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SoK: Using Dynamic Binary Instrumentation for Security
(And How You May Get Caught Red Handed)

Anonymous Author(s)

ABSTRACT
Dynamic binary instrumentation (DBI) techniques allow for moni-
toring and possibly altering the execution of a running program up
to the instruction level granularity. The ease of use and !exibility of
DBI primitives has made them popular in a large body of research in
di"erent domains, including software security. Lately, the suitabil-
ity of DBI for security has been questioned in light of transparency
concerns from artifacts that popular frameworks introduce in the
execution: while they do not perturb benign programs, a dedicated
adversary may detect their presence and defeat the analysis.

The contributions we provide are two-fold. We #rst present the
abstraction and inner workings of DBI frameworks, how DBI as-
sisted prominent security research works, and alternative solutions.
We then dive into the DBI evasion and escape problems, discussing
attack surfaces, transparency concerns, and possible mitigations.

We make available to the community a library of detection pat-
terns and stopgap measures that could be of interest to DBI users.

CCS CONCEPTS
• Security and privacy → Systems security; Intrusion/anomaly
detection and malware mitigation; Software reverse engineering; Soft-
ware security engineering.

KEYWORDS
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1 INTRODUCTION
Even before the size and complexity of computer software reached
the levels that recent years have witnessed, developing reliable and
e$cient ways to monitor the behavior of code under execution
has been a major concern for the scienti#c community. Execution
monitoring can serve a great deal of purposes: to name but a few,
consider performance analysis and optimization, vulnerability iden-
ti#cation, as well as the detection of suspicious actions, execution
patterns, or data !ows in a program.
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To accomplish this task users can typically resort to instrumen-
tation techniques, which in their simplest form consist in adding
instructions to the code sections of the program under observation.
One can think of at least two aspects that impact the instrumenta-
tion strategy that researchers can choose to support their analyses:
the availability of the source code for the objects that undergo obser-
vation and the granularity of information that should be gathered.
Additionally, a researcher may be interested in accessing instru-
mentation facilities that let them also alter the normal behavior of
the program when speci#c conditions are observed at run time.

A popular instrumentation paradigm is represented by dynamic
binary instrumentation. DBI techniques support the insertion of
probes and user-supplied analysis routines in a running software
for the sake of monitoring and possibly altering its execution up
to the instruction level granularity, without requiring access to
its source code or modi#cations to the runtime. The ease of use
and !exibility that characterize DBI techniques has favored their
adoption in an impressive deal of programming languages, software
testing, and security research over the years.

Lately, the suitability of using DBI for security applications has
been questioned in light of artifacts that popular DBI frameworks
introduce in the execution, which may let an adversary detect their
presence and cripple an analysis that hinges on them. This trend
of research originated in non-academic forums like REcon and
BlackHat where security researchers pointed out several attack
surfaces for DBI detection and escape (e.g., [18, 25, 32, 57]).

Among academic works, Polino et al. [47] proposed countermea-
sures for anti-instrumentation strategies found in packers, some of
which are speci#c to DBI. One year later Kirsch et al. [29] presented
a research that instead deems DBI unsuitable for security applica-
tions, presenting a case study on its most popular framework.

Contributions. In this work we try to approach the problem of
using DBI in software security research from a neutral stance, in
hopes of providing our readers with insights on when the results
of an analysis built on top of DBI should not be trusted blindly.
We distill the DBI abstraction, discuss inner workings and primi-
tives of frameworks implementing it, and present a quantitative
overview of recent security literature that uses DBI to back a hetero-
geneous plethora of analyses. We then tackle the DBI evasion and
escape problems, discussing desired transparency properties and
architectural implications to support them. We categorize known
adversarial patterns against DBI engines by attack surfaces, and
discuss possible mitigations both at framework design level and
as part of user-encoded analyses. We collect instances of known
adversarial sequences and prototype a mitigation scheme in the
form of a high-level library that could be of interest to DBI users.

2 DYNAMIC BINARY INSTRUMENTATION
DBI systems have signi#cantly evolved since the advent of DynInst [6]
as a post-compilation library to support tools that wanted to instru-
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ment and modify programs during execution. In the following we
present characteristic traits of the DBI abstraction and its embodi-
ments, discussing popular frameworks and alternative technologies.

2.1 The DBI Abstraction
We can think of a DBI system as an application virtual machine that
interprets the ISA of a speci#c platform (usually coinciding with
the one where the system runs) while o"ering instrumentation
capabilities to support monitoring and altering instructions and
data from an analysis tool component written by the user:

De!nition 2.1 (DBI System). A DBI system is an execution run-
time running in user space for process-level virtualization. An un-
modi#ed compiled program executes within the runtime as would
happen in a native execution, with introspection and execution
control capabilities accessible to its users in a programmatic way.

The de#nition above is meant to capture distinctive traits of
most DBI embodiments used in research in the last two decades.
The components of a DBI runtime are laid out in the same address
space where program execution will take place, with the program’s
semantics being carried out alongside user-supplied code for its
analysis. Alternative designs recently proposed for moving the
runtime outside the process where the code under analysis executes
are discussed in Section 5.1 and Section 6.

Inner Workings of DBI Engines. A design goal for a DBI system
is to make it possible to observe—and possibly alter—the entire
architectural state of the program under analysis, including register
values, memory addresses and contents, and control !ow transfers.

To this end, the approach followed by most popular DBI em-
bodiments is to recur to dynamic compilation: the original code
of the application is not executed directly, but rather analyzed, in-
strumented and compiled using a just-in-time (JIT) compiler. An
instruction fetcher component reads the original instructions in the
program as they are executed for the #rst time, o"ering the engine
the opportunity to instrument them before undergoing compilation.

The compilation unit is typically a trace, de#ned as a straight-line
sequence of instructions ending in an unconditional transfer and
possibly with multiple side exits representing conditional branches.
Compiled traces are placed in a code cache, while a dispatcher
component coordinates transfers among compiled traces and new
fetches from the original code. Similarly as in tracing JIT compilers
for language VMs, a trace exit can be linked directly to its target to
bypass the dispatcher when a compiled version is available, while
inline caching and code cloning strategies can be used to optimize
indirect control transfers. Special care is taken for instructions that
should not execute directly, such as those for system call invoca-
tions, as they get handled by an emulator component in a similar
way to how privileged instructions are dealt with in virtual machine
monitors for whole-system virtualization [21].

From the user’s perspective, analysis code builds on instrumen-
tation facilities exposed through an API interface, with the DBI
backend taking care of program state switching between analysis
routines and the code under observation.

The design space of a DBI engine accounts for di"erent possibil-
ities. An alternative to JIT compilation is the probe-based approach
where the original program instructions are executed once they

have been patched with trampolines to analysis code. In this work
we deal with JIT-based engines only, as they can o"er better perfor-
mance for #ne-grained instrumentation and are intuitively more
transparent. Another choice is whether to operate on a native in-
struction set or by lifting code to an intermediate representation:
the #rst choice typically can lead to faster compilation at the price of
an increased complexity for the backend, while the other generally
favors architectural portability.

Execution Correctness. One of the most critical challenges in the
design of a DBI system is to prevent the native behavior of an appli-
cation under analysis from inadvertently changing when executing
inside the system. Real-world applications can exercise a good
deal of introspective operations: common instances are retrieving
instruction pointer values and return addresses for function invoca-
tions, and iterating over loaded code modules. When the execution
environment orchestrated by the DBI runtime does not meet the
expected characteristics, an application might exercise unexpected
behaviors or most likely crash.

