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ABSTRACT
Data !ow tracking (DFT) deals with tagging and tracking data of
interest as they propagate during program execution. DFT has been
repeatedly implemented by a variety of tools for numerous pur-
poses, including protection from zero-day attacks, detection and
prevention of information leaks, and for the analysis of benign
and malicious software. libdft is a dynamic DFT framework that
unlike previous work is at once fast, reusable, and works with com-
modity software and hardware. In addition, it provides an API for
building DFT-enabled tools that work on unmodi"ed binaries, run-
ning on common operating systems and hardware, thus facilitating
research and rapid prototyping. libdft is available as open source
software. During the past →10 years, the research community has
used, or extended, our research prototype to facilitate a plethora
of tasks that are related to security and privacy topics, leading to
numerous publications with meaningful impact.
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1 INTRODUCTION
Data-!ow tracking (DFT) [8], also known as information-!ow track-
ing (IFT) [45] or taint tracking/analysis [3], is a well-established
technique that deals with the tagging and tracking of “interesting”
(i.e., selected) data as they propagate during program execution.

DFT has many uses, such as analyzing malware behavior [16, 40],
hardening software against zero-day attacks [6, 19, 27, 31, 37, 41,
42], detecting and preventing information leaks [17, 39, 52, 54],
debugging software miscon"gurations [4], fuzz testing [22, 43],
performing forensic investigation [25] and data provenance [44], as
well as facilitating exploitation [28, 38, 49]. From an architectural
perspective, it has been integrated into full system emulators [11,
12, 20, 40] and virtual machine monitors [5, 17, 21, 36], retro"tted
into unmodi"ed binaries using dynamic binary instrumentation [18,
27, 34, 42], and added to source/binary codebases using source-to-
source/binary code transformations [8, 51]. Proposals have also
been made to implement it in hardware [13, 45, 47, 50], but they
have had little appeal to hardware vendors.

libdft argues that a practical DFT implementation should be
concurrently (i) fast, (ii) reusable, and (iii) applicable to commodity
hardware and software. libdftwas originally published at the ACM
VEE 2012, and released as open source software [26]. Our prototype,
distributed in the form of a shared library, implements dynamic DFT
using Intel’s Pin dynamic binary instrumentation framework [33],
and its performance is comparable or better than that of previous
work, incurring slowdowns that range between 14% – →6𝐿 .
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Figure 1: Example of code with data dependencies.

In addition, it is versatile and reusable by providing an extensive
API that can be used to implement DFT-powered tools. Finally, it
runs on commodity systems. During the past→10 years, the research
community has used, or extended, libdft to facilitate a plethora
of tasks that are related to security and privacy topics, leading to
numerous publications with meaningful impact.

2 OVERVIEW
2.1 Data Flow Tracking
libdft de"nes DFT as: “the process of accurately tracking the !ow
of selected data throughout the execution of a program” [27]. This
process is characterized by the following three aspects.
(1) Data sources. Data sources are program or memory locations,
where data of interest “enter” the respective (i.e., traced) process,
usually after the execution of a function or system call. Data origi-
nating from these sources are tagged. For instance, if we de"ne "les
as a source, the read call in Figure 1 would result in tagging data.
(2) Data tracking. During program execution, tagged data are
tracked as they are copied and altered by program instructions.
Consider the code snippet in Figure 1, where data has already been
tagged in ln. 3. The while loop that follows (ln. 4–5) calculates a
simple checksum and stores the result in csum, e#ectively creating
a data-!ow dependency between csum and data.
(3) Data sinks. Data sinks are also program or memory locations,
where one can check for the presence of tagged data, usually for
inspecting or enforcing data !ows. For instance, tagged data may
not be allowed in certain memory areas or function arguments.
Consider again the code snippet in Figure 1, where in ln. 7 csum is
written to a "le. If "les are de"ned as data sinks, the use of write
with csum may trigger a user-de"ned action.
Dynamic vs. static DFT. Performing DFT requires additional
memory for storing data tags, while the program itself needs to be
extended with tag propagation logic, and data tagging and checking
logic, at the sources and sinks respectively. The additional code for
these tasks is frequently referred to as instrumentation code, and can
be injected either statically (e.g., during source code development
or at compile/loading time), or dynamically using virtualization or
dynamic binary instrumentation (DBI).
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Figure 2: Process image of a binary running under libdft.
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Figure 3: The architecture of libdft. The shaded components
illustrate the instrumentation and analysis code that imple-
ments the DFT logic, whereas the x-marked regions on the
tagmap indicate tagged bytes.

