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Abstract

Neural networks are vulnerable to adversarial examples,

which poses a threat to their application in security sensi-

tive systems. We propose high-level representation guided

denoiser (HGD) as a defense for image classification. Stan-

dard denoiser suffers from the error amplification effect, in

which small residual adversarial noise is progressively am-

plified and leads to wrong classifications. HGD overcomes

this problem by using a loss function defined as the differ-

ence between the target model’s outputs activated by the

clean image and denoised image. Compared with ensemble

adversarial training which is the state-of-the-art defending

method on large images, HGD has three advantages. First,

with HGD as a defense, the target model is more robust to

either white-box or black-box adversarial attacks. Second,

HGD can be trained on a small subset of the images and

generalizes well to other images and unseen classes. Third,

HGD can be transferred to defend models other than the

one guiding it. In NIPS competition on defense against ad-

versarial attacks, our HGD solution won the first place and

outperformed other models by a large margin. 1

1. Introduction

As many other machine learning models [2], neural net-
works are known to be vulnerable to adversarial examples
[30, 7]. Adversarial examples are maliciously designed in-
puts to attack a target model. They have small perturbations
on original inputs but can mislead the target model. Adver-
sarial examples can be transferred across different models
[30, 21]. This transferability enables black-box adversar-
ial attacks without knowing the weights and structures of
the target model. Black-box attacks have been shown to be

∗Equal contribution.
†Corresponding author.
1Code: https://github.com/lfz/Guided-Denoise.

Figure 1: The idea of high-level representation guided de-
noiser. The difference between the original image and ad-
versarial image is tiny, but the difference is amplified in
high-level representation (logits for example) of a CNN. We
use the distance over high-level representations to guide the
training of an image denoiser to suppress the influence of
adversarial perturbation.

feasible in real-world scenarios [22], which poses a poten-
tial threat to security-sensitive deep learning applications,
such as identity authentication and autonomous driving. It
is thus important to find effective defenses against adversar-
ial attacks.

Since adversarial examples are constructed by adding
noises to original images, a natural idea is to denoise ad-
versarial examples before sending them to the target model
(Figure 1). We explored two models for denoising adversar-
ial examples, and found that the noise level could indeed be
reduced. These results demonstrate the feasibility of the de-
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noising idea. However, none of the models can remove all
adversarial perturbations, and small residual perturbation is
amplified to a large magnitude in top layers of the target
model (called “error amplification effect”), which leads to a
wrong prediction. To solve this problem, instead of using a
pixel-level reconstruction loss function as standard denois-
ers, we set the loss function as the difference between top-
level outputs of the target model induced by original and ad-
versarial examples (Figure 1). We name the denoiser trained
by this loss function “high-level representation guided de-
noiser” (HGD).

Compared with ensemble adversarial training [31] which
is the current state-of-the-art method, the proposed method
has the following advantages. First, it achieves much higher
accuracy when defending both white-box and black-box at-
tacks. Second, HGD requires much less training data and
training time, and well generalizes to other images and un-
seen classes. Third, HGD can be transferred across differ-
ent target models. We further validated the performance
of HGD in the NIPS adversarial defense competition. Our
HGD approach won the first place by a large margin, and
had faster inference speed than other top-ranked methods.

2. Background and Related Work

In this section, we first specify some of the notations
used in this paper. Let x denote the clean image from a
given dataset, and y denote the class. The ground truth la-
bel is denoted by ytrue. A neural network f : x → y is
called the target model. Given an input x, its feature vector
at layer l is fl(x), and its predicted probability of class y
is p(y|x). yx = argmaxy p(y|x) is the predicted class of
x. J(x, y) denotes the loss function of the classifier given
the input x and its target class y. For image classification,
J(x, y) is often chosen to be the cross-entropy loss. We use
x∗ to denote the adversarial example generated from x. ε
is the magnitude of adversarial perturbation, measured by a
certain distance metric.

