj ' 1Þ with prob. pj
RanðVjnfsijg; hjÞ otherwise;

!
(2)

where RanðS; hÞ represents a function that randomly selects
h elements without duplication from set S. For example,
assume that S ¼ fA;B;Cg, and h=2. In this case, RanðS; hÞ
outputs fA;Bg, fB;Cg, or fA;Cg. To satisfy !-differential
privacy, the parameters hj and pj are respectively deter-
mined as

hj ¼ max

$
fj

1þ e!

%

; 1

 !

and

pj ¼
e!hj

fj ' hj þ e!hj
; (3)

following [4]. As there are g attributes in our scenario, each
Rij should satisfy !=g-differential privacy [48].

Algorithm 1 is the anonymization algorithm from the cli-
ent side.

The privacy budget allocated to each attribute is !=g.
Even if all attributes are the same, i.e., the correlations
among attributes are 1, we can satisfy !-differential privacy
due to the composition property of differential privacy [48].

Fig. 2. The difference between researches on differentially private syn-
thetic dataset, and differentially private data collection and analysis.

TABLE 1
Notations

! Privacy budget for differential privacy
n Number of participants
g Number of attributes for data collection
Aj jth attribute
Vj Domain of Aj

fj Size of Vj

Vjk kth value of Vj

sij True attribute value of Aj of Person i
Rij Disguised attribute value of Aj of Person i
c Number of targeted attributes for analysis (used in

experiments only)
m Missing value rate (used in experiments only)
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Algorithm 1. Anonymization Algorithm for Patient i

Input:Privacy parameter !, original data fsi1; . . . ; sigg, each
domain Vj

Output:Anonymized version of fsi1; . . . ; sigg
1: for j ¼ 1; . . . ; g do
2: fj  jVjj
3: Based on (3), determine pj and hj by substituting !=g into !
4: Based on (2), obtain Rij from sij and Vj

5: end for
6: returnRRii ¼ fRi1; . . . ; Rigg

4.2 Estimation at the Server Side
The data collection server first estimates the value distribution
of each attribute as described in Section 4.2.1. It then estimates
the value distribution of each attribute pair as described in
Section 4.2.2. Using these estimated value distributions, the
server creates a generative model (a Gaussian copula; see Sec-
tion 4.2.3). Finally, it generates n complete data records and
creates a contingency table of target attributes, which is speci-
fied by a data analyzer (Sections 4.2.4 and 4.2.5). Fig. 3 presents
the overall structure of the proposed estimation scheme.

4.2.1 Separated Estimation: Estimation of a Value
Distribution of Each Attribute

Each client sends its true value and ðhj ' 1Þ randomly
selected values other than the true value with probability pj
and sends hj randomly selected values other than the true
value with probability ð1' pjÞ for attribute j, as represented
in Algorithm 1. As a result, the probability that the true value
is sent is pj, and the probability that another value is sent is

qj ¼
pjðhj ' 1Þ
fj ' 1

þ ð1' pjÞhj

fj ' 1
¼ hj ' pj

fj ' 1
; (4)

as for attribute j. Here, because a total of hj values are sent,
pj þ ðfj ' 1Þqj ¼ hj.

Let wjk represent the number of occurrences of Vjk in
fRR11; . . . ; RRnng, and let ujk represent the true number of occur-
rences of Vjk. Thus, we have the following equation:

wj1

wj2

..

.

wjfj

0

BBB@

1

CCCA ¼ M

uj1

uj2

..

.

ujfj

0

BBB@

1

CCCA; (5)

where M is the matrix where the diagonal elements are pj
and other elements are qj. The symbol zjk represents the esti-
mated number of occurrences of Vjk. We can easily estimate
these values by calculating the following equation:

zj1
zj2

..

.

zjfj

0

BBB@

1

CCCA ¼ M'1

wj1

wj2

..

.

wjfj

0

BBB@

1

CCCA; (6)

where M'1 represents the inverse matrix of M. However,
the estimation accuracy is very low [3]. Moreover, calculat-
ing the inverse function requires significant computation
time, particularly for a large matrix. To overcome these limi-
tations, we selected the expectation-maximization (EM)-
based algorithm. If we know the values of ujk, we can calcu-
late each expected value of wjk. In our problem setting, we
know the actual values of wjk; however, we do not know
ujk. Therefore, considering ujk as unobserved latent varia-
bles, the EM-based algorithm can provide maximum a pos-
teriori estimation. It can find the unobserved latent
variables that best explain the observed values. Moreover,
the EM-based algorithm can ensure the likelihood increase
with each iteration [49], [50].

