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ABSTRACT
Despite the recent advances in a wide spectrum of appli-
cations, machine learning models, especially deep neural
networks, have been shown to be vulnerable to adversar-
ial attacks. Attackers add carefully-crafted perturbations
to input, where the perturbations are almost imperceptible
to humans, but can cause models to make wrong predic-
tions. Techniques to protect models against adversarial in-
put are called adversarial defense methods. Although many
approaches have been proposed to study adversarial attacks
and defenses in di↵erent scenarios, an intriguing and crucial
challenge remains that how to really understand model vul-
nerability? Inspired by the saying that “if you know your-
self and your enemy, you need not fear the battles”, we may
tackle the challenge above after interpreting machine learn-
ing models to open the black-boxes. The goal of model in-
terpretation, or interpretable machine learning, is to extract
human-understandable terms for the working mechanism of
models. Recently, some approaches start incorporating in-
terpretation into the exploration of adversarial attacks and
defenses. Meanwhile, we also observe that many existing
methods of adversarial attacks and defenses, although not
explicitly claimed, can be understood from the perspective
of interpretation. In this paper, we review recent work on
adversarial attacks and defenses, particularly from the per-
spective of machine learning interpretation. We categorize
interpretation into two types, feature-level interpretation,
and model-level interpretation. For each type of interpreta-
tion, we elaborate on how it could be used for adversarial
attacks and defenses. We then briefly illustrate additional
correlations between interpretation and adversaries. Finally,
we discuss the challenges and future directions for tackling
adversary issues with interpretation.

Keywords
Adversarial attacks, adversarial defenses, interpretation, ex-
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1. INTRODUCTION
Machine learning (ML) techniques, especially recent deep
learning models, are progressing rapidly and have been in-
creasingly applied in various applications. Nevertheless, con-
cerns have been posed about the security and reliability is-
sues of ML models. In particular, many deep models are sus-
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Figure 1: Interpretation can either provide directions for
improving model robustness or attacking on its weakness.

ceptible to adversarial attacks [1; 2]. That is, after adding
certain well-designed but human imperceptible perturbation
or transformation to a clean data instance, we are able to
manipulate the prediction of the model. The data instances
after being attacked are called adversarial samples. The
phenomenon is intriguing since clean samples and adversar-
ial samples are usually not distinguishable to humans. Ad-
versarial samples may be predicted dramatically di↵erently
from clean samples, but the predictions usually do not make
sense to a human.
The model vulnerability to adversarial attacks has been dis-
covered in various applications or under di↵erent constraints.
For examples, approaches for crafting adversarial samples
have been proposed in tasks such as classification (e.g., on
image data [3], text data [4], tabular data [5], graph data [6;
7]), object detection [8], and fraud detection [9]. Adver-
sarial attacks could be initiated under di↵erent constraints,
such as assuming limited knowledge of attackers on target
models [10; 11], assuming higher generalization level of at-
tack [12; 13], posing di↵erent real-world constraints on at-
tack [14; 15]. Given the advances, several questions could be
posted. First, are these advances relatively independent of
each other, or is there an underlying perspective from which
we can discover the commonality behind them? Second,
should adversarial samples be seen as the negligent corner
cases that could be fixed by putting patches to models, or
are they deeply rooted in the internal working mechanism
of models that it is not easy to get rid of?
Motivated by the idiom that “if you know yourself and your
enemy, you need not fear the battles” from The Art of War,
in this paper, we answer the above questions and review the
recent advances of adversarial attack and defense approaches
from the perspective of interpretable machine learning. The



relation between model interpretation and model robustness
is illustrated in Figure 1. On the one hand, if adversaries
know how the target model works, they may utilize it to
find model weakness and initiate attacks accordingly. On
the other hand, if model developers know how the model
works, they could identify the vulnerability and work on
remediation in advance. Interpretation refers to the human-
understandable information explaining what a model has
learned or how a model makes predictions. Exploration of
model interpretability has attracted many interests in re-
cent years, because recent machine learning techniques, es-
pecially deep learning models, have been criticized due to
lack of transparency. Some recent work starts to involve in-
terpretability in the analysis of adversarial robustness. Also,
although not being explicitly specified, in this survey, we
will show that many existing adversary-related work can be
comprehended from another perspective as an extension of
model interpretation.
Before connecting the two domains, we first briefly intro-
duce the subjects of interpretation to be covered in this pa-
per. Interpretability is defined as “the ability to explain or to
present in understandable terms to a human [16]”. Although
a formal definition of interpretation still remains elusive [16;
17; 18; 19], the overall goal is to obtain and transform infor-
mation from models or their behaviors into a domain that
human can make sense of [20]. For a more structured analy-
sis, we categorize existing work into two categories: feature-
level interpretation and model-level interpretation, as shown
in Figure 2. Feature-level interpretation targets to find the
most important features in a data sample for its predic-
tion. Model-level interpretation explores the functionality
of model components, and their internal states after being
fed with input. This categorization is based on whether the
internal working mechanism of models is involved in inter-
pretation.
Following the above categorization, the overall structure of
this article is organized as below. To begin with, we briefly
introduce di↵erent types of adversarial attack and defense
strategies in Section 2. Then, we introduce di↵erent cate-
gories of interpretation approaches, and demonstrate in de-
tail how interpretation correlates to the attack and defense
strategies. Specifically, we discuss feature-level interpreta-
tion in Section 3 and model-level interpretation in Section 4.
After that, we extend the discussion to additional relations
between interpretation and adversarial aspects of models in
Section 5. Finally, we discuss some opening challenges for
future work in Section 6.

2. ADVERSARIAL MACHINE LEARNING
Before understanding how interpretation helps adversarial
attack and defense, we first provide an overview of existing
attack and defense methodologies.

2.1 Adversarial Attacks
In this subsection, we introduce di↵erent types of threat
models for adversarial attacks. The overall threat models
may be categorized under di↵erent criteria. Based on dif-
ferent application scenarios, conditions, and adversary ca-
pabilities, specific attack strategies will be deployed.