Static systems apply DFT by recompiling software using a mod-
i"ed compiler [48] or binary rewriter [8], or a source-to-source
transformation engine [51]. Conversely, the dynamic ones can be
directly applied on unmodi"ed binaries, including commercial o#-
the-shelf software [27, 42, 54]. In both cases, software needs to be
extensively instrumented for associating data with some kind of
tag and logic that asserts tags at the sources, propagates them ac-
cording to the data dependencies de"ned by the program semantics,
and, "nally, inspecting the sinks for the presence of tagged data.
Dynamic solutions, albeit being slower than static ones, have the
advantage of being immediately, and incrementally, applicable to
already deployed (or binary-only) software.

2.2 Design and Implementation
libdft is designed for use with the Pin DBI framework [33] to
facilitate the creation of Pintools that employ dynamic DFT.

-------------------[r2r_alu_opb_l]-------------------

threads_ctx[tid].vcpu.gpr[dst] |=

threads_ctx[tid].vcpu.gpr[src] & VCPU_MASK8;

--------------------[r2m_alu_opw]--------------------

*((uint16_t *)(mem_bitmap + VIRT2BYTE(dst))) |=

(threads_ctx[tid].vcpu.gpr[src] & VCPU_MASK16) <<

VIRT2BIT(dst);

--------------------[m2r_alu_opl]--------------------

threads_ctx[tid].vcpu.gpr[dst] |=

(*((uint16_t *)(mem_bitmap + VIRT2BYTE(src))) >>

VIRT2BIT(src)) & VCPU_MASK32;

-------------------[r2r_xfer_opb_l]------------------

threads_ctx[tid].vcpu.gpr[dst] =

(threads_ctx[tid].vcpu.gpr[dst] & ~VCPU_MASK8) |

(threads_ctx[tid].vcpu.gpr[src] & VCPU_MASK8);

--------------------[r2m_xfer_opw]-------------------

*((uint16_t *)(mem_bitmap + VIRT2BYTE(dst))) =

(*((uint16_t *)(mem_bitmap + VIRT2BYTE(dst))) &

~(WORD_MASK << VIRT2BIT(dst))) |

((uint16_t)(threads_ctx[tid].vcpu.gpr[src] &

VCPU_MASK16) << VIRT2BIT(dst));

--------------------[m2r_xfer_opl]-------------------

threads_ctx[tid].vcpu.gpr[dst] =

(*((uint16_t *)(mem_bitmap + VIRT2BYTE(src))) >>

VIRT2BIT(src)) & VCPU_MASK32;

Figure 4: Tag propagation code for various analysis routines
when libdft is using bit-sized tags. The VIRT2BYTE macro
is used for getting the byte o!set of a speci"c address in
mem_bitmap, whereas VIRT2BIT gives the bit o!set within the
previously-acquired byte.

Brie!y, Pin consists of a virtual machine (VM) library, and an
injector that attaches the VM in already running processes or new
ones that launches itself. Pintools are shared libraries that leverage
Pin’s extensive API to inspect and modify a binary at the instruction
level (dynamically, at runtime). libdft is also a library, which can
be used by Pintools to transparently apply "ne-grained DFT on
binaries running over Pin. Importantly, it provides its own API
(§2.3) that enables tool authors to customize libdft by specifying
data sources and sinks, or modify the tag propagation policy.