The symbol enj represents the number of records in which
a value exists for attribute Aj

enj ¼
Xfj

k¼1

wjk: (7)

Let zjk represent the estimated number of occurrences
of Vjk in Aj. From the expectation–maximization-based
algorithm [4], we obtain zjk by repeating the following
substitution:

zjk  zjkðpjDk þ qjðE 'DkÞÞ; (8)

where

qj ¼
hj ' pj
fj ' 1

; (9)

Dk ¼
wjk

pjzjk þ qjðhj enj ' zjkÞ
; (10)

Fig. 3. Overview of the proposed estimation scheme.
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and

E ¼
Xfj

k¼1

Dk: (11)

4.2.2 Separated Estimation: Estimation of a Value
Distribution of Every Two Attribute Combinations

Let Vjj0 be the combinations of the elements of attributes Aj

and Aj0

Vjj0 ¼ Vj ) Vj0 : (12)

Let wjj0kk0 represent the number of simultaneous occur-
rences of Vjk and Vj0k0 in each record of fRR11; . . . ; RRnng. The
symbol fnjj0 represents the number of records in which a
value exists for both attributes Aj and Aj0

fnjj0 ¼
Xfj

k¼1

Xfj0

k0¼1

wjj0kk0 : (13)

As an example, assume that Table 2 was created by the
privacy-preserving data collection. en1, en2, and en3 are 4, 2,
and 3, respectively because attribute A1 has four values,
attribute A2 has two values, and attribute A3 has three val-
ues. gn1;2 is 2 because two records (the first and fourth
records) contain values in both A1 and A2 (the values are
[39, 40, 58, 35.2, 35.5] and [33, 34, 88, 37.5, 37.6]). Similarly,
gn1;3 andgn2;3 are 3 and 1, respectively.

As in Section 4.2.1, we estimate the occurrence of each
combination Vjk and Vj0k0 of attributes Aj and Aj0 for n
patients. By calculating these values for all combinations Aj

and Aj0 , we can estimate all value distributions of all attri-
bute pairs.

After estimating attribute-pair distribution, the method
of calculating mutual information is as follows. Mutual
information of attributes j and j0 is calculated as follows:

X

k2Vj

X

k02Vj0
pðk; k0Þlog pðk; k0Þ

pðkÞpðk0Þ
; (14)

where pðk; k0Þ represents the joint probability that Vjk and
Vj0k0 occur, and pðkÞ represents the probability that Vjk occurs.

4.2.3 Generative Model Construction: Constructing a
Generative Model as the Gaussian Copula

Let X1; . . . ; Xg be random variables and let F ðx1; . . . ; xgÞ
represent the joint probability distribution function of
X1; . . . ; Xg. The marginal distribution functions F1; . . . ; Fg

and the joint probability distribution function have the fol-
lowing relationship.

Theorem 4.1 (Sklar’s Theorem [51]). A function C uniquely
satisfies the following expression:

F ðx1; . . . ; xgÞ ¼ PrðX1 & x1; . . . ; Xg & xgÞ
¼ CðF1ðx1Þ; . . . ; FgðxgÞÞ: (15)

From Sklar’s Theorem, we have

Cðu1; . . . ; ugÞ ¼ F ðF'1
1 ðu1Þ; . . . ; F'1

g ðugÞÞ; (16)

for arbitrary uu ¼ ðu1; . . . ; ugÞ (ui 2 ½0; 1+). Based on Sklar’s
Theorem, we have

Fgðx1; . . . ; xg;SÞ ¼ PrðX1 & x1; . . . ; Xg & xgÞ
¼ CðFðx1Þ; . . . ;FðxgÞÞ; (17)

whereFð,Þ represents the cumulative distribution function of
a standard Gaussian distribution, andFgðx1; . . . ; xg;SÞ repre-
sents the cumulative distribution function of a g-dimensional
Gaussian distribution with random variablesX1; . . . ;Xg, and
a covariancematrixS.

From (17), the cumulative distribution of the Gaussian
copula can be expressed as

Cðu1; . . . ; ugÞ ¼ FgðF'1ðu1Þ; . . . ;F'1ðugÞ;SÞ: (18)

The Gaussian copula C represents the cumulative distribu-
tion function of each marginal distribution, which is a uni-
form distribution in the range [0,1]. The probability density
function of the Gaussian copula cðu1; . . . ; ug;SÞ satisfies the
following relationship:

fðx1; . . . ; xgÞ ¼ cðFðx1Þ; . . . ;FðxgÞÞ
Yg

j¼1

fðxjÞ; (19)

where fð,Þ represents the probability density function of a
standard Gaussian distribution, i.e.,

fðx1; . . . ; xgÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞgjSj
p exp ' 1

2
xTS'1x

# $
: (20)

Therefore, we have

cðu1; . . . ; ugÞ ¼
1ffiffiffiffiffiffi
jSj

p exp ' 1

2
vvT ðS'1 ' IIÞvv

# $
; (21)

where vv ¼ F'1ðuuÞ.
S must be estimated from the collected data. Let uui and

vvi represent the ith uu and ith vv, respectively. From (21), the
log-likelihood function of the Gaussian copula is given by

lðSÞ ¼ 'n

2
ln jSj' 1

2

Xn

i¼1

vviT ðS'1 ' IIÞvvi; (22)

where vvj ¼ F'1ðuujÞ. Differentiating (22) with respect to S'1,
we obtain [52]