2.1.1 Untargeted vs Targeted Attack

Based on the goal of attackers, the threat models can be clas-
sified into targeted and untargeted ones. For targeted attack,
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Figure 2: Illustration of feature-level interpretation and
model-level interpretation for a deep model.

it attempts to mislead a model’s prediction to a specific class
given an instance. Let f denote the target model exposed
to adversarial attack. A clean data instance is x0 2 X, and
X is the input space. We consider classification tasks, so
f(x0) = c, c 2 {1, 2, ..., C}. One way of formulating the task
of targeted attack is as below [2]:

min
x2X

d(x,x0), s.t. f(x) = c0 (1)

where c0 6= c, and d(x,x0) measures the distance between
the two instances. A typical choice of distance measure is
lp norms, where d(x,x0) = kx � x0kp. The core idea is to
add small perturbation to the original instance x0 to make
it being classified as c0. However, in some cases, it is impor-
tant to increase the confidence of perturbed samples being
misclassified, so the task may also be formulated as:

max
x2X

fc0(x), s.t. d(x,x0)  � (2)

where fc0(x) denotes the probability or confidence that x is
classified as c0 by f , and � is a threshold limiting perturba-
tion magnitude. For untargeted attack, its goal is to prevent
a model from assigning a specific label to an instance. The
objective of untargeted attack could be formulated in a sim-
ilar way as targeted attack, where we just need to change
the constraint as f(x) 6= c in Equation 1, or change the
objective as minx2X fc(x) in Equation 2.
In some scenarios, the two types of attacks above are also
called false positive attack and false negative attack. The
former aims to make models misclassify negative instances
as positive, while the latter tries to mislead models to clas-
sify positive instances as negative. False positive attacks
and false negative attacks sometimes are also called Type-I
attacks and Type-II attacks, respectively.

2.1.2 One-Shot vs Iterative Attack

According to practical constraints, adversaries may initiate
one-shot or iterative attacks to target models. In one-shot
attack, they have only one chance to generate adversarial
samples, while iterative attack could take multiple steps to
find the better perturbation direction. Iterative attacks can



generate more e↵ective adversarial samples than one-shot
attacks. However, it also requires more queries to the target
model and more computation to initiate each attack, which
may limit its application in some computational-intensive
tasks.

2.1.3 Data-Dependent vs Universal Attack

According to information sources, adversarial attacks could
be data-dependent or data-independent. In data dependent
attack, perturbations are customized based on the target in-
stance. For example, in Equation 1, the adversarial sample
x is crafted based on the original instance x0. However, it is
also possible to generate adversarial samples without refer-
ring to the input instance, and it is also named as universal
attack [12; 21]. The problem can be abstracted as looking
for a perturbation vector v so that

f(x+ v) 6= f(x) for “most” x 2 X. (3)

We may need a number of training samples to obtain v, but
it does not rely on any specific input at test time. Adversar-
ial attacks can be implemented e�ciently once the vector v
is solved.

2.1.4 Perturbation vs Replacement Attack

Adversarial attacks can also be categorized based on the way
of input distortion. In perturbation attack, input features
are shifted by specific noises so that the input is misclassified
by the model. In this case, let x⇤ denote the final adversarial
sample, then it can be obtained via

x⇤ = x0 +�x, (4)

and usually k�xkp is small.
In replacement attack, certain parts of the input are replaced
by adversarial patterns. Replacement attack is more natural
in physical scenarios. For example, criminals may want to
wear specifically designed glasses to prevent them from being
recognized by computer vision systems 1. Also, surveillance
cameras may fail to detect persons wearing clothes attached
with adversarial patches [14]. Suppose v denotes the adver-
sarial pattern, then replacement attack can be represented
by using a mask m 2 {0, 1}|x0|, so that

x⇤ = x0 � (1�m) + v�m (5)

where the symbol � denotes element-wise multiplication.

2.1.5 White-Box vs Black-Box Attack

In white-box attack, it is assumed that attackers know ev-
erything about the target model, which may include model
architecture, weights, hyper-parameters, and even training
data. White-box attacks help to discover intrinsic vulner-
abilities of the target model. It works in ideal cases repre-
senting the worst scenario that defenders have to confront.
Black-box attack assumes that attackers are only accessi-
ble to the model output, just like regular end-users. This
is a more practical assumption in real-world scenarios. Al-
though a lot of detailed information about models is oc-
cluded, black-box attacks still pose a significant threat to
machine learning systems due to the transferability prop-
erty of adversarial samples discovered in [11]. In this sense,
an attacker could build a new model f 0 to approximate the

1https://www.inovex.de/blog/machine-perception-face-
recognition/

target model f , and adversarial samples created on f 0 could
still be e↵ective to f .

2.2 Defenses Against Adversarial Attacks
In this subsection, we briefly introduce the basic idea of
di↵erent defense strategies against adversaries.

2.2.1 Input Denoising

As adversarial perturbation is a type of human-imperceptible
noise added to data, then a natural defense solution is to fil-
ter it out, or to use additional random transformation to
o↵set adversarial noise. It is worth noting that fm could
be added prior to model input layer [22; 23; 24], or as an
internal component inside the target model [25]. Formally,
for the former case, given an instance x⇤ which is probably
a↵ected by adversaries, we hope to design a mapping fm,
so that f(fm(x⇤)) = f(x0). For the latter case, the idea
is similar except that f is replaced by certain intermediate
layer output h.

2.2.2 Model Robustification

Refining the model to prepare itself against a potential threat
from adversaries is another widely applied strategy. The
model refinement could be achieved from two directions:
changing the training objective, or modifying the model
structure. Some examples of the former one include adver-
sarial training [2; 1], and replacing empirical training loss
with robust training loss [26]. The intuition behind it is to
consider in advance the threat of adversarial samples during
model training, so that the resultant model gains robust-
ness from training. Examples of model modification include
model distillation [27], applying layer discretization [28],
controlling neuron activations [29]. Formally, let f 0 denote
the robust model, the goal is to make f 0(x⇤)) = f 0(x0) = y.

2.2.3 Adversarial Detection

Unlike the previous two strategies where we hope to discover
the true label given an instance, adversarial detection tries
to identify whether the given instance is polluted by adver-
sarial perturbation. The general idea is to build another
predictor fd, so that fd(x) = 1 if x has been polluted, and
otherwise fd(x) = 0. The establishment process of fd could
follow the normal routine of building a binary classifier [30;
31; 32].
Input denoising and model robustification methods proac-
tively recover the prediction from influences of adversarial
attacks by focusing on modifying the input data and model
architectures, respectively. Adversarial detection methods
passively decide whether the model should make predictions
against the input in order not to be fooled. Implementa-
tions of proactive strategies are usually more challenging
than passive ones.