2.1. Existing methods for adversarial attacks

Adversarial examples [30] are maliciously designed in-
puts which have a small difference from clean images but
cause the classifier to give wrong classifications. That is,
for x∗ with a sufficiently small perturbation magnitude ε ,
yx∗ "= yx. We use L∞ to measure ε in this study.

Szegedy et al. [30] use a box-constrained L-BFGS al-
gorithm to generate targeted adversarial examples, which
bias the predictions to a specified class ytarget. More
specifically, they minimize the weighted sum of ε and
J(x∗, ytarget) while constraining the elements of x∗ to be
normal pixel value.

Goodfellow et al. [7] suggest that adversarial examples
can be caused by the cumulative effects of high dimensional
model weights. They propose a simple adversarial attack

algorithm, called Fast Gradient Sign Method (FGSM):

x∗ = x+ ε · sign(∇xJ(x, y)). (1)

FGSM only computes the gradients for once, and thus
is much more efficient than L-BFGS. In early practices,
FGSM uses the true label y = ytrue to compute the gradi-
ents. This approach is suggested to have the label leaking
[16] effect, in that the generated adversarial example con-
tains the label information. A better alternative is to replace
ytrue with the model predicted class yx. FGSM is untargeted
and aims to increase the overall loss. Targeted FGSM can
be obtained by modifying FGSM to maximize the predicted
probability of a specified class ytarget:

x∗ = x− ε · sign(∇xJ(x, ytarget)) (2)

ytarget can be chosen as the least likely class predicted by the
model or a random class. Kurakin et al.[16] propose an iter-
ative FGSM (IFGSM) attack by repeating FGSM for n steps
(IFGSMn). IFSGM usually results in higher classification
error than FGSM.

The model used to generate adversarial attacks is called
the attacking model, which can be a single model or an en-
semble of models [31]. When the attacking model is the
target model itself or contains the target model, the result-
ing attacks are white-box. An intriguing property of adver-
sarial examples is that they can be transferred across dif-
ferent models [30, 7]. This property enables black-box at-
tacks. Practical black-box attacks have been demonstrated
in some real-world scenarios [22, 21]. As white-box at-
tacks are less likely to happen in practical systems, defenses
against black-box attacks are more desirable.

2.2. Existing methods for defenses

Adversarial training [7, 16, 31] is one of the most ex-
tensively investigated defenses against adversarial attacks.
It aims to train a robust model from scratch on a training
set augmented with adversarially perturbed data [7, 16, 31].
Adversarial training improves the classification accuracy of
the target model on adversarial examples [30, 7, 16, 31]. On
some small image datasets it even improves the accuracy of
clean images [30, 7], although this effect is not found on
ImageNet [5] dataset. However, adversarial training is more
time consuming than training on clean images only, because
online adversarial example generation needs extra compu-
tation, and it takes more epochs to fit adversarial examples
[31]. These limitations hinder the usage of harder attacks
in adversarial training, and practical adversarial training on
the ImageNet dataset only adopts FGSM.

Preprocessing based methods process the inputs with
certain transformations to remove the adversarial noise, and
then send these inputs to the target model. Gu and Rigazio
[9] first propose the use of denoising auto-encoders as a de-
fense. Osadchy et al. [20] apply a set of filters to remove
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the adversarial noise, such as the median filter, averaging
filter and Gaussian low-pass filter. Graese et al. [8] as-
sess the defending performance of a set of preprocessing
transformations on MNIST digits [17], including the per-
turbations introduced by image acquisition process, fusion
of crops and binarization. Das et al. [4] preprocess images
with JPEG compression to reduce the effect of adversarial
noises. Meng and Chen [18] propose a two-step defense
model, which detects the adversarial input and then reform
it based on the difference between the manifolds of clean
and adversarial examples. Our approach distinguishes from
these methods by using the reconstruction error of high-
level features to guide the learning of denoisers. Moreover,
these methods are usually evaluated on small images. As we
will show in experiments section, some method effective on
small images may not transfer well to large images.