TABLE 2
Example Table Created by the Privacy-Preserving Data Collection

Record ID Age (A1) (years) Body temp. (A2) (-C) Location (A3)

1 {39, 40, 58} {35.2, 35.5} -
2 {12, 22, 30} - {Shop A, Hospital D}
3 {25, 40, 61} - {Street B, Hospital D}
4 {33, 34, 88} {37.5, 37.6} {School C, Shop E}
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@lðSÞ
@S'1 ¼ n

2
S' 1

2

Xn

i¼1

vvivviT : (23)

Therefore, the maximum likelihood estimator bS is

bS ¼ 1

n

Xn

i¼1

vvivviT : (24)

To alleviate the high computational cost of (24), we esti-
mate S using a suboptimal approach [47]. First, we calculate
the mutual information of every pair of attributes using the
reconstructed data in Section 4.2.2. We then determine each
suboptimal element of S that minimizes the distance
between the mutual information of the estimated joint dis-
tribution and that calculated from the reconstructed data
(see Section 4.2.2).

Although a copula assumes that it can obtain original
(non-privatized) data, it can construct a generative model
from small data. There are several types of copulas, such as
Gaussian and Student-t copulas. Garcia-Jorcano and Benito
demonstrated experimentally that the Gaussian and Student-
t copulas were best among Gaussian, Student-t, Clayton,
Gumbel, and Frank copulas [53]. Lasmar and Berthoumieu
preferred the Gaussian copula to the Student-t copula
because the Gaussian copula can achieve high accuracy and
its parameters can be easily estimated [54]. Based on these
previous studies, the Gaussian copula was selected in this
study. However, several other studies pointed out the short-
comings of the Gaussian copula [55]. We intend to consider
using other types of copulas in future work.

4.2.4 Contingency Table Construction: Generation of
Records Based on the Generative Model

We generated n complete data from the Gaussian copula C
and the reconstructed data in Section 4.2.1. The n values of
each attribute Aj were determined based on the estimated
attribute distribution in Section 4.2.1. We also generated
random values !x1; . . . ; !xg based on an g-dimensional Gauss-
ian distribution with covariance matrix bS. We then obtained
ui ¼ FðxjÞ for all i ¼ 1; . . . ; g. From the reconstructed data
in Section 4.2.1, we finally obtained F'1

j ðujÞ for each attri-
bute value, where Fj represents the marginal distribution of
attribute Aj.

4.2.5 Contingency Table Construction: Counting Each
Combination of the Target Attributes

After the above process, we obtained n complete data
records with g attributes. If a contingency table is used for
many attributes, it loses its primary value [56], [57]. There-
fore, data analyzers generally select several attributes. The
target contingency table is then constructed by simply count-
ing the occurrences of each combination of attribute values
from the n generated complete data records.

Algorithm 2 presents the server algorithm.

4.3 Security Analysis
The proposed algorithm satisfies !-differential privacy, as
proven below. Because the estimation algorithm at the
server side uses only the anonymized data generated at the

client side, we must prove the safety of the anonymization
algorithm at the client side.

Algorithm 2. Algorithm for Generating the Gaussian
Copula and Contingency Table

Input: Privacy parameter !, anonymization parameters pj
and hj, anonymized dataset fRR11; . . . ; RRnng, set of target
attributes for contingency table

Output: Contingency table of target attributes
1: for j ¼ 1; . . . ; g do
2: Zj  estimated value distribution of Aj calculated by

Equation (8) based on Rijði ¼ 1; . . . ; nÞ.
3: end for
4: for j ¼ 1; . . . ; g do
5: for j0 ¼ 1; . . . ; g do
6: if j 6¼ j0 then
7: Zjj0  estimated value distribution of the

combination ofAj andAj0 calculatedbyEquations (12),
(13), and (8) based onRij andRij0ði ¼ 1; . . . ; nÞ.

8: end if
9: end for
10: end for
11: for j ¼ 1; . . . ; g do
12: Construct cumulative distribution functionFj based onZj.
13: end for
14: for j ¼ 1; . . . ; g do
15: for j0 ¼ 1; . . . ; g do
16: if j 6¼ j0 then
17: for until the change of S converges do
18: Create a temporary Copula with Fj, F 0j and a

temporal S.
19: jth row and j0th column of S are calculated based

on the mutual information of Zjj0 .
20: end for
21: end if
22: end for
23: end for
24: O ?
25: for i ¼ 1; . . . ; n do
26: fx1; . . . ; xgg  generated based on g-dimensional

Gaussian distribution with covariance matrix S.
27: for j ¼ 1; . . . ; g do
28: uj  FðxjÞ
29: zj  F'1

j ðujÞ
30: O O [ ffz1; . . . ; zggg
31: end for
32: end for
33: Count each occurrence of the combination of attribute

values in O.