Bruening et al. [5] identify and discuss three broad categories
of transparency requirements related to correctness: code, data,
and concurrency. An example of code transparency when using JIT
compilation is having every address manipulated by the applica-
tion match the one expected in the original code: the DBI system
translates addresses for instance when the OS provides the con-
text for a signal or exception handler. Data transparency requires,
e.g., exposing the CPU state to analysis code as it would be in a
native execution (leaving the application’s stack unhindered as the
program may examine it) and not interfering with its heap usage.
Concurrency transparency prescribes, e.g., that the runtime does
not interfere by using additional locks or analysis threads.

Achieving these properties is di$cult when handling generic
code, as a system should not make assumptions on how a program
has been compiled or how it manipulates registers, heap and stack:
for instance, some versions of Microsoft O$ce read data or execute
code located beyond the top of the stack, while aggressive loop
optimizations may use the stack pointer to hold data [5].

Primitives for Analysis. DBI systems o"er general-purpose APIs
that can accommodate a wide range of program analyses, allowing
users to write clients (most commonly referred to as DBI tools) that
run interleaved with the code under analysis. One of the reasons
behind the vast popularity of DBI frameworks is that DBI architects
tried not to put too many restrictions on tool writers [5]: although
sometimes users may miss the most e"ective way for the job, they
are not required to be DBI experts to implement their program anal-
yses. The runtime exposes APIs to observe the architectural state
of a process (e.g., memory and register contents, control transfers)
from code written in traditional programming languages such as
C/C++, often supporting the invocation of external libraries (e.g.,
for disassembly or constraint solving). A DBI system may also try
to abstract away idiosyncrasies of the underlying instruction set,
providing functions to intercept generic classes of operations such
as reading from memory or transferring control !ow.

From the client perspective, a generic DBI system provides prim-
itives to handle at least the following elements and events:

• instructions in the original program to be instrumented;
• system call invocation, before and after a context switch;
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• library function invocation, intercepted at the call site and
also on return when possible (think of, e.g., tail calls);

• creation and termination of threads and child processes;
• dynamic code loading and unloading;
• exceptional control !ow;
• asynchronous control !ow (e.g., callbacks, Windows APCs).

Instructions can be exposed to the client when traces are built
in the code cache, allowing it to iterate over the basic blocks that
compose them, or when code images are #rst loaded to memory, en-
abling ahead-of-time (AOT) instrumentation. AOT instrumentation
is useful for instance when analyzing libraries (e.g., to place hooks
at the beginning of some functions), but cannot access information
like basic-block boundaries that is revealed only at run time.

The capabilities o"ered to a client are not limited to execution
inspection, but include the possibility of altering the program behav-
ior. Common examples are overwriting register contents, replacing
instructions, and modifying the arguments and return values for a
function call or rewiring it to some user-de#ned function.

Sophisticated engines like Pin and DynamoRIO assist users in
tool creation by providing facilities for memory manipulation,
thread local storage, creation of analysis threads, synchronization,
and interaction with the OS (e.g., for #le creation) that minimize
the possibility of interfering with the execution of the application.

The DBI abstraction can cope with sequences of code interleaved
with data, overlapping instructions, statically unknown targets for
indirect branches, and JIT code generation on the application side.
Another appealing feature is the possibility for some engines to
attach to a process and then release it just like a debugger; this
might come in handy, e.g., for large, long-running applications [35].

2.2 Popular DBI Frameworks
Pin [35], DynamoRIO [5] and Valgrind [40] are possibly the most
popularly known DBI frameworks, supporting di"erent architec-
tures and operating systems. They have been extensively used in
countless academic and industrial projects, providing reliable foun-
dations for building performant and accurate analysis tools.

Pin provides robust support for instrumenting binary code run-
ning on Intel architectures. Its instrumentation APIs allow analysis
tools to register for speci#c statements (e.g., branch instructions) or
events (e.g., thread creation) callbacks to analysis routines that can
observe the architectural state of the program. A recurrent criticism
is related to its closed source nature as it limits possible extensions.

DynamoRIO is an open source project and unlike Pin it exposes
the entire instruction stream to an analysis tool, allowing users to
performmany low-level code transformations directly. The superior
performance level it can o"er compared to Pin is still a popular
subject of discussion within the DBI community.

Sometimes the analysis code might be coupled too tightly with
details of the low-level binary representation. Valgrind and DynInst
approach this problem in di"erent ways. Valgrind lifts binary code
to an architecture-independent intermediate representation: this
allowed its developers to port it to many architectures and plat-
forms, to the advantages of analysis tools based on it. However, this
comes with performance penalties that could make it inadequate in
several application scenarios. On the other hand, DynInst tries to
provide high-level representations of the program under analysis

to the analysis tool: by exposing familiar abstractions such as the
control-!ow graph, functions, and loops, DynInst makes it easier
to implement even complex analyses. However, the intrinsic di$-
culties in the static analysis work required to back them may lead
DynInst to generate incomplete representations in presence of, e.g.,
indirect jumps or obfuscated code sequences.

Frida [28] tries to ease DBI tool writing by letting users write anal-
ysis code in JavaScript, executing it within the native application
by injecting an engine. The framework targets quick development
of analysis code, aiming in particular at supporting reverse engi-
neering tasks. Due to its !exible design, Frida can support several
platforms and architectures, including for instance mobile ones, but
its intrusive footprint could be a source of concern.

While for most DBI frameworks guest and host architectures
coincide, Strata [52] uses software dynamic translation to support
di"erent host and guest ISAs, requiring users to implement only
few guest and host-speci#c components. Valgrind could technically
support di"erent ISAs, but its current implementation does not.

libdetox [41] featured the #rst DBI framework design concerned
with transparency for security uses. Originally used as a founda-
tion for a user-space sandbox for software-based fault isolation,
libdetox randomizes the location of the code cache and other in-
ternal structures, posing particular attention on, e.g., preventing
internal pointers overwriting and disabling write accesses to the
code cache when the program executes. At least for its publicly
released codebase, the framework is however vulnerable to some
of the attacks that we will describe throughout Section 4.

Although more DBI frameworks [38, 49, 50] appeared recently,
their designs did not introduce architectural changes relevant for
security uses: for this reason we opted for not covering them.

2.3 Alternative Technologies
Source code instrumentation. When the source code of a program

is available and the analysis is meaningful regardless of its com-
piled form1, instrumentation can take place at compilation time.
Analyses can thus be encoded using source-to-source transforma-
tion languages like CIL [39] or by resorting to compiler assistance.
The most common instance of the latter approach are performance
pro#lers, but in recent years a good deal of sanitizers have been
built for instance on top of the LLVM compiler.

Operating at source level o"ers a few notable bene#ts. Analysis
code can be written in an architecture-independent manner, also
allowing it to access high-level properties of an application (e.g.,
types) that could be lost during compilation. Also, instrumentation
code undergoes compiler optimization, often leading to smaller
performance overheads. However, when the scope of the analysis
involves interactions with the OS or other software components
the applicability of source code instrumentation may be a"ected.

Static binary instrumentation. A di"erent avenue to instrument
a program could be rewriting its compiled form statically. This
approach is commonly known as Static Binary Instrumentation
(SBI), and sometimes referred to as binary rewriting. While tech-
niques for speci#c tasks such as collecting instruction traces had
already been described three decades ago [17], it is only with the

1There are cases where the source may not be informative enough (e.g., for side channel
detection) or Heisenberg e"ects appear if the source is altered (e.g., for memory errors).
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ATOM [56] framework that a general SBI-based approach to tool
building was proposed. ATOM provided selective instrumentation
capabilities, with information being passed from the application
program to analysis routines via procedure calls. SBI generally pro-
vides better performance than DBI, but struggles in the presence
of indirect branches, anti-disassembly sequences, dynamically gen-
erated code (JIT compiled or self-modifying), and shared libraries.
ATOM was shortly followed by other systems (e.g., [30, 51, 68])
that gained popularity in the programming languages community
especially for performance pro#ling tasks before the advent of DBI.
Recent research [67] has shown how to achieve with SBI some of
the practical bene#ts of DBI, such as instrumentation completeness
along the software stack and non-bypassable instrumentation. Some
obfuscation techniques and self-modifying code remain however
problematic, causing execution to terminate when detected.