Another family of adversarial defenses is based on the
so-called gradient masking effect [22, 23, 31]. These de-
fenses apply some regularizers or smooth labels to make
the model output less sensitive to the perturbation on input.
Gu and Rigazio [9] propose the deep contrastive network,
which uses a layer-wise contrastive penalty term to achieve
output invariance to input perturbation. Papernot et al. [24]
adapts knowledge distillation [12] to adversarial defense,
and uses the output of another model as soft labels to train
the target model. Nayebi and Surya [19] use saturating net-
works for robustness to adversarial noises. The loss func-
tion is designed to encourage the activations to be in their
saturating regime. The basic problem with these gradient
masking approaches is that they fail to solve the vulnerabil-
ity of the models to adversarial attacks, but just make the
construction of white-box adversarial examples more dif-
ficult. These defenses still suffer from black-box attacks
[22, 31] generated on other models.

3. Methods

3.1. Pixel guided denoiser

In this section, we introduce a set of denoising networks
and their motivations. These denoisers are designed in the
context of image classification on ImageNet [5] dataset.
They are used in conjunction with a pretrained classifier
f (By default Inception V3 [29] in this study). Let x de-
note the clean image. The denoising function is denoted as
D : x∗ → x̂, where x∗ and x̂ denote the adversarial image
and denoised image, respectively. The loss function is:

L = ||x− x̂||, (3)

where || · || stands for the L1 norm, the following equations
also use this notation. Since the loss function is defined at
the level of image pixels, we name this kind of denoiser
pixel guided denoiser (PGD).

Figure 2: Diagrams of DAE (left) and DUNET (right).

3.1.1 Denoising U-net

Denoising autoencoder (DAE) [32] is a popular denoising
model. In a previous work [9], DAE in the form of a multi-
layer perceptron was used to defend target models against
adversarial attacks. However, the experiments were con-
ducted on the relatively simple MNIST [17] dataset. To
better represent the high-resolution images in the ImageNet
dataset, we use a convolutional version of DAE for the ex-
periments (see Figure 2 left).

DAE has a bottleneck structure between the encoder and
decoder. This bottleneck may constrain the transmission
of fine-scale information necessary for reconstructing high-
resolution images. To overcome this problem, we modify
DAE with the U-net [27] structure and propose the denois-
ing U-net (DUNET, see Figure 2 right). DUNET is dif-
ferent from DAE in two aspects. First, similar to the Lad-
der network [25], DUNET adds lateral connections from
encoder layers to their corresponding decoder layers in the
same scale. Second, the learning objective of DUNET is the
adversarial noise (dx̂ in Figure 2), instead of reconstructing
the whole image as in DAE. This residual learning [34] is
implemented by the shortcut from input to output to addi-
tively combine them. The clean image can be readily ob-
tained by subtracting the noise (adding -dx̂) from the cor-
rupted input.

3.1.2 Network architecture

We use DUNET as an example to illustrate the architecture
(Figure 3). DAE can be obtained simply by removing the
lateral connections from DUNET. C is defined as a stack of
layer sequences, and each sequence contains a 3× 3 convo-
lution, a batch normalization layer [13] and a rectified lin-
ear unit. Ck is defined as k consecutive C. The network is
composed of a feedforward path and a feedback path. The
feedforward path is composed of five blocks, corresponding
to one C2 and four C3, respectively. The first convolution
of each C3 has 2 × 2 stride, while the stride of all other
layers is 1 × 1. The feedforward path receives the image
as input, and generates a set of feature maps of increasingly
lower resolutions (see the top pathway of Figure 3).