When a user attaches to an already running process, or launches
a new one using a libdft-enabled Pintool, the injector "rst loads
Pin’s runtime and then passes control to the tool. There are three
types of locations that a libdft-enabled tool can use as a data
source or sink: (1) program instructions; (2) function calls, and (3) sys-
tem calls. It can “tap” these locations by installing callbacks that get
invoked when a certain instruction is encountered, or when a cer-
tain function or system call is made. These user-de"ned callbacks
drive the DFT process by tagging or un-tagging data, and monitor-
ing or enforcing data !ow. Figure 2 sketches the memory image of a
process running under a libdft-enabled Pintool. The highlighted
boxes mark the locations where the tool author can install callbacks.
For instance, the user can tag the contents of the bu#er returned
by the read system call (as in the examples shown in Figure 1)
or check whether the operands of indirect call instructions are
tagged (e.g., the eax register in Figure 2).
Data Tags. libdft stores data tags in a tagmap (Figure 3), which
contains a process-wide data structure (mem_bitmap or STAB+tseg
in Figure 3; shadow memory) for holding the tags of data stored
in memory and a thread-speci"c structure that keeps tags for data
residing in CPU registers (vcpu in Figure 3). The format of the
tags stored in the tagmap is determined by two factors: (a) the
granularity of the tagging, and (b) the size of the tags.
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• Tagging granularity: libdft uses byte-level tagging granularity,
since a byte is the smallest addressable chunk of memory in most
architectures, including x86 (i.e., the target platform of libdft).
This choice allows "ne-grained tracking for most practical purposes
and strikes a balance between usability and performance [40].

• Tag size: libdft o#ers two di#erent tag sizes: (i) byte tags
for associating up to 8 distinct values or colors to each tagged
byte (every bit represents a di#erent tag class), and (ii) single-bit
tags (i.e., data are either tagged or not). The "rst allows for more
sophisticated tracking and analysis tools, while the second enables
tools that only need binary tags for conserving memory.
Tag Propagation. Tag propagation is accomplished using Pin’s
API to both instrument and analyze the target process. In Pin’s
terms, instrumentation refers to the task of inspecting the instruc-
tion stream of a program for determining what analysis routines
should be inserted where. For instance, libdft inspects every pro-
gram instruction that (loosely stated) moves or combines data to
determine data dependencies. Due to the complexity and inherent
redundancy of the x86 ISA, the instrumentation engine of libdft
(see Figure 3) consists of →3000 lines of code (LOC) in C++.

On the other hand, analysis refers to the actual routines, or
code, being retro"tted to execute before, after, or instead of the
original code. libdft injects analysis code for implementing the
tag propagation logic, based on the data dependencies observed
during instrumentation. Figure 4 shows an excerpt from di#erent
types of analysis routines in the case of bit-sized tags. The analysis
routines of libdft (see Figure 3) are made up of →2500 C LOC, and
include only arithmetical, logical, and memory operations to ensure
that Pin will inline the analysis code into the target application’s
code (i.e., to minimize the runtime slowdown incurred by DFT).

The original (i.e., application) code and libdft’s analysis rou-
tines are translated by Pin’s just-in-time (JIT) compiler for generat-
ing the ("nal) code that will actually run. This occurs immediately
before executing an application’s code sequence for the "rst time,
and the result is placed in a code cache (also depicted in Figure 2), so
as to avoid repeating this process for the same code sequence in the
future. Our injected (i.e., analysis) code executes before application
instructions, tracking data as they are copied between registers, and
between registers and memory, thus achieving "ne-grained DFT.
Pin’s VM ensures that the target process runs entirely from within
the code cache by interpreting all instructions that cannot be exe-
cuted safely otherwise (e.g., indirect branches). Moreover, a series
of optimizations such as trace linking and register re-allocation are
applied for improving performance [33].

Finally, libdft allows tools to modify the default tag propaga-
tion policy, by registering their own instrumentation callbacks via
its API, for instructions of interest. This way tool authors can tailor
the data tagging according to their needs, cancel tag propagation
in certain cases, or track otherwise unhandled instructions.
Fast Dynamic DFT. To keep libdft’s overhead low, we carefully
examined how DBI frameworks (such as Pin) operate, and identi"ed
a set of development practices that should be avoided. Pin’s over-
head primarily depends on the size of the analysis code injected,
but it can frequently be higher than anticipated due to the structure
of the analysis code itself. Speci"cally, the registers provided by the
underlying architecture will be used to execute both application
code, as well as code that implements the DFT logic.