3. FEATURE-LEVEL INTERPRETATION IN
ADVERSARIAL MACHINE LEARNING

Feature-level interpretation is a widely used post-hoc method
to identify feature importance for a prediction result. It fo-
cuses on the end-to-end relation between input and output,
instead of carefully examining the internal states of mod-
els. Some examples include measuring the importance of
phrases of sentences in text classification [33], and pixels in
image classification [34]. In this section, we will discuss how
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Figure 3: Interpretation naturally unveils the direction of
adversarial perturbation (g denotes the local interpreter).

this type of interpretation correlates with the attack and
defense of adversaries, given that many works on adversar-
ial machine learning do not analyze adversaries from this
perspective.

3.1 Feature-Level Interpretation for Under-
standing Adversarial Attacks

In this part, we will show that many feature-level interpreta-
tion techniques are closely coupled with existing adversarial
attack methods, thus providing another perspective to un-
derstand adversarial attacks.

3.1.1 Gradient-Based Techniques

Following the notations in previous discussion, we let fc(x0)
denote the probability that model f classifies the input in-
stance x0 as class c. One of the intuitive ways to under-
stand why such prediction is derived is to attribute predic-
tion fc(x0) to feature importance in x0. According to [35],
fc(x0) can be approximated with a linear function surround-
ing x0 by computing the first-order Taylor expansion:

fc(x) ⇡ fc(x0) +wT
c · (x� x0) (6)

where wc is the gradient of fc with respect to input at x0,
i.e., wc = rxfc(x0). From the interpretation perspective,
wc entries of large magnitude correspond to the features
that are important around the current output.
However, another perspective to comprehend the above equa-
tion is that, the interpretation wc also indicates the most
e↵ective direction to change the prediction result by per-
turbing input away from x0. If we let �x = x� x0 / �wc,
we are attacking the model f with respect to the input-label
pair (x0, c). Such perturbation method is closely related to
the Fast Gradient Sign (FGS) attacking method [1], where:

�x = ✏ · sign(rxJ(f,x0, c)), (7)

except that (1) FGS computes the gradient of a certain cost
function J nested outside f , and (2) it applies an additional
sign() operation on gradient for processing images. How-
ever, if we define J with cross entropy loss, and the true
label of x0 is c, then

rxJ(f,x0, c) = �rx log fc(x0) = �
1

fc(x0)
rxfc(x0), (8)

which points to exactly the opposite direction of interpre-
tation wc. The high-level idea behind this case is that, if
the interpretation of a model is known, a straightforward
way to undermine the model is to remove the important
information or components relevant to the interpretation.

!"($)!"($)

Baseline(point

!"($)!"($)
Raw(Gradient

Integrated(Gradient

the(gradient(saturates

Figure 4: Raw gradients only consider the local sensitivity
of output to input value changes, which could be limited in
measuring the contribution of a feature to the prediction.

The traditional FGS method is proposed under untargeted
attacks, where the goal is to impede input from being cor-
rectly classified. For targeted attack, where the goal is to
misguide the model prediction towards a specific class, a typ-
ical way is Box-constrained L-BFGS (L-BFGS-B) method [2].
Assume c0 is the target label, the problem of L-BFGS-B is
formulated as:

argmin
x2X

↵ · d(x,x0) + J(f,x, c0) (9)

where d is considered to control the perturbation distance,
and X is the input domain (e.g., [0, 255] for each channel of
image input). The goal of attack is to make f(x) = c0, while
making d(x,x0) to be small. Suppose we apply gradient
descent to solve the problem, and x0 is the starting point.
Similar to the previous discussion, if we define J as the cross
entropy loss, then

�rxJ(f,x0, c
0)) = rx log fc0(x0) / wc0 . (10)

On one hand, wc0 locally and linearly interprets fc0(x0), and
it also serves the most e↵ective direction to make x0 towards
being classified as c0.
According to the taxonomy of adversarial attacks, the two
scenarios discussed above can also be categorized into: (1)
one-shot attack, since we only perform interpretation once,
(2) data-dependent attack, since the perturbation direction
is related with x0, (3) white-box attack, since model gradi-
ents are available. Other types of attack could be crafted if
di↵erent interpretation strategies are applied, which will be
discussed in later sections.
Improved Gradient-Based Techniques. The interpre-
tation methods based on raw gradients, as discussed above,
are usually unstable and noisy [36; 37]. The possible reasons
include: (1) the target model’s prediction function itself is
not stable; (2) gradients only consider the local output-input
relation so that its scope is too limited (Figure 4); (3) the
prediction mechanism is too complex to be approximated
by a linear substitute. Some approaches for improving in-
terpretation (i.e., potential adversarial attack) are as below.

• Region-Based Exploration: To reduce random noises
in interpretation, SmoothGrad is proposed in [38], where
the final interpretation wc, as a sensitivity map, is ob-
tained by averaging multiple interpretation results of in-
stances sampled around the target instance x0, i.e., wc =P

x02N (x0)
1

|N (x0)|
rfc(x

0). The averaged sensitivity map



will be visually sharpened. A straightforward way to ex-
tend it for adversarial attack is to perturb input by re-
versing the averaged interpretation. Furthermore, [39] de-
signed a di↵erent strategy by adding a step of random per-
turbation before gradient computation in attack, to jump
out of the non-smooth vicinity of the initial instance. Spa-
tial averaging is a common technique to stabilize output.
For example, [40] applies it as a defense method to derive
more stable model predictions.

• Path-Based Integration: To improve interpretation and
consider a broader input scope, [41] proposes Integrated
Gradient (InteGrad). After setting a baseline point xb,
e.g., an all-black image in classification tasks, the inter-
pretation is defined as:

sc =
(x0 � xb)

D
�

DX

d=1

[rfc](x
b +

d
D

(x0 � xb)), (11)

which is the weighted sum of gradients along the straight-
line path from x0 to the baseline point xb. Let sc(m)
denote the m-th entry of sc, then the prediction function
could be decomposed as below:

fc(x) ⇡ fc(x
b) +

MX

m=1

sc(m), (12)

which is di↵erent from the decomposition in Eq 6. Here
sc(m) denotes the contribution of the m-th feature to the
prediction result. Therefore, a new type of adversarial
attack could be conducted by deleting or removing those
features with high contribution scores. This type of fea-
ture deletion or feature occlusion attack is di↵erent from
FGS that perturbs feature values.