Cooperation on the runtime side. Another possibility is to move
the analysis phase on the runtime side, like the virtual machine for
managed languages or the operating system for executables. While
the former possibility has been explored especially in programming
languages research (e.g., using instrumentation facilities of Java
VMs), the latter has seen several uses in security, for example in
malware analysis to monitor API calls using a hooking component
in kernel space. Although #ner-grained analyses like instruction
recording or information !ow analysis are still possible with this
approach [16], the !exibility of an analysis component executing
in kernel mode is more limited compared to DBI and SBI.

Virtual machine introspection. In recent years a great deal of
research has adopted Virtual Machine Introspection (VMI) tech-
niques to perform dynamic analysis from outside the virtualized
full software stack in which the code under analysis runs. The
VMI approach has been proposed by Gar#nkel and Rosenblum [21]
to build intrusion detection systems that retain the visibility of
host-based solutions while approaching the degree of isolation of
network-based ones, and became very popular ever since. Inspect-
ing a virtual machine from the outside enables scenarios such as
code analysis in kernel space that are currently out of reach of
DBI systems (an attempt is made in [66]). VMI is possible for both
emulation-based and hardware-assisted virtualization solutions,
allowing for di"erent trade-o"s in terms of execution speed and
!exibility of the analysis. Unlike DBI, VMI incurs a semantic gap
when trying to inspect high-level concepts of the guest system such
as API calls or threads. Recent research has thus explored ways
to minimize the e"ort required to build VMI tools, e.g., with auto-
matic techniques [15] or by borrowing components from memory
forensic frameworks [46]. While the ease of use of VMI techniques
has lately improved with the availability of scriptable execution
frameworks [58], performing analyses that require deep inspection
features or altering properties of the execution other than the out-
come of CPU instructions (say replacing a function call) remains
hard for a user, or at least arguably harder than in a DBI system. We
will return to this matter in Section 6 discussing also transparency.

3 DBI IN SECURITY RESEARCH
To provide the reader with a tangible perspective on the ubiquity
of DBI techniques in security research over the years, we have
reviewed the proceedings of !agship conferences and other popular

venues looking for works that made use of them. Although this list
may not be exhaustive, and a meticulous survey of the literature
could be addressed in a separate work, we identi#ed 95 papers and
articles from the following venues: 18 for CCS, 7 for NDSS, 6 for
S&P, 14 for USENIX Security, 10 for ACSAC, 4 for RAID, 4 for ASIA
CCS, 2 for CODASPY, 9 for DIMVA, 7 for DSN, 3 for (S)PPREW, and
11 among ESSoS, EuroSys, ICISS, ISSTA, MICRO, STC, and WOOT.

Prominent applications. For the sake of presentation, we classify
these works in the following broad categories, reporting the most
common types of analysis for each of them:

• cryptoanalysis: identi#cation of crypto functions and keys
in obfuscated code [31], obsolete functions replacement [3];

• malicious software analysis: e.g., malware detection and clas-
si#cation [37, 65], analysis of adversarial behavior [44], au-
tomatic unpacking [47];

• vulnerability analysis: e.g., memory errors and bugs [10, 60],
side channels [64], fuzzing [9], prioritization of code regions
for manual inspection [23], debugging [62];

• software plagiarism: detection of unique behaviors [61];
• reverse engineering: e.g., code deobfuscation [54], protocol
analysis and inference [7, 33], con#guration retrieval [59];

• information "ow tracking: design of taint analysis engines
and their optimization [26, 27];

• software protection: e.g., control !ow integrity [48], detection
of ROP sequences [13], software-based fault isolation [42],
code randomization [24], application auditing [69].

This choice left out 3 works that dealt with protocol replay, code
reuse paradigms, and hardware errors simulation, respectively.

Categories can have di"erent prevalence in general conferences:
for instance, 6 out of 14 USENIX Security papers deal with vul-
nerability detection, but only 2 of the 18 CCS papers fall into it.
For a speci#c category, works are quite evenly distributed among
venues: for instance, works in malicious software analysis (14) have
appeared in CCS (5), DIMVA (4), and #ve other conferences.

The heterogeneity of analyses built on top of DBI engines is
somehow indicative of the !exibility provided by the DBI abstrac-
tion to researchers for prototyping their analyses and systems. The
#rst works we surveyed date back to 2007, with 7 papers in that
year. The numbers for the past two years (9 works in 2017, 8 in 2018)
are lined up with those from four years before that (9 in 2013, 8 for
2014), hinting that DBI is still very popular in security research.

Usage of DBI primitives. For each work we then identify which
DBI system is used and what primitives are necessary to support the
proposed analysis. We grouped instrumentation actions required
by analyses in the following types:

• instructions, which we further divide in memory operations
(for checking every register or memory operand’s content),
call/ret (for monitoring classic calls to internal functions or
library code), branches ([in]direct and [un]conditional), and
other (for special instructions such as int and rdtsc);

• system calls, to detect low-level interactions with the OS;
• library calls, when high-level function call interception fea-
tures of the DBI engine (like the routine instrumentation of
Pin) are used to identify function calls to known APIs;
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Table 1: Application domains and uses of DBI primitives in related literature.

• threads and process, when the analysis is concerned with
intercepting their creation and termination;

• code loading, to intercept dynamic code loading events;
• exceptions and signals, to deal with asynchronous !ows.

In Table 1 we present aggregate results for application domains,
where for each category we consider the union of the instrumen-
tation primitives used by the works falling into it. While such
information is clearly coarse-grained compared to a thorough anal-
ysis of each work, we observed important regularities within each
category. For instance, in the cryptoanalysis domain nearly every
considered work resorts to all the primitives listed for the group.
Tracing all kinds of instructions and operands seems fundamental
in the analysis of malicious software, while depending on the goal
of the speci#c technique it may be necessary to trace also context
switches or asynchronous !ows. Observe that some primitives are
intuitively essential in some domains: this is the case of memory
accesses for information !ow analysis, as well as of control transfer
instructions in software protection works.

Choices. We identify Pin as the most popular engine in the works
we survey with 57 uses, followed by Valgrind (19), libdetox (5),
DynamoRIO (4) and Strata (3); in some cases the engine was not re-
ported. Unsurprisingly, Valgrind is very popular in the vulnerability
detection domain with 9 uses, just behind Pin with 12.

An important design choice that emerged from many works is
related to when DBI should be used to back an online analysis or to
rather record relevant events and proceed with o%ine processing.
Other than obvious aspects related to the timeliness of the obtained
results (e.g., shepherding control !ows vs. bug identi#cation) and
nondeterministic factors in the execution, also the complexity of
the analysis carried out on top of the retrieved information may
play a role—this seems at least the case with symbolic execution.

A few research works [45, 69] aiming at mitigating defects in
software devise their techniques in two variants: one for when the
source code is available, and another based on DBI for software in
binary form, hinting at higher implementation e"ort and possible
technical issues in using SBI techniques in lieu of DBI.

4 ATTACK SURFACES
In light of the heterogenous analyses mentioned in the previous sec-
tion, it is legitimate to ask whether their results may be a"ected by
imperfections or lack of transparency of the underlying DBI engine.
We will deal with these issues throughout the present section.