Theorem 4.2. The anonymization algorithm at the client side
satisfies !-differential privacy.

Proof. First, we prove that the anonymization for each attri-
bute satisfies !=g-differential privacy. The probability that
Rij contains sij and hj ' 1 specified elements is given by

P ¼ pj

fj'1Chj'1
; (25)

and the probability that Rij does not contain sij but con-
tains hj specified elements is
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Q ¼ 1' pj

fj'1Chj

: (26)

By Equation (1), the constraints on the values of pj and hj

based on !=g-differential privacy are given by

e!=g . max
P
Q ;
Q
P

# $

¼ max
pjðfj ' hjÞ
ð1' pjÞhj

;
ð1' pjÞhj

pjðfj ' hjÞ

# $
: (27)

Substituting Equation (3) into the right side of Expression
(27), we obtain

max e!=g; e'!=g
% &

: (28)

Because e is greater than 1 and ! and g are greater than 0,
Expression (27) is satisfied.

As mentioned above, each attribute value is pro-
tected by !=g-differential privacy. Because there are g
attributes satisfying !=g-differential privacy, the final
output of the anonymization algorithm satisfies !-differ-
ential privacy [48]. tu

4.4 Time Complexity Analysis
The proposed system involves five steps as shown in Fig. 3.
The relationship between each step and time complexity is
described in Table 3.

The total time complexity is Oðngþ g2 þ
Qc

j¼1 f
0
jÞ. Please

note that the last item
Qc

j¼1 f
0
j is common for all the existing

methods because the purpose is to generate histograms
with the number of bins as

Qc
j¼1 f

0
j.

Because the task “Construct a generative model of all
attributes” is more complex than the task “Generate
records based on the generative model,” the impact of
Oðg2Þ is larger than the impact of OðngÞ. Therefore, if too
many attributes are found, the calculation cost will
increase greatly. However, even when the number of
attributes is 500 and the number of people is 10,000, the
calculation time was 310 min in our experiments. All
experiments were conducted on an Intel Xeon CPU W-
2295 PC with 64 GB RAM.

5 EVALUATION

5.1 Evaluation Setting
We compared the performances of the proposed method
and four state-of-the-art methods: O-RAPPOR [3], S2Mb [4],
MDN [23], and PDE/ETE [5].

Please note that as described in Section 3.4, evaluating the
techniques of differentially private synthetic dataset genera-
tion is impossible in this study because the data collection
server does not access the original values of people in the
experiments although the techniques of differentially private
synthetic dataset generation require the original values.

The experimental results of the simple combination of
the differentially private technique at the client side and the
copula technique at the server side are also shown. This
method is referred to as DF+Copula.

If the estimated contingency table generated by each
method was similar to that generated from the valid data,
which was unknown to the data collection server, the
estimated contingency table was considered to be well
generated by the model.

In this study, a contingency table is considered as a prob-
ability distribution of attribute values. To measure the dif-
ference between the probability distributions, we applied
the Jensen–Shannon (JS) divergence rather than the usual
Kullback–Leibler (KL) divergence, because the KL diver-
gence assumes all non-zero probabilities. If any probabili-
ties are zero, the KL divergence fails due to a division-by-
zero error. The JS divergence is based on the KL divergence
but does not impose the non-zero constraint.

In the Apple implementation, ! equals 1 or 2 per
datum [58]. In evaluations by the Apple differential privacy
team, ! was set to 2, 4, and 8 [59]. Microsoft described their
differentially private framework and, in their paper, they
set ! from 0.1 to 10 [60]. In the paper that proposed RAP-
POR [19], which was developed by Google, ! ¼ log ð3Þ is
used as the main setting. Hsu showed that, in the literature,
! ranges from 0.01 to 10 [61]. Based on these settings, we set
the value of ! from 0.01 to 10.

We varied the missing value rate m from 0.3 to 0.8, and
the number of attributes c in the analysis from 1 to 5. The
reported results are the averages of 100 experiments for
each parameter setting. As the default parameters, we set
m ¼ 0:5, c ¼ 3, and ! ¼ 5.

Note that the missing value rate m is used only for the
experiments, and the proposed algorithm does not require

TABLE 3
Analysis of the Time Complexity

Step Time Complexity

Estimate a value distribution of each attribute.
(lines 1-3 in Algorithm 2)

Oðnþ gÞ

Estimate a value distribution of every two attribute
combinations. (lines 4-10 in Algorithm 2)

Oðnþ g2Þ

Construct a generative model of all attributes.
(lines 11-23 in Algorithm 2)

Oðg2Þ

Generate records based on the generative model.
(lines 24-32 in Algorithm 2)

OðngÞ

Count each combination of the target attributes.
(line 33 in Algorithm 2)

Oð
Qc

j¼1 f
0
jÞwhere f 0j represents the domain size of jth targeted

attribute for analysis
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this information. The number of targeted attributes for anal-
ysis c can be freely determined by the data analyst accord-
ing to the purpose of the analysis.