Interestingly, although in many cases gradient-based inter-
pretation is intuitive as visualization to show that the model
is functioning well, it may be an illusion since we can easily
transform interpretation into adversarial perturbation.

3.1.2 Distillation-Based Techniques

The interpretation techniques discussed so far require gradi-
ent information rxf from models. Meanwhile, it is possible
to extract interpretation without querying a model f more
than f(x). This type of interpretation method, here named
as the distillation-based method, can also be used for ad-
versarial attacks. Since no internal knowledge is required
from the target model, they are usually used for black-box
attacks.
The main idea of applying distillation for interpretation is
to use an interpretable model g (e.g., a linear model) to
locally mimic the behavior of the target deep model f [42;
43]. Once we obtain g, existing white-box attack methods
could be applied to craft adversarial samples [5]. In addition,
given an instance x0, to guarantee that g more accurately
mimics the behaviors of f , we could further require that g
locally approximates f around the instance. The objective
is thus as below:

min
g

L(f, g,x0) + ↵ · C(g), (13)

where L denotes the approximation error around x0. For

example, in LIME [44]:

L(f, g,x0) =
X

x02N (x0)

exp(�d(x0,x
0))kf(x0)� g(x0)k22,

(14)
and N (x0) denotes the local region around x0. In addition,
LEMNA [45] adopts mixture regression models for g and
fused lasso as regularization C(g). After obtaining g, we can
craft adversarial samples targeting g by removing important
features or perturbing input towards the reversed direction
of interpretation. According to the property of transferabil-
ity [11], an adversarial sample that successfully fools g is
also likely to fool f . The advantages are two-fold. First, the
process is model-agnostic and does not assume availability
to gradients. It could be used for black-box attacks or at-
tacking certain types of models (such as tree-based models)
that do not use gradient backpropagation in training. Sec-
ond, one-shot attacks on g could be more e↵ective thanks to
the smoothness term C(g) as well as extending the consid-
eration to include the neighborhood of x0 [46]. Thus, it has
the potential to make defense methods based on obfuscated
gradients [47] to be less robust. However, the disadvantage
is that crafting each adversarial sample requires higher com-
putation cost.
In certain scenarios, it may be beneficial to make adversarial
patterns understandable to humans as real-world simulation
when identifying model vulnerability. For example, in au-
tonomous driving, we need to consider physically-possible
patterns that could cause misjudgment of autonomous ve-
hicles [48]. One possible approach is to encourage adver-
sarial instances to fall into the data distribution [49], which
could be implemented through a regularization term kx0 +
�x�AE(x0+�x)k22, where AE(·) denotes an autoencoder.
By minimizing the normalization term, the perturbed data
x0+�x can be well modeled by the autoencoder, which im-
plies that it is close to the data manifold. Another strategy
is to predefine a dictionary, and then make the adversarial
perturbation to match one of the dictionary tokens [48], or
a weighted combination of the tokens [50].

3.1.3 Influence-Function Based Techniques

Instead of measuring feature importance (e.g., feature sensi-
tivity, feature contribution) as explanations, influence func-
tions provide a new perspective by measuring the impor-
tance of data instances. Suppose x1, x2, ..., xN are the
training instances, and ✓ denotes the model parameters. Let
L(xn, ✓) be the loss on a single instance, and 1

N

PN
n=1 L(xn, ✓)

be the overall empirical loss. The optimal parameters are
given by ✓̂ = argmin✓

1
N

PN
n=1 L(xn, ✓). According to [51],

influence function could be used to answer several questions:
(1) how model parameters ✓ would change if an instance xn

is removed, (2) how model prediction on a test point xtest

would change if an instance xn is removed, (3) how model
prediction would change if an instance xn is modified. By
answering the third question, through experimental demon-
stration, the paper shows that after injecting perturbed data
instances into the training set (i.e., data poisoning), the new
model will make wrong predictions on some test points.
In explanations derived from influence functions, the fun-
damental unit is the data instance instead of the feature.
Therefore, it seems di�cult to directly utilize explanation
results from influence functions to initiate adversarial at-
tacks. However, in graph analysis, influence functions are



useful in studying the importance of graph components (e.g.,
nodes and edges) that can be regarded as the “features” of
the graph. A graph can be denoted as G = {V, E}, where
V = {v1, v2, ..., vN} is the set of nodes, and E is the set of
edges. Each edge is denoted as (vi, vj) 2 E . An important
task in graph analysis is node embedding, where we learn an
embedding vector for each node. The embedding vectors can
be used in downstream tasks such as node classification and
link prediction. One of the fundamental requirements for
learning embeddings is that the embeddings of nodes that
are connected or have similar contexts (e.g., similar neigh-
bors) should be close to each other. By utilizing influence
functions, it is possible to identify how adding or deleting
an edge would change the node embeddings [52]. The addi-
tion or deletion of a small number of edges can be seen as
adversarial attacks on graph data.

3.2 Feature-Level Interpretation for
Adversarial Defenses

The feature-level interpretation could be used for defense
against adversaries through adversarial training and detect-
ing model vulnerability.

3.2.1 Model Robustification With Feature-Level

Interpretation

The feature-level interpretation could help adversarial train-
ing to improve model robustness. Adversarial training [1; 3]
is one of the most applied proactive countermeasures to im-
prove the robustness of the model. Feature-level interpreta-
tion could help in crafting adversarial samples to unveil the
weakness of the model. The adversarial samples are then
injected into the training set for data augmentation. The
overall loss function can be formulated as:

min
f

E(x,y)2D [↵J(f(x), y) + (1� ↵)J(f(x⇤), y)]. (15)