4.1 Desired Transparency Properties
Existing literature has discussed the transparency of runtime sys-
tems for program analysis under two connotations. The #rst, which

is compelling especially for VM architects and dynamic translator
builders, implies that an application executes as it would in a non-
instrumented, native execution [5], and that interoperability with
native applications works normally [12]. To this end, Bruening et
al. [5] identify three guidelines to achieve the execution correctness
properties outlined in Section 2.1 when writing a DBI system:
[G1] leave the code unchanged whenever possible;
[G2] when change is unavoidable, ensure it is imperceivable to

the application;
[G3] avoid resource usage con!icts.
The authors explain how transparency has been addressed on

an ad-hoc basis in the history of DBI systems, as applications were
found to misbehave due to exotic implementation characteristics
with respect to code, data, concurrency, or OS interactions.

DBI architects are aware that absolute transparency may be
unfeasible to obtain for certain aspects of the execution, or that im-
plementing a general solution would cause a prohibitive overhead.
In the words of Bruening et al. [5]: “the further we push transparency,
the more di#cult it is to implement, while at the same time fewer
applications require it”. In the end, the question boils down to see-
ing whether a presumably rare corner case may show up in code
analyzed by the users of the DBI system.

A second connotation of transparency, which is compelling for
software security research, implies the possibility of adversarial
sequences that look for the presence of a DBI system and thwart any
analyses built on top of it.We defer the discussion of the DBI evasion
and escape problems to the next section, as in the following we will
revisit from the DBI perspective general transparency properties
that authors of seminal works sought in analysis runtimes they
considered for implementing their approaches.

For an IDS, Gar#nkel and Rosenblum [21] identify three capabil-
ities required to support good visibility into a monitored system
while providing signi#cant resistance to both evasion and attack:

• isolation: code running in the system cannot access or modify
code and data of the monitoring system;

• inspection: the monitoring system has access to all the state
of the analyzed system;

• interposition: the monitoring system should be able to inter-
pose on some operations, like uses of privileged instructions.

The last two properties are simplymet by the design goals behind
the DBI abstraction. Supporting the #rst property in the presence
of a dedicated adversary seems instead hard for a DBI engine: as the
runtime shares the same address space of the code under analysis,
the possibility of covert channels is real. Actually, by subverting
isolation an attacker might in turn also foil the inspection and
interposition capabilities of a DBI system [29].
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The authors of the Ether malware analyzer [14] present a sim-
ple abstract model of program execution where transparency is
achieved if the same trace of instructions is observed in an environ-
ment with and without an analyzer component present. As they use
hardware virtualization, the model is later generalized to account
for virtual memory, exception handling, and instruction privilege
levels. The requirements identi#ed for a system that wants to hide
memory and CPU changes caused by its own presence are:

• higher privilege: the analyzer runs at a privilege level higher
than the highest level a program can achieve;

• privileged access for side e$ects: if any, side e"ects can be seen
only at a privilege level that the program cannot achieve;

• same basic instruction semantics: aside from exceptions, the
semantics of an instruction is not involved in side e"ects;

• transparent exception handling: when one occurs, the ana-
lyzer can reconstruct the expected context where needed;

• identical timing information: access to time sources is trapped,
so that query results can be massaged consistently.

For an analysis runtime operating in user space, ful#lling all
these requirements simultaneously is problematic, and oftentimes
unfeasible. While DBI systems preserve instruction semantics and
can capture exceptions, current embodiments operate at the same
privilege level of the code under analysis. Values retrieved from
timing sources can be massaged as in [1, 47] to deal with speci#c
detection patterns, but general strategies for manipulating the time
behavior of a process with realistic answers may be intrinsically
di$cult to conceive or computationally too expensive [20].

For a fair comparison, we observe that similar problems a"ect
to some extent also other other analysis approaches whose design
seems capable of accommodating such requirements in a robust
manner. Let us consider VMI techniques: Gar#nkel in [20] describes
several structural weaknesses in virtualization technology that an
attacker may leverage to detect its presence, concluding that build-
ing a transparent monitor “is fundamentally infeasible, as well as
impractical from a performance and engineering standpoint”. Attacks
to VMI-based analyses are today realistic: for instance, performance
di"erences can be observed due to TLB entry eviction [4], and the
falsi#cation of timing information can be imperfect [43].

In the next sections we will present the reader with practical
attack surfaces that a dedicated adversary may use to detect a DBI
system, and discuss how analyses running on one can be impacted.

4.2 DBI Evasion and Escape
The imperfect transparency of DBI systems has led researchers to
design a plethora of detection mechanisms to reveal the presence
of a DBI framework from code that undergoes dynamic analysis.
Once an adversary succeeds, the code can either execute misleading
actions to deceive the analysis, or attempt to carry out execution
!ows that go unnoticed by the engine. These scenarios are popularly
known as the DBI evasion and escape problem, respectively.

De!nition 4.1 (DBI Evasion). A code is said to evade DBI-based
analysis when its instruction and data !ows eventually start di-
verging from those that would accompany it in a native execution,
either as a result of a decision sequence that revealed the presence
of a DBI engine, or because of translation defects on the DBI side.

We opted for a broad de#nition of the evasion problem for the
following reason: alongside techniques that actively #ngerprint
known artifacts of a DBI engine and deviate the standard control
!ow accordingly, DBI systems su"er from translation defects that
are common in binary translation solutions and cause the analysis
to follow unfeasible execution paths. The most prominent example
is the use of self-modifying code, which is used both in benign
mainstream programs [5] (resulting in an unintended evasion, and
possibly in a program crash) and as part of implicit evasion mecha-
nisms to cripple dynamic analysis by yielding bogus control !ows.

De!nition 4.2 (DBI Escape). A code is said to escape DBI-based
analysis when parts of its instruction and data !ows get out of
the DBI engine’s control and execute natively on the CPU, in the
address space of the analysis process or of a di"erent one.

An attacker aware of the presence of a DBI engine may try to
hijack the control transfers that take place under the DBI hood,
triggering !ows that may never return under its control. The typical
scenario involves leaking an address inside the code cache and
patching it with a hijacking sequence, but more complex schemes
have been proposed. As for the second part of the de#nition, DBI
frameworks can provide special primitives to follow control !ows
carried out in other processes on behalf of the code under analysis:
for instance, Pin can handle child processes, injected remote threads,
and calls to external programs. Implementation gaps are often the
main reason for which such attempts could go unnoticed.

4.3 Artifacts in Current DBI Embodiments
In Section 1 we have mentioned several scienti#c presentations
and academic research highlighting !aws in DBI systems. While
some of them characterize the DBI approach in its generality, others
leverage implementation details of a speci#c engine, but can often
be adapted to others that follow similar implementation strategies.

In hopes of providing a useful overview of the evasion problem
to researchers that wish to use DBI techniques in their works, we
propose a categorization of the techniques that are known to date
to detect the presence of a DBI system. We will refer to Pin on
Windows in many practical examples, as the two have received
signi#cantly more attention than any other engine/OS in the DBI
evasion literature. We start by enumerating the attack surfaces we
identi#ed in such research, and then move to in-depth individual
discussions: time overhead, leaked code pointers, memory contents
and permissions, DBI engine internals, interactions with the OS, ex-
ception handling, and translation defects.

Time overhead. The process of translating and instrumenting the
original instructions in traces to be placed in cache and eventually
executed introduces an inevitable slowdown in the execution. This
slowdown grows with the granularity of the required analysis: for
example, tracing memory accesses is signi#cantly more expensive
than monitoring function calls. An adversary may try generic time
measurement strategies for dynamic analyses that compare the
execution of a code fragment to one in a reference system and
look for signi#cant discrepancies. There are peculiarities of DBI
that could be exploited as well: for instance, the time required to
dynamically load a library from user code can be two orders of
magnitude larger [18] under DBI due to the image loading process.
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Similarly, e"ects of the trace compilation process can be exploited
by observing !uctuations in the time required to take a branch in
the program from the #rst time it is observed in the execution [29].