This will force the DBI framework to spill registers (i.e., save their
contents to memory and later restore them), whenever an analysis
routine needs to utilize registers already allocated. Therefore, the
more complex the code, the more registers have to be spilled.

Additionally, certain types of instructions must be avoided due
to certain side-e#ects. For instance, spilling the eflags register
in the x86 architecture is expensive in terms of processing cycles,
and is performed by specialized instructions (pushf, pushfd). As a
result, including instructions in analysis code that modify this reg-
ister should be done sparingly. More importantly, test-and-branch
operations have to be avoided altogether, since they result into
non-inlined code. In particular, whenever a branch instruction is
included in the DFT code, Pin’s JIT engine will emit a function call
to the corresponding analysis routine, rather than inline the code
of the routine along with the instructions of the application.

Imposing such limitations on the implementation of any dy-
namic DFT tool is a challenge. Our implementation takes into con-
sideration these issues, in conjunction with Pin, to achieve good
performance. More speci"cally, we observed that the number of in-
structions, excluding all types of jumps, which Pin can inline is →20.
Hence, we introduce two guidelines for the development of e$cient
tag propagation code: (1) tag propagation should be branch-less, and
(2) tagmap updates should be performed with a single assignment.
Both of them serve the purpose of aiding the JIT process to inline
the injected code and minimize register spilling. Moreover, we force
Pin to use the fastcall x86 calling convention, for making the
DFT code faster and smaller, while we also implement four opti-
mizations (i.e., fast_vcpu, fast_rep, huge_tlb, and tmap_col) to
further minimize the runtime and memory overhead(s) incurred by
libdft. (Interested readers are referred to our VEE 2012 publication
for a detailed description of the above [27].)

The design of libdft provides the foundation for a framework
that satis"es all three properties listed in Section 1, while by taking
into consideration the limitations discussed above, we achieve low
overhead. Moreover, the extensive API of libdftmakes it reusable,
as it enables users to customize it for use in various domains, such
as security, privacy, program analysis, and debugging. Finally, the
last property is satis"ed through the use of a mature, rather than an
experimental and feature-limited, DBI platform for providing the
apparatus to realize DFT for a variety of popular systems (e.g., x86
and x86-64 [2] Linux and Windows [15] OSes).

2.3 libdft-powered Tools
One of the most frequent incarnations of DFT has been that of
dynamic taint analysis (DTA). DTA operates by tagging all data
coming from the network, "lesystem, etc., as tainted, tracking their
propagation, and alerting the user when they are used in a way
that could compromise program integrity.

In this case, the network is the source of “interesting” data, while
instructions that are used to control a program’s !ow are the sinks.
For the x86 architecture, these are jumps and function calls with
non-immediate operands, as well as function returns. Attackers
can manipulate the operands of such instructions, by exploiting
various types of software memory errors, such as bu#er over!ows
and format string vulnerabilities.
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Function Description
libdft_init() Initialize the tagging engine
libdft_start() Commence execution
libdft_die() Detach from the application
ins_set_pre()

ins_set_post()

ins_set_clr()

Register instruction callbacks
to be invoked before, after, or
instead libdft’s
instrumentation

syscall_set_pre()

syscall_set_post()

Hook a system call entry or
return

tagmap_set{b,w,l}()

tagmap_setn()

Tag {1, 2, 4} and n bytes of
virtual memory

Table 1: Overview of the libdft API.