In the scenario of adversarial training, feature-level interpre-
tation helps in preparing adversarial samples x⇤, which may
refer to any method discussed in Section 3.1.1 and Section
3.1.2. Although such an attack-and-then-debugging strat-
egy has been successfully applied in many traditional cy-
bersecurity scenarios, one key drawback is that it tends to
overfit the specific approach that is used to generate x⇤.
Therefore, the adversarial training is usually conducted for
multiple rounds.
To train more robust models, some optimization based meth-
ods have been proposed. [26] argues that traditional Empir-
ical Risk Minimization (ERM) fails to yield models that are
robust to adversarial instances, and proposed a min-max
formulation to train robust models:

min
f

E(x,y)2D [ max
�2�X

J(x+ �, y)], (16)

where �X denotes the set of allowed perturbations. It for-
mally defines adversarially robust classification as a learn-
ing problem to reduce adversarial expected risk. This min-
max formulation provides another perspective on adversar-
ial training, where the inner task aims to find adversarial
samples, and the outer task retrains model parameters. [39]
further improves its defense performance by crafting adver-
sarial samples from multiple sources to augment training
data. [53] further identifies a trade-o↵ between robust classi-
fication error and natural classification error, which provides
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Figure 5: The interpretation of an adversarial sample may
di↵er from the one of a clean sample. Top-left: a normal
example from the shirt class of Fashion-MNIST dataset.
Bottom-left: the explanation map for the classification.
Top-right: an adversarial example, originally from the san-
dal class, that is misclassified as a shirt. Bottom-right: the
explanation map for the misclassification.

a solution to reduce the negative e↵ect on model accuracy
after adversarial training.
Besides adversarial training, in more cases, feature-level in-
terpretation plays the role of providing motivation for ro-
bust learning. For example, empirical interpretation results
pointed out, that an intriguing property of CNN is its bias
towards texture instead of shape information when making
predictions [54]. To tackle this problem, [55] proposes Info-
Drop, a plug-in filtering method to remove texture-intensive
information during forward propagation of CNN. Feature
map regions with low self-information, i.e., regions with tex-
ture patterns that contain less “surprise”, tend to be filtered
out. In this way, the model will pay more attention to re-
gions such as edges and shapes, and be more robust under
various scenarios including adversaries.

3.2.2 Adversarial Detection With Feature-Level

Interpretation

In the scenario where a model is subject to adversarial at-
tacks, interpretation may serve as a new type of information
for directly detecting adversarial patterns. The motivation
is illustrated in Figure 5. In the adversarial image which
originally shows a shoe, although the model classifies it as
a shirt, its interpretation result does not resemble the one
obtained from the clean image of a shirt. A straightforward
way to distinguish interpretations is to train another clas-
sifier as the detector trained with interpretations of both
clean and adversarial instances, paired with labels indicat-
ing whether the sample is clean [56; 57; 58; 59]. Specifically,
[59] directly uses gradient-based saliency map as interpreta-
tion, [58] adopts the distribution of Leave-One-Out (LOO)
attribution scores, while [57] proposes a new interpretation
method based on masks highlighting important regions. [60]
proposes an ensemble framework called X-Ensemble for de-
tecting adversarial samples. X-Ensemble consists of multiple
sub-detectors, each of which is a convolutional neural net-
work to classify whether an instance is adversarial or benign.
The input to each sub-detector is the interpretation of the
instance’s prediction. More than one interpretation method



is deployed, so there are multiple sub-detectors. A random
forest model is then used to combine sub-detectors into a
powerful ensemble detector.
In more scenarios, interpretation serves as a diagnostic tool
to qualitatively identify model vulnerability. First, we could
use interpretation to identify whether inputs are a↵ected by
adversarial attacks. For example, if the interpretation re-
sult shows that unreasonable evidence has been used for
prediction [61], then it is possible that there exist suspicious
but imperceptible input patterns. Second, interpretation
may reflect whether a model is susceptible to adversarial
attack. Even given a clean input instance, if the interpre-
tation of model prediction does not make much sense to
humans, then the model is at the risk of being attacked.
For example, in a social spammer detection system, if the
model regards certain features as important, but they are
not strongly correlated with maliciousness, then attackers
could easily manipulate these features without much cost
to fool the system [5]. Also, in image classification, CNN
models have been demonstrated to focus on local textures
instead of object shapes, which could be easily utilized by at-
tackers [54]. An interesting phenomenon in image classifica-
tion is that, after refining a model with adversarial training,
feature-level interpretation results indicate that the refined
model will be less biased towards texture features [62].
Nevertheless, there are several challenges that impede the
intuitions above from being formulated to formal defense
approaches. First, the interpretation itself is also fragile in
neural networks. Attackers could control prediction and in-
terpretation simultaneously via indistinguishable perturba-
tion [63; 64]. Second, it is di�cult to quantify the robustness
of a model through interpretation [36]. Manual inspection of
interpretation helps discover defects in model, but visually
acceptable interpretation does not guarantee model robust-
ness. That is, defects in feature-level interpretation indicate
the presence but not the absence of vulnerability.

4. MODEL-LEVEL INTERPRETATION IN
ADVERSARIAL MACHINE LEARNING

In this review, model-level interpretation is defined with
two aspects. First, model-level interpretation aims to fig-
ure out what has been learned by intermediate components
in a trained model [65; 35], or what is the meaning of di↵er-
ent locations in latent space [66; 67; 68]. Second, given an
input instance, model-level interpretation unveils how the
input is encoded by those components as latent represen-
tation [66; 67; 23; 25]. In our discussion, the former does
not rely on input instances, while the latter is the opposite.
Therefore, we name the two aspects asModel Component In-
terpretation and Representation Interpretation respectively
to further distinguish them.

4.1 Model Component Interpretation for
Understanding Adversarial Attacks

In deep models, model component interpretation can be de-
fined as exploring the visual or semantic meaning of each
neuron. A popular strategy to solve this problem is to re-
cover the patterns that activate the neuron of interests at a
specific layer [69; 35]. Following the previous notations, let
h(x) denote the activation degree of neuron h given input
x, the perceived pattern of the neuron can be visualized by
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+ =
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Figure 6: Examples of adversarial attacks after applying
model-level interpretation. Upper: Targeted universal per-
turbation. Lower: Universal replacement attack.

solving the problem below:

argmax
x0

h(x0)� ↵ · C(x0), (17)

where C(·) such as k · k1 or k · k2 acts as regularization.
Conceptually, the result contains patterns that neuron h is
sensitive to. If we choose h to be fc, then the resultant
x0 illustrates class appearances learned by the target model.
Another discussion about di↵erent choices of h, such as neu-
rons, channels, layers, logits and class probabilities, is pro-
vided in [70]. Similarly, we could also formulate another
minimization problem

argmin
x0

h(x0) + ↵ · C(x0), (18)

to produce patterns that prohibit activation of certain model
components or prediction towards certain classes.
The interpretation result x0 is highly related with several
types of adversarial attacks, with some examples shown in
Figure 6.