Leaked code pointers. A pivotal element in the execution trans-
parency of DBI is the decoupling between the real instruction
pointer and the virtual one exposed to the code. There are however
subtle ways for an adversary to leak the real IP and compare it
against an expected value. One way inspired by shellcode writing
is to use special x87 instructions that are used to save the FPU state
(e.g., for exception handling) in programs: an adversary executes
some x87 instruction (like pushing a number to the FPU stack) and
then uses fstenv, fsave, or one of their variants to write the FPU
state to memory. The materialized structure will contain the EIP
value for the last performed FPU instruction, which DBI engines
typically do not mask: a check on its range will thus expose DBI [18].
Another way in 32-bit Windows is the int 2e instruction normally
used to enter kernel mode on such systems: by clearing EAX and
EDX before invoking it, the real IP is leaked to EDX [47].

Memory contents and permissions. Amajor source of transparency
concerns is that a DBI engine shares the same address space of the
analyzed code without provisions for isolation. The inspection of
the address space can reveal additional sections and unexpected
exported functions from the runtime [18]; the increased memory
usage could be an indicator of the presence of DBI as well [32].
An adversary may look for recurrent patterns that are present in
the code components (the runtime and the user’s analysis code) of
the DBI system and in their data, or in heap regions used for the
code caching mechanism [18]. Another issue could be the duplicate
presence of command-line arguments in memory [18].

Also the memory layout orchestrated and exposed by the DBI
engine to the application under analysis can be stressed for consis-
tency by adversarial sequences. For instance, Pin and DynamoRIO
miss permission violations when the virtual IP falls into code pages
for which access has been disabled (PAGE_NOACCESS) or guarded
(PAGE_GUARD) by the application [25]. Similarly, an engine may
erroneously process and execute code from pages that were not
granted execution permissions [29].

DBI engine internals. While the CPU context exposed to the ap-
plication under analysis is masked by the DBI abstraction, some
changes applied to the execution context to assist a DBI runtime
are not. One instance is represented by Thread Local Storage slots:
developers can use TLS to maintain thread-speci#c storage in con-
current applications, but for the sake of e$ciency DBI engines
may occupy slots with internal data [57]. Another attack surface is
represented by DLL functions that are altered by the engine: while
the vast majority of library code goes unhindered through the DBI
engine, in special cases trampolines should be inserted at their head.
In the case of Pin on Windows systems ntdll is patched for [53]:

• KiUserExceptionDispatcher, to distinguish exceptions in
the running code from internal (engine/analysis code) ones;

• KiUserApcDispatcher and KiUserCallbackDispatcher,
as the Windows kernel can deliver asynchronous events;

• LdrInitializeThunk, to intercept user thread creation.

Interactions with the OS. DBI engines are concerned with the
transparency of the execution space of an application, but as they

are userspace VMs their presence can be revealed by interacting
with the OS. A classic example is to check for the parent process [18,
32] or the list of active processes to reveal Pin or DynamoRIO.
Handles can reveal the presence of a DBI engine too, for instance
when fewer than expected are available for #le manipulation [32] or
when their names give away the presence of, e.g., Pin [18].We found
out that Pin may be revealed also by anti-debugging techniques
based on NtQueryInformationProcess and NtQueryObject.

Exception handling. DBI engines have capabilities for hooking
exceptional control !ow: for instance, this is required to provide
SEH handlers with the same information that would accompany the
exception in a native execution [53]. There are however cases that
DBI embodiments may not deal with correctly. For instance, we
found out that Pin may not handle properly single-step exceptions
and int 2d instructions used in evasive malware, with the sample
not seeing the expected exception [1].

Translation defects. Analysis systems that base their working
on binary translation are subject to implementation defects and
limitations: this is true for DBI but also for full system emulators
like QEMU. A popular example is the enter instruction that is not
implemented in Valgrind [29]. DBI architects may decide to not
support rarely used instructions; however, some instructions are
intrinsically challenging for DBI systems: consider for instance far
returns, which in Pin are allowed only when within the same code
segment. Similarly, Pin cannot run “Heaven’s gate code” to jump
into a 64-bit segment from a 32-bit program by altering the CS
selector. DynamoRIO does not detect the change, paving the way to
the Xmode code evasion [57] that uses special instructions having
the same encoding and disassembly on both architectures to yield
di"erent results due to the di"erent stack operations size.

We put in this category also uses of self-modifying code (SMC):
intuitively, SMC should always lead to invalidation of cached trans-
lated code, but implementations may miss its presence. In 2010
Martignoni et al. reported: “the presence of aggressive self-modifying
code prevents [...] from using e#cient code emulations techniques,
such as dynamic binary translation and software-based virtualiza-
tion” [36]. Detecting SMC sequences a"ecting basic blocks other
than the current is nowadays supported bymanyDBI engines, while
SMC on the executing block complicates the picture: DynamoRIO
handles it correctly, while Pin has caught up from its 3.0 release
providing a strict SMC policy option to deal with such cases.

We assembled a collection of detection sequences that might
interest DBI users: we searched for PoCs made available by authors
of evasion research for the techniques described in this section, and
created our own for those that were not accompanied by one.

4.4 Escaping from Current DBI Embodiments
To the best of our knowledge, the #rst DBI escape attack has been
described in a 2014 blog post by Cosmin Gorgovan [22]: the au-
thor investigated how weaknesses of current DBI implementations
highlighted in evasion-related works could pave the way to DBI
escape. Intuitively, an avenue is represented by having code cache
locations readable and writable also by the code under analysis.

Instead of leveraging a leaked pointer artifact, the author sug-
gests encoding a fairly unique pattern in a block that gets executed
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and looking it up in the code cache once the latter’s randomized lo-
cation is determined by querying the OS memory map. The pattern
gets overwritten with a trampoline, and when execution reaches the
block again the code escapes. Gorgovan also explains how to make
execution gracefully return under the control of the DBI system.

The code cache is not the only region that can be tampered with:
escape attacks involving internal data, callbacks, and stack that
are speci#c to a DBI engine are described in [57]. More recently,
[29] describes a complex data-only attack for COTS applications
running in Pin that uses a knownmemory corruption bug to escape,
leveraging relative distances between regions that host, e.g., the
libc and the code cache that are predictable in some Linux releases.

5 COUNTERMEASURES
In the following we investigate how transparency problems of DBI
can be mitigated by revisiting the design space of engines, and
when stopgap measures shipped with user code could be helpful.

5.1 Design Space of DBI Frameworks
The design of general-purpose embodiments of the DBI abstrac-
tion has historically been driven by the necessity of preserving
execution correctness while obtaining an acceptable performance
level. While general techniques for dynamic code generation and
compilation have dramatically improved in the past two decades
in response to the ever-growing popularity of languages for man-
aged runtimes, DBI architects have to face additional, compelling
execution transparency problems. They thus strove to improve the
designs and implementations of their systems as misbehaviors were
observed in the analysis of mainstream applications [5], backing
popular program analysis tools such as pro#lers, cache simulators,
and memory checkers.

The security research domain is however characterized by appli-
cation scenarios where the program under inspection may resort
to a plethora of generic or DBI-speci#c techniques to elude the
analysis or even tamper with the runtime. A researcher may thus
wonder how the design of a general-purpose DBI framework could
be adapted to deal with common categories of adversarial sequences.
In some cases the required changes could not be easy to be accom-
modated by a DBI framework with a wide audience of users from
di"erent domains, but could be sustainable for an engine that is
designed with speci#c security applications in mind: one prominent
example is SafeMachine [25], a proprietary DBI framework used
by the Avast security #rm for #ne-grained malware analysis.