They can then seize control of the program by redirecting ex-
ecution to existing code (e.g., return-to-libc, ROP [49]), or their
own injected instructions. In this section, we describe the design
and implementation of a DTA tool, namely libdft-DTA, which
we implemented in approximately 450 LOC in C++, using libdft

with bit-sized tags and the API calls shown in Table 1.
We only list part of the API used for the development of the tool,

due to space considerations. First, libdft-DTA invokes libdft-
_init() for initializing libdft and allocating the tagmap. Next, it
uses syscall_set_post() for registering a set of system call hooks
to pinpoint untrusted data. Speci"cally, it monitors the socket API
(i.e., socket and accept) for identifying PF_{INET,INET6} socket
descriptors. It also hooks the dup, dup2, and fcntl system calls to
ensure that duplicates of these descriptors are also tracked. Each
time a system call of the read or recv family is invoked with
a monitored descriptor as argument, the memory locations that
store the network data are asserted using tagmap_setn(). libdft-
DTA checks if tainted data are used in indirect control transfers
(i.e., loaded on eip) using ins_set_post()with ret, jmp, and call
instructions. In particular, it instruments them with a small code
snippet that returns the tag markings of the instruction operands
and target address (i.e., branch target). If any of the two is tainted,
execution halts with an informative message containing the o#end-
ing instruction and the contents of eip. In addition, for protecting
against attacks that alter system call arguments, libdft-DTA also
monitors the execve system call for tainted parameters.

3 IMPACT
libdftwas originally published at the 2012ACMSIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE),
while, upon its publication, the authors made the accompanying
software artifact publicly-available as open source software.

Following its release, libdft was used in-house to study novel
methods and techniques for cross-process and cross-host taint
tracking (Taint-Exchange [53]), data auditing in cloud settings
(Cloudopsy [52], CloudFence [39]), adaptive hardening (VAP [19]),
as well as low-overhead DFT via means of o%ine data-!ow analysis
and parallelization (TFA [24], ShadowReplica [23]). The names in
parentheses correspond to prototypes of systems that build upon
the open-source codebase of libdft.

In addition to the above, the research community has endorsed
libdft, and used or extended our research prototype to facilitate
a plethora of tasks that are related to security and privacy topics.
During the past →10 years, libdft has lead to multiple subsequent
publications with meaningful impact. In what follows, we indica-
tively mention a couple of such works, which demonstrate the
versatility of our framework, and its ability to facilitate di#erent
security and/or privacy tasks.

In particular, the research community has used libdft as the
foundation of tools and frameworks for fuzz testing (VUzzer [43],
TIFF [22]), runtime error repair and containment (RCV [31]), mal-
ware dissection (BluePill [16]), forensic investigation (RAIN [25]),
system-wide IFT (SHRIFT [32]), data provenance (DataTracker [44]),
as well as context-sensitive control-!ow integrity (FCCFI [41]).

Furthermore, libdft has also been used for building tools that
support o#ensive research, like the discovery of code-reuse gadgets
(Newton [49]), identi"cation of primitives for bypassing information-
hiding-based isolation (MAPScanner [38]), reverse-engineering of
custom memory allocation routines (MemBrush [9, 10]), and the
discovery of crash-resistant exploitation primitives [28].

In contrast to the above, many studies also use libdft as a
standard benchmark in terms of DFT performance and/or e#ec-
tiveness. FlowWalker [14], Phosphor [5], TaintPipe [35], LDX [29],
DECAF [20], StraightTaint [34], TaintInduce [12], LATCH [47],
Taint Rabbit [18], SelectiveTaint [8], and PolyCruise [30] are all
representative works that compare against libdft to demonstrate
that they have indeed advanced the state-of-the-art in DFT.

Interestingly, libdft has also been used for plagiarism detection
(DYIKS-PD [46]), while BMWhas leveraged it for building a security
architecture that safely allows the use of third-party applications
in automotive settings [7]. Lastly, and most importantly, libdft is
used in “Practical Binary Analysis” [1], a recent book on reverse
engineering, as a teaching apparatus, while ports to the x86-64
architecture and the Windows platform have also been successfully
demonstrated [2, 15].

4 AVAILABILITY
libdft is available as open source software (under a modi"ed BSD
license) at: https://gitlab.com/brown-ssl/libdft/
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