The feedback path is composed of four blocks and a 1×1
convolution. Each block receives a feedback input from the
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Figure 3: The detail of DUNET. The numbers inside each cube stand for width × height, and the number outside the cube
stands for the number of channels. In all the C3 of the feedforward path, the stride of the first C is 2× 2.

feedback path and a lateral input from the feedforward path.
It first upsamples the feedback input to the same size as
the lateral input using bilinear interpolation, and then pro-
cesses the concatenated feedback and lateral inputs with a
Ck. From top to bottom, three C3 and one C2 are used.
Along the feedback path, the resolution of feature maps is
increasingly higher. The output of the last block is trans-
formed to the negative noise −dx̂ by a 1 × 1 convolution
(See the bottom pathway of Figure 3). The final output is
the sum of the negative noise and the input image:

x̂ = x∗ − dx̂. (4)

3.2. High-level representation guided denoiser

A potential problem with PGD is the amplification ef-
fect of adversarial noise. Adversarial examples have neg-
ligible differences from the clean images. However, this
small perturbation is progressively amplified by deep neu-
ral networks and yields a wrong prediction. Even if the de-
noiser can significantly suppress the pixel-level noise, the
remaining noise may still distort the high-level responses of
the target model. Refer to Section 5.1 for details.

To overcome this problem, we replace the pixel-level
loss function with the reconstruction loss of the target
model’s outputs. More specifically, given a target neural
network, we extract its representations at l-th layer activated
by x and x̂, and define the loss function as the L1 norm of
their difference:

L = ||fl(x̂)− fl(x)||. (5)

The corresponding model is called HGD, in that the super-
vised signal comes from certain high-level layers of the tar-
get model and carries guidance information related to im-

age classification. HGD uses the same U-net structure as
DUNET. They only differ in their loss functions.

We propose two HGDs with different choices of l. For
the first HGD, we define l = −2 as the index of the topmost
convolutional layer. The activations of this layer are fed to
the linear classification layer after global average pooling,
so it is more related to the classification objective than lower
convolutional layers. This denoiser is called feature guided
denoiser (FGD) (see Figure 4a). The loss function used by
FGD is also known as perceptual loss or feature matching
loss[26, 14, 6]. For the second HGD, we define l = −1
as the index of the layer before the final softmax function,
i.e., the logits. This denoiser is called logits guided denoiser
(LGD). In this case, the loss function is the difference be-
tween the two logits activated by x̂ and x (see Figure 4b).
We consider both FGD and LGD for the following reason.
The convolutional feature maps provide richer supervised
information, while the logits directly represent the classifi-
cation results.

All PGD and these HGDs are unsupervised models, in
that the ground truth labels are not needed in their training
process. An alternative is to use the classification loss of the
target model as the denoising loss function, which is super-
vised learning as ground truth labels are needed. This model
is called class label guided denoiser (CGD) (see Figure4c).

4. Experimental settings

Throughout experiments, the pretrained Inception v3
(IncV3) [29] is assumed to be the target model that attacks
attempt to fool and our denoisers attempt to defend. There-
fore this model is used for training the three HGDs illus-
trated in Figure 4. However, it will be seen that the HGDs
trained with this target model can also defend other mod-
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(a) FGD (b) LGD (c) CGD

Figure 4: Three different training methods for HGD. The square boxes stand for data blobs, the circles and ovals stand for
networks. D stands for denoiser. CNN is the model to be defended. The parameters of the CNN are shared and fixed.

els (see Section 5.3). All our experiments are conducted on
images from the ImageNet dataset. Although many defense
methods have been proposed, they are mostly evaluated on
small images and only adversarial training is thoroughly
evaluated on ImageNet. We compare our model with en-
semble adversarial training, which is the state-of-the-art de-
fense method of defending large images.