We will now revisit the attack surfaces from Section 4.3 from a
DBI architect’s perspective, referencing research works that have
dealt with speci#c aspects and discussing other viable options.

Time overhead. Dealing with the run-time overhead from a dy-
namic analysis is an old problem in research. The overhead of a
DBI system is not easy to hide, and it may not only be revealed
by adversarial measurement sequences, but as discussed in [5] can
also a"ect the correct execution of code sensitive to time changes.
Also, the time spent in analysis code might exceed the cost of mere
instrumentation depending on the type of analysis carried out.

Previous research in malware analysis has explored mechanisms
to alter the time behavior perceived by the process by faking the
results of time queries from di"erent sources [1, 47]. However, their

e$cacy is mostly tied to detection patterns observed in a speci#c
domain. A general solution based on realistic simulations of the time
elapsed in executing instructions as if the cost of DBI were evicted is
believed impractical for dynamic analyses [20]. Also, such schemes
may be defeated by queries to other processes not running under
DBI or to external attacker-controlled time sources. Compared to
VMI solutions where one may patch the time sources of the entire
guest machine, DBI architects are thus left with (possibly much)
less wiggle room to face timing attacks.

Leaked code pointers. We have mentioned subtle ways to leak
code cache addresses through execution artifacts for speci#c code
patterns, namely FPU context saving instructions and context switch-
ing sequences for syscalls. While these leaks do not seem to bother
the execution of classic programs under DBI, at the price of an
increased overhead a framework could be extended to patch them
as soon as they become visible to user code2.

Memory contents and permissions. Presenting the code under
analysis with a faithful memory state as in a native execution is
inherently di$cult for a DBI system, as it operates at the same
privilege level and in the same address space of the program. We
identify three aspects that matter in how memory gets presented
to the code under analysis.

The #rst aspect is correctness. As we have seen, memory permis-
sions mirroring a native execution may not be enforced faithfully,
resulting in possibly unfeasible executions. For instance, a DBI sys-
tem may not detect when the virtual instruction pointer reaches a
region that is not executable, continuing the instruction fetching
process rather than triggering an exception. This may result in, e.g.,
reviving classic bu"er over!ow attacks as shown in [29]. Similarly,
failing to reproduce guard page checks may be problematic when
dealing with programs like JIT compilers that use them. Adding
these checks may introduce unnecessary overhead for many ana-
lyzed applications, so they could be made available on demand.

The second aspect is escaping. When an adversary gets a pointer
inside the code cache, injection attacks become a possibility. This
problem is shared with general-purpose JIT engines [55], such as
those used in browsers for running Javascript code e$ciently. One
possibility could be to use read-only code caches as in the mobile
version of Safari, incurring a performance penalty by switching it
to writable non-executable when modi#cations are made by the
engine; during a transition however legit accesses from concurrent
threads could fail, and proper handling would be needed.

Keeping thread-speci#c code caches mitigates the problem at the
price of increased memory occupancy3 and is available as an option
for instance in DynamoRIO. This solution is however still subject
to race conditions attacks as shown in [55]. The authors propose
a mechanism where a writable code cache is moved to another
process, and its pages shared with the process under analysis with
read-only privileges. Their approach incurs a small performance
overhead on Strata and on the V8 JavaScript engine.

The third aspect is evasion. Due to the shared address space, an
adversary may simply register an exception handler and scan the
memory looking for unexpected contents, such as the presence of

2https://github.com/dynamorio/dynamorio/issues/698.
3This may however even let instrumentation code run faster when thread-speci#c.
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the code cache or internal structures and code from the runtime.
Shepherding all memory accesses would solve the evasion problem,
but the overhead could increase dramatically [5].

One mitigation proposed in Strata is to use metamorphism to
alter the contents of the code cache, hindering evasion and escape
attacks based on pattern recognition. This could be paired with
guarded pages and mechanisms to move the location of the code
cache (and possibly internal structures) periodically during the
execution, triggering however the invalidation of all compiled code
as if the engine were detached and reattached to the process.

These countermeasures would still not be su$cient against at-
tackers with code reading capabilities. Consider the case of a loop
trying to read the page containing its own instructions in the cache:
such an access cannot be denied on the x86 architecture. An answer
to the problem may come from recent research on non-readable ex-
ecutable memory (XnR) [2] to prevent disclosure exploits for code
reuse attacks. While the default XnR setting does not support our
“in-page” reading loop scenario, follow-up techniques can be used
to handle it: in particular, [63] shows how to achieve an e"ective
separation between read and execution capabilities using Extended
Page Tables on a thin hypervisor layer. Further hardware assis-
tance could ease both the implementation and deployment e"ort:
for instance, the ARMv8 processor provides facilities to support
this mechanism at kernel level [63], while the Intel Skylake x86
architecture has introduced Memory Protection Keys to control
memory permissions in user space that could be used to achieve
executable-only memory as described in [34].

DBI engine internals. Changes to the execution context may be
necessary for the sake of performance, for instance to keep internal
data structures of the runtime quickly accessible using TLS mech-
anisms. An engine may attempt to randomize the TLS slot in use
and hide its presence to queries from the application, but when an
adversarial sequence tries to allocate all the slots the engine can
either abort the execution (similarly as in what happens when the
memory occupied by the engine prevents further heap allocation
by the program) or resort to a less e$cient storage mechanism.

The presence of trampolines on special DLL functions could be
hidden using the same techniques for protecting the code cache,
providing the original bytes expected in a read operation as in [47].
Write operations are instead more di$cult, as the attacker may
install a custom trampoline that either returns eventually to the
original function (which still needs to be intercepted by the engine)
or simply alter the standard semantics for the call in exotic ways.

Interactions with the OS. DBI frameworks can massage the pa-
rameters and output values of some library and system calls in
order to achieve the design guideline G2, that is, hiding unavoidable
changes from the program (Section 4.1). For instance, DynamoRIO
intercepts memory query operations to its own regions to let the
program think that such areas are free [5]. While allocations in such
regions could be allowed in principle by moving the runtime in
other portions of the address space, resource exhaustion attacks are
still possible on 32-bit architectures, and are not limited to memory
(for instance, #le descriptors are another possibility). As system
call interposition can incur well-known traps and pitfalls [19], DBI
architects implement such strategies very carefully. Observe that
remote memory modi#cations carried out from another process

could be problematic as well, but a kernel module could be used to
capture them [5].

Exception handling. A DBI system has to present a faithful con-
text to the application in the presence of exceptions and signals.
DBI architects are faced with di"erent options in when (if an in-
terruption can be delayed) and how the context translation has to
take place; also, there are cases extreme enough for mainstream
applications that can be handled loosely [5]. Systems like Valgrind
that work like emulators by updating the virtual application state at
every executed instruction are not a"ected by this problem. How-
ever, they incur a higher runtime overhead compared to others (e.g.,
Pin, DynamoRIO) that reconstruct the context only when needed.

Translation defects. Instruction errata and alike defects can be
brought under two main categories: implementation gaps and de-
sign choices. Apart from challenging sequences such as 32-to-64
switches, errata from the #rst category can be addressed through
implementation e"ort for code domains where they are problematic.
On the other hand, defects may arise due to design choices aimed
at supporting e$cient execution of general programs: this is the
case with self modifying code within the current basic block, which
as we said can be detected in Pin with an optional switch at the
price of an increased overhead.

To conclude our discussion, we would like to mention the possi-
bility of having user-supplied analysis code pollute the transparency
of the execution, for instance in its context reconstruction process.
Frameworks like Pin that support registering analysis callbacks
might be slightly easier to use for analysis writers compared to oth-
ers like DynamoRIO that let users manipulate statements directly,
but DBI systems may hardly avoid leaving part of the responsibility
for transparency in the hands of their users.