• Targeted-Universal-Perturbation Attack: If we set
h to be class relevant mapping such as fc, and solve Eq. 17
to get the interpretation, then x0 can be directly added
to target input instance as targeted perturbation attack.
That is, given a clean input x0, the adversarial sample x⇤

is crafted simply as x⇤ = x0 + � · x0 to make f(x⇤) = c.
It belongs to universal attack, because the interpretation
process in Eq.17 does not utilize any information of the
clean input. An example is shown in the upper row of
Figure 6. A clean image is classified as “dog” (or “cat”)
by the model. Meanwhile, an image is generated by solv-
ing Eq.17, by setting h as fc where c denotes “snake”.
By adding the generated image to the clean image, the
resultant image is recognized as “snake”, although it still
looks like a dog and a cat in human eyes.

• Untargeted-Universal-Perturbation Attack: If we
set h to be the aggregation of a number of middle-level
layer mappings, such as h(x0) =

P
l log(h

l(x0)) where hl

denotes the feature map tensor at layer l, the resultant x0

is expected to produce spurious activation to confuse the



prediction of CNN models given any input, which implies
f(x0+� ·x0) 6= f(x0) with high probability [13]. This can
be seen as an untargeted and universal attack.

• Universal-Replacement Attack: Adversarial patches,
which completely replace part of the input, represent a
visually di↵erent attack from perturbation attack. Based
on Eq.17, more parameters such as masks, shape, location
and rotation could be considered in the optimization to
control x0 [71]. The patch is obtained as x0

�m, and the
adversarial sample x⇤ = x0 � (1 � m) + x0

� m, where
m is a binary mask that defines patch shape. Besides,
recent research shows that, if we define h as the objec-
tive score function in person detectors [14] or as the logit
corresponding to human class [72], by solving Eq.18, it is
possible to produce real-world patches attachable to hu-
man bodies to avoid them being detected by surveillance
camera. An example of adversarial patches is shown in
the bottom row of Figure 6. A clean image is classified
as “beer”. Meanwhile, a small image patch is generated,
which is recognized as a “cat”. By attaching the gener-
ated patch to the clean image, the prediction on the new
image will be a↵ected by the patch.

4.2 Representation Interpretation for Initiat-
ing Adversarial Attacks

Representation learning plays a crucial role in recent ad-
vances of machine learning, with applications in vision [73],
natural language processing [74] and network analysis [75].
However, the opacity of representation space also becomes
the bottleneck for understanding complex models. A com-
monly used strategy toward understanding representation
is to define a set of explainable bases, and then decompose
representation points according to the bases. Formally, let
zi 2 RD denote a representation vector, and {bk 2 RD

}
K
k=1

denote the basis set, where D denotes the representation di-
mension andK is the number of base vectors. Then, through
decomposition

zi =
KX

k=1

pi,k · bk, (19)

we can explain the meaning of zi through referencing base
vectors whose semantics are known, where pi,k measures the
a�liation degree between instance zi and bk. The work of
providing representation interpretation following this scheme
can be divided into several groups:

• Dimension-wise Interpretation: A straightforward way
to achieve interpretability is to require each dimension to
have a concrete meaning [76; 77], so that the basis can
be seen as non-overlapping one-hot vectors. A natural ex-
tension to it would be to allow several dimensions (i.e., a
segment) to jointly encode one meaning [78; 79].

• Concept-wise Interpretation: A set of high-level and
intuitive concepts could first be defined, so that each bk

encodes one concept. Some examples include visual con-
cepts [67; 66; 80], antonym words [81], and network com-
munities [68].

• Example-wise Interpretation: Each base vector can
be designed to match one data instance [82; 83] or part
of the instance [84]. Those instances are also called pro-
totypes. For example, a prototype could be an image
region [84] or a node in networks [83].

The extra knowledge obtained from representation interpre-
tation could be used to guide the direction of adversarial per-
turbation. However, the motivation of this type of work usu-
ally is to initiate more meaningful adversaries and then use
adversarial training to improve model generalization, but
not for the pure purpose of undermining model performance.
For example, in text mining, [50] restricts perturbation di-
rection of each word embedding to be a linear combination
of vocabulary word embeddings, which improves model per-
formance in text classification after adversarial training. In
network embedding, [85] restricts perturbation of a node’s
embedding towards the embeddings of the node’s neighbors
in the network, so that adversarial training improves node
classification and link prediction performances.

4.3 Model-Level Interpretation for
Adversarial Defenses

Model-level interpretation develops an internal understand-
ing of a model, including its weakness. Defenders could
either choose to improve model robustness or develop a de-
tector using internal data representation.

4.3.1 Model Robustification With Model-Level

Interpretation

Some high-level features learned by deep models are not ro-
bust, which are insu�cient to train reliable models. A novel
algorithm is proposed in [86] to build datasets of robust
features. Given a robust model fr, Hr denotes the set of
activations of neurons in the robust model, and h : X ! R,
h 2 Hr is a transformation function that maps input to a
neuron activation. Each instance in the robust dataset Dr

is constructed from the original dataset D. The instances in
the robust dataset are expected to satisfy:

E(x,y)2Dr [h(x) ·y] =

(
E(x,y)2D[h(x) · y], if h 2 Hr

0, otherwise
. (20)

In this way, input information that corresponds to non-
robust representations is suppressed. Instances in the ro-
bust dataset are expected to contain only the features that
are relevant to the robust model.
Despite not being directly incorporated in model training,
inspections of model-level interpretation, especially on la-
tent representation, have motivated several defense meth-
ods. Through visualizing feature maps of latent representa-
tion layers, the noise led by adversarial perturbation can be
easily observed [25; 23; 58]. With this observation, [25] pro-
poses adding denoising blocks between intermediate layers of
deep models, where the core function of the denoising blocks
are chosen as low-pass filters. [23] observes that adversarial
perturbation is magnified through feedforward propagation
in deep models, and proposed a U-net model structure as
denoiser. Furthermore, through neuron pattern visualiza-
tion, [87] finds that the convolutional kernels of CNNs after
adversarial training tend to show a more smooth pattern.
Based on this observation, they propose to average each ker-
nel weight with its neighbors in a CNN model, in order to
improve the adversarial robustness.