5.2 Experiments on Synthetic Data
We first evaluated the JS divergence on synthetic datasets,
changing the number of attributes g from 10 to 100. The
attribute values of each individual were determined ran-
domly, the number of patients n was set to 10,000, and fj ¼
2 for all j.

Several existing studies target a binary (i.e., fj ¼ 2) sce-
nario. For example, Kairouz et al. [3] proposed a technique
targeting fj ¼ 2 first. Then, they extended the technique
and proposed O-RAPPOR. We conducted this experiment
to verify the effectiveness of the proposed method in such a
basic setting. To evaluate the practical application of the
proposed method, we conducted experiments with four
real datasets.

Figs. 4a, 4b, 4c and 4d, 4e, 4f present the results for g ¼ 10
and g ¼ 100, respectively. Under almost all parameter set-
tings, the JS divergence was lower in the proposed method
than in the established methods. As the number of attributes
g increased, the results in Figs. 4d, 4e, and 4f were higher
than those in Figs. 4a, 4b, and 4c. Meanwhile, increasing the
privacy budget ! lowered the privacy-protection level.
Therefore, when ! was large, the JS divergence decreased in
all methods.

As the missing value rate m and several target attributes
c increased, the JS divergence increased in the O-RAPPOR,
S2Mb, MDN, and PDE/ETE methods, but remained low in
the proposed method and DF+Copula. PDE/ETE does not
transform the numerical values into categorical values.

The results demonstrate that in terms of accuracy, the
proposed method outperforms the simple combination of a
differentially private technique and a copula technique (DF
+Copula.)

This observation confirms the robustness of the proposed
method to missing values.

Then, we varied the number of attributes (g) from 10 to
200. Fig. 5 shows the results. The fewer the attributes, the
fewer are the bins in the histogram, and accordingly, the JS
divergence tends to be smaller. Conversely, if many attrib-
utes are found, most of the values in the histogram will be
zero. Therefore, by predicting the value of most bins to be 0,
we can expect a small JS divergence in this case as well.
Because of these two characteristics, for many methods, we
can see from the figure that the JS divergence increases as
the number of attributes increases to some extent, and then,
it decreases as the number of attributes increases further.
For all settings, the proposed method exhibited the smallest
JS divergence among all the tested methods.

Although several previous studies used a dataset with
more than 200 attributes [41], many studies use datasets
with less than 100 attributes [38], [39], [40], [42]. Because our
proposed method calculates attribute-pair distribution, the
processing time for datasets with many attributes is rela-
tively long. In future, we will address ways to reduce the
simulation time and will conduct additional experiments
with the proposed method on datasets with a large number
of attributes.

Fig. 4. Results of synthetic data (fj ¼ 2).

Fig. 5. Results of synthetic data (! ¼ 5; c ¼ 3;m ¼ 0:5).
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5.3 Experiments on Real Data
In the real-data experiments, we first investigated the Adult
dataset [62], which is widely used in evaluations of privacy-
preserving data mining techniques (for example, see [63],
[64], [65]). The Adult dataset consists of 15 attributes (e.g.,
age, income) in 32,561 records. The number of categories in
these experiments was set from 2 to 9 per attribute.

Figs. 6a, 6b, and 6c present the experimental results.
When the missing value rate was small or !was large, the

JS divergence of the proposed method was similar to those
of S2Mb, PDE/ETE, and O-RAPPOR. Similarly, when ! was
small, the JS divergence of the proposed method was similar
to the JS divergence of S2Mb, PDE/ETE, and DF+Copula.

However, at high missing value rates, the proposed
method outperformed the other methods, achieving a high
level of privacy protection.

To determine whether the proposed method is applicable
to small datasets, we randomly sampled 10% of the 32,561
records in the Adult dataset and measured their JS diver-
gence. Figs. 6d, 6e, and 6f present the results. Owing to the
data sparsity, the estimation task was more difficult than in
the other experiments and the JS divergence in all methods
was higher for the 3,256 records than for the 32,561 records.
However, the proposed method was robust to the small
dataset. On a larger dataset with an insignificant missing
value rate, the JS divergence was higher in the proposed
method than in the existing methods. Therefore, regardless
of missing value rate, the proposed method outperformed
the other methods on smaller datasets.

We then used the Communities and Crime Unnormal-
ized dataset [66] (hereafter referred to as the Community
dataset). This dataset contains 124 predictive attributes such
as the percentage of individuals aged 25 and over with a
bachelor’s or higher degree, which may be considered as
private information in some communities.

After removing the 22 attributes with more than 80%
missing values, we obtained 102 attributes for analysis.