5.2 Mitigations at Analysis Code Level
While revisiting architectural and implementation choices behind
a DBI system can bring better transparency by design, some re-
search has explored how user-provided analysis code can mitigate
artifacts of mainstream DBI systems and defeat evasive attempts
observed in some applications domains. This approach has been
proposed in PinShield [47] and adopted in the context of executable
unpacking in the presence of anti-instrumentation measures [47]
and for malware dissection of highly evasive samples [1].

We have designed a high-level DBI library that could run in prin-
ciple in existing analysis systems to detect and possibly counter
DBI evasion and escape attempts. We revisited the design of Pin-
Shield to achieve better performance when shepherding memory
accesses, and introduced protective measures to cope with mem-
ory permission consistency (e.g., to enforce NX policies and page
guards), pointer leaks using FPU instructions, inconsistencies in
exception handling, and a number of detection queries to the OS
(e.g., for when the DBI engine is revealed a debugger).

For a prototype implementation we chose the most challenging
setting for user-provided stopgap measures: we target the popular
combination of Pin running on Windows. Unlike DynamoRIO, Pin
does not rewrite the results of basic #ngerprinting operations that
can give away its presence like OS queries about memory. As it
is closed source, it cannot be inspected or modi#ed to ease the
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Figure 1: Performance impact of user-provided mitigations.

implementation of mitigations, and using Windows makes imme-
diate cooperation on the OS side (e.g., using a kernel driver) more
di$cult.

Approach. We pursued a design for the library that could be
portable to other frameworks and Linux, avoiding uses of speci#c
primitives or choices that could tie it to Pin’s underpinnings.

To shepherd memory accesses, we maintain a shadow page table
as an array indexed by the page number for the address. Wemonitor
basic RWX permissions and page guard options using 4 bits in a
1-byte element per page4. For 32-bit Windows, this yields a table of
512 kbytes for the 2-GB user address space, with recently accessed
fragments likely to be found in the CPU cache for fast retrieval.
We update the table in presence of code loading events and every
time the program (or Windows components on its behalf) allocates,
releases, or changes permissions for memory, hooking system calls
and events that may cause such changes to the address space. When
a violation is detected, we create an exception for the application5.

Possible code pointer leaks from FPU instructions are intercepted
as revealing instructions get executed: we replace the address from
the code cache with the one in the original code. For this operation
one can either resort to APIs possibly o"ered by an engine to
convert addresses, or monitor the x87 instructions that cause the
FPU instruction pointer to change with a shadow register. Although
more expensive, we opted for the second approach for generality.

Exception handling inconsistencies may be unrelated to memory:
this is the case with the single-step exception and int 2d attacks
described in [1] and found in malware and executable protectors.
We intercept such sequences and forge exceptions where needed.

Due to lack of space, we refer the reader to our source code
for mitigations made of punctual countermeasures, such as pointer
leaks with int 2e attacks and detections based on debugger objects.

Overhead. The mitigations presented above can have a signi#-
cant impact on the baseline performance level o"ered by an engine
running an empty analysis code. Shepherding memory accesses is
a daunting prospect for DBI architects [5], let alone when imple-
mented on top of the engine. However, it may be a"ordable for a
user-de#ned analysis that already has to track such operations such
as taint analysis. Similarly, conformance checking on NX policy
slows down the execution as it requires that target of branches
be checked, but may be acceptable for code that already validates
transfers, for instance to support CFI or other ROP defenses.

We conducted a preliminary investigation on the SPEC CPU2006
benchmarks commonly used to analyze DBI systems [5, 35]. We
4We leave 4 bits to encode more policies or host data from upper analysis layers.
5PinShield in such cases allows the access but rewires it to another region. We can
still use their approach for instance to protect ntdll trampolines.

consider di"erent protection levels: pointer leaks, NX and page
guard checks on indirect transfers, denying RW access to DBI re-
gions, the three strategies together, and a paranoid variant6. We
also consider a popular taint analysis library for byte-level tracking
granularity in its default con#guration with 1-byte tags. Due to lack
of space (a more complete discussion is provided in Appendix A)
we report #gures for a subset of benchmarks in Figure 1.

Tracking x87 instructions for leaks has a rather limited impact
on execution time. Enforcing NX and page guard protection on indi-
rect transfers seems cheap as well. Shepherding memory read/write
accesses incurs a high slowdown, but smaller than the one intro-
duced by the heavy-duty analysis of libdft. High overheads were
expected, but we do not #nd these #gures demoralizing: while some
performance can be squeezed by optimizing the integration with
the backend and with analyses meant to run on top of it, we be-
lieve a fraction of this gap can be reduced if countermeasures get
implemented inside the engine. We used evasive packer programs
to stress the implementation, and we were able to run code packed
with PELock that [47] based on PinShield could not handle properly.

Discussion. Mitigating artifacts using user-level code is a slippery
road. As we mentioned in Section 5.1, there are aspects in system
call interposition that if overlooked can lead security tools to easily
be circumvented: one of them is incorrectly replicating OS seman-
tics. We follow the recommendations from [19] by querying the OS
to capture the e"ects of system calls that manipulate regions of the
address space: this helped us in dealing with occasional inconsisten-
cies between the arguments or output parameters for such calls and
the e"ects observed on the address space. Our library pursues at
analysis code level the DBI system design guideline G2 on making
discrepancies imperceivable to the monitored program (Section 4.1),
and its performance impact could be attenuated if cooperation oc-
curs on the DBI runtime side, for instance by supporting automatic
(optimized) guard insertion during trace compilation.

6 WRAP-UP AND CLOSING REMARKS
In the previous sections we have illustrated structural weaknesses
of the DBI abstraction and its implementations when analyzing code
in a software security setting, and discussed mitigations to make
DBI frameworks more transparent—at the price of performance
penalties—in the form of adjustments to their design or stopgap
measures inside analysis tools. We conclude by discussing implica-
tions for researchers that want to use DBI for security with respect
to instrumentation capabilities and to the relevance of the eva-
sion and escape problems, putting into the equation the attacker’s
capabilities and what is needed to counter adversarial sequences.

Choosing DBI in the !rst place. As we have seen in Section 3, the
!exibility of DBI primitives has supported researchers in developing
a great deal of analysis techniques over the years. Especially when
the source code of a program is not available, there are essentially
two options that could be explored other than DBI: SBI and VMI
techniques. Although tempting to make a general statement on
when one approach should be preferred, we believe the picture
is not so simple, and thorough methodological and experimental
comparisons would be required for di"erent application domains.
6For when ESP holds data or EIP !ows into a page with inconsistent permissions via
hard-wired jump o"sets or branchless sequences that cross page boundaries [25].
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We can however elaborate on three aspects that could a"ect a
researcher’s choice. The #rst aspect is related to the instrumentation
capabilities of each technology. SBI can instrument a good deal
of program behaviors as long as static inference of the necessary
information is possible. On the other hand, VMI can capture generic
events at whole-system level regardless of the structure of the code,
using libraries that bridge the semantic gap to determine which
events belong to the code under analysis. However, current VMI
systems cannot make queries or execute operations using the APIs
provided by the OS, unlike DBI systems that naturally let their users
to. A 2015 work proposed with PEMU [66] a new design to move
DBI instrumentation out of VM, providing a mechanism called
forwarded guest syscall execution to mimic the normal functioning
of a DBI engine; however, the public codebase the authors made
available seems no longer under active development.

The second aspect is related to the deployability of the analysis
system runtime. In the case of SBI, the requirements are typically
limited as the original binary gets rewritten. For the DBI abstrac-
tion, the use of process virtualization paves the way for building
tools that operate on a single application in a possibly lightweight
manner, enabling their use also in production systems, e.g., when
legacy binary are involved [5]. For VMI technology, bringing up an
emulated or virtualized environment may very well be a daunting
prospect or a natural choice depending on the application scenario.