4.3.2 Adversarial Detection With Model-Level

Interpretation

Instead of training another large model as a detector us-
ing raw data, we can also leverage model-level interpreta-
tion to detect adversarial instances more e�ciently. In this



Figure 7: Explanations obtained from adversarially trained
models focus less on textures and more on shape informa-
tion [62]. Left: Input image. Middle: Gradient based expla-
nation of a model without adversarial training. Right: Gra-
dient based explanation of a model after adversarial training.

case, model-level interpretation plays a similar role as fea-
ture engineering, which helps distinguish between normal
and adversarial instances. By regarding neurons as high-
level features, readily available interpretation methods such
as SHAP [88] could be applied for feature engineering to
build adversarial detector [56]. After inspecting the role of
neurons in prediction, a number of critical neurons could be
selected. A steered model could be obtained by strength-
ening those critical neurons, while adversarial instances are
detected if they are predicted very di↵erently by the original
model and steered model [29]. Nevertheless, the majority
of work on adversarial detection utilizes latent representa-
tion of instances without inspecting their meanings, such
as directly applying statistical methods on representations
to build detectors [21; 89] or conducting additional coding
steps on activations of neurons [28].

5. ADDITIONAL RELATIONS BETWEEN
ADVERSARY AND INTERPRETATION

In the previous context, we have discussed how interpreta-
tion could be leveraged in adversarial attack and defense. In
this section, we complement this viewpoint by analyzing the
role of adversarial aspects of models in defining and evalu-
ating interpretation. In addition, we specify the distinction
between the two domains.

5.1 Improving Interpretation via Building
Robust Models

In previous content, we have discussed the role of interpre-
tation in studying model robustness. From another per-
spective, it has been found that, improving model robust-
ness could also improve the understandability of explana-
tions. First, the representations learned by robust models
tend to align better with salient data characteristics and hu-
man perception [90]. Therefore, adversarially robust image
classifiers are also useful in more sophisticated tasks such
as generation, super-resolution, and translation [91], even
without relying on GAN frameworks. Also, when attack-
ing a robust classifier, the resultant adversarial samples are
more likely to be recognized by humans [90]. In addition,
retraining with adversarial samples [62], or regularizing gra-
dients to improve model robustness [92], has been discovered
to reduce noises from gradient-based sensitivity maps, and
encourage CNN models to focus more on object shapes in
making predictions. An example is shown in Figure 7. Fi-
nally, [93] presents the principle of “feature purification”.
The work discovers that dense mixtures of patterns exist in

the weights of models trained with clean data using normal
gradient descent. The dense pattern mixtures still general-
ize well when being used to predict normal data, but they
are extremely sensitive to small perturbations in the input.
After adversarial training, dense pattern mixtures could be
removed, and the activation patterns of neurons will be eas-
ier to understand.

5.2 Defining Interpretation Approaches via
Adversarial Perturbation

Some definitions of interpretation are inspired by adversar-
ial perturbation. For feature-level interpretation, to under-
stand the importance of a certain feature x, we try to answer
a hypothetical question that “What would happen to the
prediction Y, if x is removed or distorted?”. This is closely
related to causal inference [94; 95], and samples crafted in
this way are also called counterfactual explanations [96]. For
example, to understand how di↵erent words in sentences
contribute to downstream NLP tasks, we can erase the tar-
get words from input, so that the variation in output indi-
cates whether the erased information is important for pre-
diction [97]. In image processing, salient regions could be
defined as the input parts that most a↵ect the output value
when perturbed [57]. Considering that using traditional iter-
ative algorithms to generate masks is time-consuming, Goyal
et al. [98] develops trainable masking models that generate
masks in real time.
Besides defining feature-level interpretation, the similar strat-
egy can be used to define model component interpretation.
Essentially we need to answer the question that “How the
model output will change if we change the component in
the model?”. The general idea is to treat the structure of a
deep model as a causal model [99], or extract human under-
standable concepts to build a causal model [100], and then
estimate the e↵ect of each component via causal reasoning.
The importance of a component is measured by computing
output changes after the component is removed.
As a natural extension from the discussion above, adversar-
ial perturbation can also be used to evaluate the interpre-
tation result. For example, after obtaining the important
features, and understanding whether they are positively or
negatively related to the output, we could remove or distort
these features to observe the target model’s performance
change [5; 45]. If the target model’s performance signifi-
cantly drops, then we are likely to have the correct interpre-
tation. However, it is worth noting that the evaluation will
not be fair if the metric and interpretation methods do not
match [101].

5.3 Uniqueness of Model Explainability
Despite the common techniques applied for acquiring in-
terpretation and exploring adversary characteristics, some
aspects of the two directions put radically di↵erent require-
ments. For example, some applications require interpreta-
tion to be easily understood by human especially by AI
novices, such as providing more user-friendly interfaces to
visualize and present interpretation [102; 103; 104], while
adversarial attack requires perturbation to be imperceptible
to human. Some work tries to adapt interpretation to fit
human cognition habits, such as providing example-based
interpretation [105], criticism mechanism [106] and counter-
factual explanation [107]. The emphasis of understandabil-
ity in interpretability, by its nature, is exactly opposite to



the main objective in adversarial attack, which is to add
perturbation that is too subtle to be perceived by human.

6. CHALLENGES AND FUTURE WORK
We briefly introduce the challenges in leveraging interpreta-
tion to analyze the adversarial robustness of models. Mean-
while, we discuss the future research directions.

6.1 Models With Better Interpretability
Although interpretation could provide important directions
against adversaries, interpretation techniques with better
stability and faithfulness are needed before it could really
be widely used as a reliable tool. As one of the challenges,
it has been shown that many existing interpretation meth-
ods are vulnerable to manipulations [63; 64; 108]. A stable
interpretation method, given an input instance and a target
model, should produce relatively consistent results under the
situation that the input may be subject to certain noises. As
a preliminary work, [109] analyzes the phenomenon from a
geometric perspective of decision boundary and proposed a
smoothed activation function to replace ReLU. [110] pro-
poses a sparsified variant of SmoothGrad [38] to produce
saliency maps that is certifiably robust to adversaries.
Besides post-hoc interpretation, another challenge we are
facing is how to develop models that are intrinsically in-
terpretable [36]. With intrinsic interpretability, it may be
more straightforward to identify and modify the undesir-
able aspects of model. Some preliminary work starts to
explore applying graph-based models, such as proposing re-
lational inductive biases to facilitate learning about enti-
ties and their relations [111], towards a foundation of an
interpretable and flexible scheme of reasoning. Novel neu-
ral architectures have also been proposed, such as capsule
networks [112] and causal models [113].