Fig. 7 presents the experimental results of the Community
dataset. The results are similar to those of the synthetic Adult
dataset. For almost all parameter settings, the proposed
method outperformed the other methods. As the number of
participants n was smaller than in the previous experiments,
increasing the missing value rate increased the JS divergence
of the proposed method. However, the increase in JS diver-
gence is not considerable.

We next used a default dataset containing 21,985 records
with the following attributes: sex, job, income, number of
loans from other companies, number of delayed payments,
and a default flag (0 or 1). Here, the word default means that a
debtor failed to pay off a loan. The results of this dataset,
which was generated from authentic default data, are plotted
in Fig. 8. As shown in Fig. 8a, the proposedmethod accurately
reconstructed the contingency tables even when the missing
value ratio (m) increased to 0.8. On the contrary, the accuracies
of the existingmethods greatly decreased as themissing value
ratio increased. Increasing the number of attributes used for
generating contingency tables (c) also increased the recon-
structed error (Fig. 8b). However, the proposed method was
more resistant to increasing c than the other methods. Fig. 8c
shows the effect of ! on the reconstruction error in the five
methods. When ! was sufficiently large, the accuracies of all
methods were very similar, but when ! was small, the recon-
structed error was clearly lowest in the proposed method.

Finally, we applied a dataset related to the 2019 coronavi-
rus disease (COVID-19) called PatientMedical Data for Novel
Coronavirus COVID-19.2 Hereafter, we refer to this dataset as
the COVID-19 dataset. This dataset contains 427,036 records

Fig. 6. Results of the Adult dataset.

2. https://datarepository.wolframcloud.com/resources/Patient-
Medical-Data-for-Novel-Coronavirus-COVID-19/ (accessed June 20, 2020)
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with 23 attributes.More than 90% of the values aremissing for
12 attributes, and approximately 27% are missing even for
basic attributes such as age and sex. From the COVID-19 data-
set, we extracted the Japanese medical data and analyzed the
attributeswith fewmissing values (namely, age, sex, adminis-
trative division, date of confirmation, and chronic disease sta-
tus). The date of confirmation was categorized by month and
the number of categories in each attribute ranged from 2 to 29.

Fig. 9 presents the results of the COVID-19 dataset.
Under all parameter settings, the JS divergence was lower
in the proposed method than in the other methods. As the
rate of missing values in the original COVID-19 dataset was
68.7%, we concluded that the proposed method effectively
handles real datasets with missing values.

As examples, Figs. 10 and 11 respectively display histo-
grams generated by the compared methods for combina-
tions of the race, native country, and salary attributes in the
Adult dataset and for combinations of the age, gender, and
month of confirmation attributes in the COVID-19 dataset.
Shown are the true histograms and those generated by O-
RAPPOR, S2Mb, MDN, PDE/ETE and DF+Copula. On the
Adult dataset, the generated histograms of O-RAPPOR and
S2Mb did not differ greatly from the original histogram, but
several values differed considerably from the true values. In

contrast, the proposed method determined the true distri-
bution almost perfectly, although several values contained
errors. The proposed method also reconstructed the histo-
gram of the COVID-19 dataset with high accuracy, whereas
the histograms reconstructed by the existing methods
noticeably differed from the true histogram.

The execution time of the proposed system was 61 sec-
onds on the Adult dataset (with 15 attributes and 32,561
records) and 1,399 seconds for an artificial dataset with 100
attributes and 10,000 records. As the proposed system cal-
culates the occurrence frequencies of the attribute values for
all pairs of attributes, its runtime obviously increased with
number of attributes; nevertheless, the execution time on
the artificial dataset was short enough for practical use.

5.4 Discussion of the Results of Experiments
Existing private data collection methods (O-RAPPOR, S2Mb,
PDE/ETE, MDN) do not consider missing values. For exam-
ple, if the server wants to analyze the relationship between
attributesA1,A2, andA3, suchmethods onlyuse data samples
that have all these attribute values. For example, if themissing
value rate is 0.5 among all attributes, the probability that three
attributes have values is ð1' 0:5Þ3=0.125. In other words,
only 12.5% of data samples can be used to analyze these

Fig. 7. Results of the Community and Crime Unnormalized datasets.

Fig. 8. Results of the default dataset.

Fig. 9. Results of the Patient Medical Data for Novel Coronavirus COVID-19 dataset.
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attributes. The larger the value ofm or the larger the value of
c (which represents the number of targeted attributes for
analysis), the greater the decrease in the probability that all
target attributes have values (Figs. 4a–9a and Figs. 4b–9b.)

Differing from existing methods, the proposed method
can reduce the effect of missing values because it estimates
the attribute value distribution while mitigating the noise
added by the differential privacy. The proposed method
estimates single-attribute distribution and pair-attribute dis-
tribution, i.e., the relationship among three or more attrib-
utes does not need to be calculated to construct a copula
model. Nevertheless, the constructed copula model can gen-
erate data samples that represent the true relationship
between all attributes because the model is built to repro-
duce the characteristics of all pair-attribute distributions.