The third aspect is related to whether the analysis should not
only monitor, but also alter the execution when needed. To this end,
DBI and VMI are both capable of detecting and altering speci#c
instructions also when generated at run time. VMI technology is
currently lackluster in aspects that involve replacing entire calls or
sequences in the text of a program; on the other hand, system call
authorization can be dealt with as context switches occur.

Dealing with adversarial code. A fourth aspect, possibly the most
appealing for our readers, can be added to the technological discus-
sion: adversarial sequences. We should distinguish between general
detection techniques, which may a"ect more technologies at once,
and ad-hoc detection patterns, sometimes for a speci#c runtime.

For example, code very sensitive to time variations is likely
to deviate from the normal behavior when executing under DBI
or other in-guest dynamic analysis systems: consider for instance
time-based anti-analysis strategies in evasive malware. On the other
hand, code checksumming sequences give away several analysis
systems, but DBI ones are normally not bothered by them.

A crucial issue is related to the characteristics of the code that un-
dergoes analysis, that is, if there is the possibility for an attacker to
embed adversarial patterns speci#c to DBI. This is particularly (but
not only) the case of research focused on malicious code analysis
and reverse engineering activities. Such code can clearly challenge
massaged results and other mitigations for transparency issues put
in place by the engine or the analysis tool.

When the adversary does not have arbitrary memory read ca-
pabilities, mitigating leaked code pointers is already su$cient in
most cases to hide the presence of extra code regions, and di"erent
attack surfaces should be tried, such as exhaustion or prediction
attacks for memory allocations. When the adversary cannot write
to arbitrary memory locations and leaked pointers have already
been dealt with, escaping attempts are essentially contained, while

the execution of unfeasible !ows from inconsistencies in enforcing
NX policies can be avoided by shepherding control transfers.

What really raises the bar for DBI engines is coping with an
attacker that can register exception handlers and force memory
operations also on regions marked as unallocated in massaged OS
queries. The runtime overhead of shepherding everymemory access
is intrinsically high for current DBI designs, but technologies like
executable-only memory may come to the rescue in the future.

One may also wonder whether the popularity of an analysis
technique can eventually lead to the di"usion of ad-hoc adversarial
sequences in the code it is meant to analyze. In the history of DBI
we are aware of ad-hoc evasions against Pin in some executable
packers [11], as simple DBI-based unpacking schemes from a few
years ago were e"ective against older generations of packers. On
the contrary, there is a possibility that even when an attack surface
is well known and not particularly hard to exploit, as in the case of
implicit !ows against taint analysis [8], adversaries may focus their
attention elsewhere for anti-analysis sequences: for the proposed
example, malware authors in late years seem rather to have con-
centrated their e"orts on escaping sandboxing technologies and
hindering code analysis with obfuscation strategies such as opaque
predicates and virtualization. We thus #nd it hard to speculate on
an arms race that could involve DBI evasion in the near future.

Finally, as we mentioned in Section 4.1 also approaches like
VMI that are more transparent by design can become fragile in the
presence of a dedicated adversary. Every technology has its own
trade-o"s between transparency and aspects like performance or
instrumentation capabilities. In the case of SBI, the approach can
o"er better performance than DBI, but its transparency is more frag-
ile than DBI and VMI: for instance, even recent SBI embodiments
cannot o"er protection against introspective sequences when these
are not identi#ed in the preliminary static code analysis phase.

Closing remarks. In this work we attempted to systematize exist-
ing knowledge and speculate on a problem that recently received a
good deal of attention in the security community, with opinions
sometimes at odds with one another. We think that using DBI for
security is not a black and white world, but is more about how the
DBI abstraction is used once the user is aware of its characteristics
in terms of execution transparency, understood not only as a se-
curity problem, but sometimes also as a correctness one. Hoping
that other researchers may bene#t from it, we make available our
library of detection patterns and mitigations for Pin at:

<link anonymized for review>
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A COMPLETE EXPERIMENTAL RESULTS
In the following we describe the experimental setup used for a
preliminary assessment of the performance impact of the stopgap
measures we implemented as a high-level library for analysis tools,
and present complete results for the corpus of C/C++ benchmarks
in the SPEC CPU2006 suite (Table 2) that we used to measure it.

We use Pin 3.5 running on a Windows 7 SP1 32-bit machine
with negligible background activity. For each experiment we use a
clean virtual machine with 1 CPU core and 3 GB of RAM hosted on
VirtualBox 5.2.6 running on a serverwithDebian 9.6 Stretch and two
Intel Xeon E5-4610 processors. Both the library and the benchmarks
are compiled using Visual Studio 2010 in Release con#guration. We
consider the average value for 9 trials of each con#guration.

For integer benchmarks we can see from Figure 2 that the impact
of the mitigation for pointer leaks is small, with a slowdown in
the worst case as high as 1.09x compared to an execution under
Pin with no instrumentation and analysis code. The overhead orig-
inates from spilling the x87 instruction pointer to a tool register
at every non-control FPU instruction, with the JIT compiler of Pin
taking care of register reallocation. The impact of the NX miti-
gation, which protects instruction fetching from non-executable
or guarded7 pages, is intuitively related to the number of indirect
transfers (call, ret, and jump operations) in the program, with a
peak of 1.17x for benchmark omnetpp (417). The overhead from
shepherding every read/write memory access to protect the code
cache and other regions of the runtime ranges from 2.31x to 5.02x.

Combining the three mitigations in the full con#guration incurs
an overhead very similar to the one from RW, which unsurprisingly
is by far the most expensive on these benchmarks. However in
some cases the overhead of full might be slightly lower than having
the sole RW mitigation active. Once we ruled out noise in time
measurements, we believe the cause might lie in how the quality
of the JIT-ted code is a"ected by the guards inserted for NX and
RW as well as by the register re-allocation caused by spilling tool
registers in the implementation of the leak and RW mitigations.

The paranoid mode is clearly more expensive as it shepherds
every instruction fetch to enforce NX and page guard protection on
code that crosses the border of two pages with di"erent permissions
with no intervening jumps, and veri#es read/write permissions for
push and pop operations for when the stack pointer may be used
as a general-purpose register.

For !oating-point benchmarks we can observe similar trends
as for the integer ones with two notable exceptions: namd (444)
and sphinx3 (482). We can see that for these two benchmarks the
NX mitigation incurs a overhead considerably higher than in the
other programs from the CINT and CFP sets. A #rst inspection of
the execution pro#les seems to suggest that both programs make
a high usage of indirect control transfers, and the insertion of
guards for such transfers may a"ect the trace linking process inside
Pin or other aspects of the JIT compilation process. Unfortunately
we could not verify this claim by monitoring the code generation
process due to the closed-source nature of Pin.

Compared to the original implementation of PinShield8, the RW
mitigation from our library was at least one order of magnitude

7Pin by design already handles page guards for read and write operations correctly.
8https://github.com/Phat3/PINdemonium/.

Suite ID Name

CINT

400 perlbench
401 bzip2
403 gcc
429 mcf
445 gobmk
456 hmmer
458 sjeng
464 h264ref
471 omnetpp
473 astar

CFP

433 milc
444 namd
450 soplex
453 povray
470 lbm
482 sphinx3

Table 2: Integer and !oating-point C/C++ benchmarks.
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Figure 2: Slowdown for integer benchmarks.
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Figure 3: Slowdown for !oating-point benchmarks.

faster in the tests we conducted: while the guards we insert incur a
O(1) lookup inside an array, PinShield scans a linked list of known
memory ranges for every memory read or write access. As we
mentioned in Section 5.2, pointer leaks via x87 instructions and
NX/page guard conformance checking are not handled by PinShield.
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