6.2 Adversarial Attacks in Real Scenarios
The most common scenario in existing work considers ad-
versarial noises or patches in image classification or object
detection. However, these types of perturbation may not
represent the actual threats in the physical world. To solve
the challenge, more realistic adversarial scenarios need to
be studied in di↵erent applications. Some preliminary work
include verification code generation2, semantically or syn-
tactically equivalent adversarial text generation [4; 114],
and adversarial attack on graph data [6; 115]. Meanwhile,
model developers need to be alerted to new types of attacks
that utilize interpretation as the back door. For example,
it is possible to build models that predict correctly on nor-
mal data, but make mistakes on input with certain secret
attacker-chosen property [116]. Also, recently researchers
found that it is possible to break data privacy by recon-
structing private data merely from gradients communicated
between machines [117].

6.3 Model Improvement Using Adversaries
The value of adversarial samples goes beyond simply serv-
ing as prewarning of model vulnerability. It is possible that
the vulnerability to adversarial samples reflects some deeper
generalization issues of deep models [118; 119]. Some prelim-
inary work has been conducted to understand the di↵erence

2https://github.com/littleredhat1997/captcha-adversarial-
attack

between a robust model and a non-robust one. For example,
it has been shown that adversarially trained models possess
better interpretability [62] and representations with higher
quality [91]. [120] also tries to connect adversarial robust-
ness with model credibility, where credibility measures the
degree that a model’s reasoning conforms with human com-
mon sense. Another challenging problem is how to properly
use adversarial samples to benefit model performance, since
many existing works report that training with adversarial
samples will lead to performance degradation, especially on
large data [3; 25]. Recently, [121] shows that, by separately
considering the distributions of normal data and adversarial
data with batch normalization, adversarial training can be
used to improve model accuracy.

7. CONCLUSION
In this paper, we review the recent work of adversarial at-
tacks and defenses by combining them with the recent ad-
vances of interpretable machine learning. Specifically, we
categorize interpretation techniques into feature-level inter-
pretation and model-level interpretation. Within each cat-
egory, we investigate how the interpretation could be used
for initiating adversarial attacks or designing defense ap-
proaches. After that, we briefly discuss other relations be-
tween interpretation and adversarial perturbation/robustness.
Finally, we discuss the current challenges of developing trans-
parent and robust models, as well as some potential direc-
tions to further study and utilize adversarial samples.
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Fooling automated surveillance cameras: adversarial
patches to attack person detection. In CVPR Work-
shops, 2019.

[15] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial examples in the physical world. arXiv
preprint arXiv:1607.02533, 2016.

[16] Finale Doshi-Velez and Been Kim. Towards a rigor-
ous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608, 2017.

[17] Tania Lombrozo. The structure and function of expla-
nations. Trends in cognitive sciences, 2006.

[18] Frank C Keil. Explanation and understanding. Annu.
Rev. Psychol., pages 227–254, 2006.

[19] Carl G Hempel and Paul Oppenheim. Studies in the
logic of explanation. Philosophy of science, 1948.

[20] Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Müller. Methods for interpreting and under-
standing deep neural networks. Digital Signal Process-
ing, 2018.

[21] Jan Hendrik Metzen, Tim Genewein, Volker Fischer,
and Bastian Bischo↵. On detecting adversarial pertur-
bations. ICLR, 2017.

[22] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren,
and Alan Yuille. Mitigating adversarial e↵ects through
randomization. arXiv preprint arXiv:1711.01991,
2017.

[23] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu
Pang, Xiaolin Hu, and Jun Zhu. Defense against
adversarial attacks using high-level representation
guided denoiser. In CVPR, 2018.

[24] Weilin Xu, David Evans, and Yanjun Qi. Feature
squeezing: Detecting adversarial examples in deep
neural networks. arXiv preprint arXiv:1704.01155,
2017.

[25] Cihang Xie, Yuxin Wu, Laurens van der Maaten,
Alan L Yuille, and Kaiming He. Feature denoising for
improving adversarial robustness. In CVPR, 2019.

[26] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083, 2017.

[27] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense
to adversarial perturbations against deep neural net-
works. In 2016 IEEE Symposium on Security and Pri-
vacy (SP). IEEE.

[28] Jiajun Lu, Theerasit Issaranon, and David Forsyth.
Safetynet: Detecting and rejecting adversarial exam-
ples robustly. In ICCV, 2017.

[29] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu
Zhang. Attacks meet interpretability: Attribute-
steered detection of adversarial samples. In NIPS,
2018.

[30] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Ad-
versarial and clean data are not twins. arXiv preprint
arXiv:1704.04960, 2017.

[31] Dongyu Meng and Hao Chen. Magnet: a two-pronged
defense against adversarial examples. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017.

[32] Kathrin Grosse, Praveen Manoharan, Nicolas Paper-
not, Michael Backes, and Patrick McDaniel. On the
(statistical) detection of adversarial examples. arXiv
preprint arXiv:1702.06280, 2017.

[33] Mengnan Du, Ninghao Liu, Fan Yang, Shuiwang Ji,
and Xia Hu. On attribution of recurrent neural net-
work predictions via additive decomposition. In The
World Wide Web Conference, 2019.

[34] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude
Oliva, and Antonio Torralba. Learning deep fea-
tures for discriminative localization. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2016.

[35] Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv
preprint arXiv:1312.6034, 2013.

[36] Cynthia Rudin. Stop explaining black box machine
learning models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelligence,
2019.

[37] W James Murdoch, Chandan Singh, Karl Kumbier,
Reza Abbasi-Asl, and Bin Yu. Interpretable ma-
chine learning: definitions, methods, and applications.
arXiv preprint arXiv:1901.04592, 2019.



[38] Daniel Smilkov, Nikhil Thorat, Been Kim, Fer-
nanda Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. arXiv preprint
arXiv:1706.03825, 2017.
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