DF+Copula uses differentially private data as it is and
constructs a copula model based on the differentially pri-
vate data. Although each data sample has a significant
amount of noise, true information is not completely lost.
Therefore, DF+Copula could realize relatively high accu-
racy, particularly when m is large. However, DF+Copula

does not mitigate the noise, and the accuracy is less than
that of the proposed method.

In this experiment, we set the value of ! to between 0.01
and 10. An epsilon value of 0.01 is a very strict setting, while
a value of 10 is a less privacy-preserving setting. Therefore,
depending on the datasets, the accuracy of the proposed
method and several other methods are similar when ! is
0.01 or 10. However, for all ! values, the accuracy of the pro-
posed method is better or comparable to other methods.
Regardless of the value of !, it is evident that the proposed
noise reduction technique has a positive impact.

6 DISCUSSION

6.1 Kinds of Missing Values
In general, missing data can be categorized into the follow-
ing three types:

! Missing completely at random (MCAR): MCAR signi-
fies that the probability of an attribute value being
observed ormissed does not depend on any attributes.

Fig. 10. Example of generated histograms of the race, native country, and salary attributes in the Adult dataset (! ¼ 5,m ¼ 0:5, c ¼ 3).

Fig. 11. Example of generated histograms of the age, gender, and confirmation month attributes in the COVID-19 dataset (! ¼ 5,m ¼ 0:5, c ¼ 3).
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! Missing at random (MAR): MAR signifies that the
probability of an attribute value being observed or
missed depends on other attributes but not on the
missing attribute value itself.

! Missing not at random (MNAR): MNAR signifies
that the probability of an attribute value being
observed or missed depends on the missing attribute
value itself.

In our experiments, we generated MCAR values. To our
knowledge, we introduce the first privacy-preserving
method for anonymized data collection with many missing
values. The proposed method creates a Gaussian copula
using the estimated value distributions of each attribute and
of each pair of attributes. By combining the estimation with
existing methods for missing value imputation of MAR and
MNAR data (e.g., [67], [68]), our proposed method could be
extended toMAR andMNARdata.

If all attributes are independent of each other, a multi-
dimensional analysis is not required. Therefore, we assumed
that at least several attributes depend on each other. How-
ever, the proposed algorithm can also be used when all
attributes are independent. In this case, the proposed algo-
rithmwill perform similarly to the existingmethods.

6.2 Treating Continuous Attributes
Continuous attributes in our method can be handled by two
approaches. In the first approach, the continuous attribute
values are discretized into several categories and the pro-
posed algorithm is applied to the categorized values. For
example, suppose that the domain of an attribute is [0, 10).
When the domain is discretized into [0,0.1), [0.1,0.2),..., [9.9,
10), the attribute is divided into 100 categories. In the second
approach, a continuous attribute is not discretized, but dif-
ferential privacy is achieved by adding Laplace noise to
each continuous attribute value [69]. The value distributions
of each attribute and each pair of attributes can be recon-
structed from a set of noise-added values generated with a
certain probability distribution [5], [70]. These techniques
can be used for determining the reconstructed value distri-
bution in our method, which is needed for applying the
Gaussian copula. Although the proposed method is applica-
ble to continuous attributes, the present study considers dis-
crete attributes to emphasize our approach.

6.3 Treating Massive Attributes
In massive-attribute cases, the privacy budget will be lim-
ited. This challenge is faced not only by the proposed
method, but by all methods based on differential privacy. In
our research, we allocated the same privacy budget to all
attributes for technical convenience. However, reasonable
privacy-budget allocation techniques such as [71], which
can be used in the existing methods, can also be imple-
mented in the proposed method.

6.4 Treating Data Streams
We here apply our method to data streams. Let t be the num-
ber of times that a differentially private value is reported by
a user to the data collection server. In this case, the privacy
budget of each report can be computed as !=t. This naive
solution decreases the utility at the data collection server.

More sophisticated approaches such as those in [72], [73]
could be applied to data streaming in ourmethod.

The following sampling technique can be used. Even if
the number of rounds is t, each person can send their differ-
entially private value only t0ð< tÞ times because our pro-
posed method is robust to missing values, as shown in the
experimental results. In this case, the privacy budget is !=t0,
and this value is larger than !=t.

When a set of new data comes in, we can reapply the pro-
posed method based only on the new data. We acknowl-
edge that it may be possible to reduce the time required to
generate a new copula model by reusing a copula model
that has already been generated. We intend to investigate
this possibility in future work.

Such techniques can be used for reconstructing the value
distribution at each time stamp in our method, which is
needed for applying the Gaussian copula. In this way, our
proposed method can be applied to data streaming. Of
course, these techniques can only partially prevent the use-
fulness degradation of the data.

Dwork et al. [74] recommended that the system clarifies the
value of epsilon being used per datum, the lifetime of the
data, cumulative privacy loss incurred before the data are
retired, etc. In our research, these values can be freely deter-
mined under the agreement between the data collector and a
person. Let !0 represent the value of epsilon being used per
datum. Each person sends g attribute values to the data collec-
tor; hence, the total privacy loss is g!0 for each report. If each
person sends attribute values under (g!0)-differential privacy
h times during the lifetime of the data, the cumulative privacy
loss incurred before the data are retired is hg!0. In our experi-
ments, we assumed h=1, and we set ! ¼ g!0. For example,
when the value of ! was set to 0.01 and g was 10, the value of
!0 was set to 0.01/10. Further, we can obtain the result for h >
1. When h is set to 100, the value of !0 is reduced by a factor of
100. Therefore, the results obtained for g = 10, h = 1, and
!=0.01 can be considered equivalent to those obtained for g =
10, h = 100, and !=1.0 because !0 is set to 0.001 in both cases.

If the person wants to keep the total privacy loss during
the lifetime of the data below !target and sends their attribute
values h times during the lifetime, each datum of their attri-
bute value should be protected under (!target=hg)-differential
privacy. In other words, if each person will send their differ-
entially private value t0ð< tÞ times under !0-differential pri-
vacy for each attribute value, the value of t0 should be set to
ð!target=!0 gÞwhere ! ¼ !0 g.

6.5 Extensions of !-Differential Privacy
In this study, we focused on !-differential privacy and !-local
differential privacy. Several relaxations of !-differential pri-
vacy (and !-local differential privacy) have been proposed.
Examples are the Gaussian differential privacy [75], concen-
trated differential privacy [76], Bayesian differential pri-
vacy [77], and Renyi differential privacy [78]. Nevertheless,
many studies, including those based on differential private-
federated learning (which generates a machine-learning
model based on distributed data), still target !- or ð!; dÞ-dif-
ferential privacy [79], [80], [81], [82], [83], [84]. In fact, !-dif-
ferential privacy is the fundamental concept underlying
various differential privacy definitions and ensures stronger
privacy than these relaxations of differential privacy [75],
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[76], [77], [78]; accordingly, !-differential privacy has been
employed inmany of the latest studies [82], [83], [84], [85].

Therefore, we focus on !-differential privacy (and !-local
differential privacy) in the present study. In future work,
ð!; dÞ–differential privacy and other extensions of differen-
tial privacy will be considered.

6.6 Several Issues on Differential Privacy
In this study, it is assumed an individual provides data based
on the protocol of the proposed method. However, there
exists the threat of a manipulation attack in which an individ-
ual alters the proposed protocol with the goal of forcing the
data collection server to draw false conclusions. Non-interac-
tive local protocols, including our proposed protocol, are not
robust to manipulation attacks, and their effectiveness will
increase as privacy guarantees are strengthened. Cheu et al.
stated that multiparty computation or shuffling might solve
this problem [86]. Multiparty computation is a technology
that requires long computation time but can process data con-
fidentially [87]. Shuffling assumes a trusted shuffler exists,
and the shuffler anonymizes the origins of individuals’ mes-
sages [88], [89]. Using techniques for finding malicious input
data in machine-learning models such as [90] is another
option. Verification of whether these methods against manip-
ulation attacks will also work for our proposed method is a
future issue.

Determining the level of privacy protection in relation to
business requirements is not an easy task. Dandekar et al.
proposed an algorithm that takes the privacy–utility trade-
off and minimizes the compensation budget [91].

Ding et al. stated that several differential privacy algo-
rithms have bugs and they do not actually ensure differen-
tial privacy [92]. Although the method proposed in this
paper was proven to ensure differential privacy, it is impor-
tant to recognize that such problems exist.

7 CONCLUSION

Patient information is required for monitoring the status of
patients’ infections such as COVID-19. For this purpose, it is
often collected and sharedwith researchers. Althoughprivacy
protection is a significant concern and necessitates privacy-
protection techniques, excessive emphasis on privacy-protec-
tion processing stifles the data analysis. In addition, many
patients elect not to provide personal information and some
patients provide only some of their personal attributes values
due to privacy concerns. In such cases, the collected privacy-
protected data have many missing values. Several methods
have been proposed for privacy-protection data mining, but
these methods do not considermissing values. Consequently,
the accuracy of data analysis is significantly reduced when
themissing values are numerous.

In this paper, we inferred the value distributions of single
attributes and combinations of two attributes, and generated
aGaussian copula. Because it uses the information about com-
binations of two attributes, the proposed method is robust to
missing values in data. The generated Gaussian copula uti-
lizes the information from all combinations of two attributes,
which enhances its data reproducibility. On the real COVID-
19 dataset, we demonstrated that the proposedmethod signif-
icantly reduces the JS divergence from those of the existing

methods. In this study, we evaluated the proposed method
on public data, but in future work, we expect to collect more
sensitive attribute values using the proposedmethod.
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