4.1. Dataset

For both training and testing of the proposed method,
adversarial images are needed. To prepare the training set,
we first extract 30K images from the ImageNet training set
(30 images per class). Then we use a bunch of adversarial
attacking methods to distort these images and form a train-
ing set of adversarial images. Different attacking methods
including FGSM and IFGSM are applied to the following
models: Pre-trained IncV3, InceptionResnet v2 (IncResV2)
[28], ResNet50 v2 (Res) [11] individually or in combina-
tions (the same model ensemble as the work of Tramer et
al. [31] ). For each training sample, the perturbation level
ε is uniformly sampled from integers in [1, 16]. See Table
1 for details. As a consequence, we gather 210K images in
the training set (TrainSet).

To prepare the validation set, we first extract 10K images
from the ImageNet training set (10 images per class), then
apply the same method as described above. Therefore the
size of the validation set (ValSet) is 70K.

Two different test sets are constructed, one for white-
box attacks (WhiteTestSet)2 and the other for black-box
attacks (BlackTestSet). They are obtained from the same
clean 10K images from the ImageNet validation set (10 im-
ages per class) but using different attacking methods. The
WhiteTestSet uses two attacks targeting at IncV3, which is
also used for generating training images, and the BlackTest-
Set uses two attacks based on a holdout model pre-trained
Inception V4 (IncV4) [28], which is not used for generating
training images. Every attacking method is conducted on

2The white-box attacks defined in this paper should be called oblivious
attacks according to Carlini and Wagner’s definition [3]

Table 1: Adversarial images generated by different models
for training and testing.

Attacking

method
Attacked model ε

TrainSet

and ValSet

FGSM IncV3

[1,16]

FGSM IncResV2

FGSM Res

FGSM IncV3/IncResV2/Res

IFGSM2 IncV3/IncResV2/Res

IFGSM4 IncV3/IncResV2/Res

IFGSM8 IncV3/IncResV2/Res

WhiteTestSet
FGSM IncV3

{4,16}
IFGSM4 IncV3/IncResV2/Res

BlackTestSet
FGSM IncV4

{4,16}
IFGSM4 IncV4

two perturbation levels ε ∈ {4, 16}. So both WhiteTestSet
and BlackTestSet have 40k images (see Table 1 for details).

4.2. Implementation details

The denoisers are optimized using Adam [15]. The
learning rate is initially set to 0.001, and decay to 0.0001
when the training loss converges. The model is trained on
six GPUs and the batch size is 60. The number of training
epochs ranges from 20 to 30, depending on the convergence
speed of the model. The model with the lowest validation
loss is used for testing.

5. Results

5.1. PGD and the error amplification effect

The results of DAE and DUNET on the test sets are
shown in Table 23. The original IncV3 without any de-
fense is used as a baseline, denoted as NA. For all types
of attacks, DUNET has much lower denoising loss than
DAE and NA, which demonstrates the structural advantage

3For detailed results of each attack in Table 2-5, please refer to the
supplementary material.
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Table 2: Denosing loss and classification accuracy of differ-
ent PGD methods on the test sets. Denosing loss is the L1

distance between the input image and the denoised image.
NA means no defense. Clean stands for original images.

Defense Clean
WhiteTestSet BlackTestSet

ε = 4 ε = 16 ε = 4 ε = 16

NA 0.0000 0.0177 0.0437 0.0176 0.0451

DAE 0.0360 0.0359 0.0360 0.0360 0.0369

DUNET 0.0150 0.0140 0.0164 0.0140 0.0181

NA 76.7% 14.5% 14.4% 61.2% 41.0%

DAE 58.3% 51.4% 36.7% 55.9% 48.8%

DUNET 75.3% 20.0% 13.8% 67.5% 55.7%

Figure 5: Layerwise perturbation levels of the target model.
Adversarial, Random noise, PGD and LGD correspond to
the El for adverarial images, Gaussian noise perturbed im-
ages, PGD denoised images, and LGD denoised images, re-
spectively.

of DUNET. DAE does not perform well on encoding the
high-resolution images, as its accuracy on clean images sig-
nificantly drops. DUNET slightly decreases the accuracy
of clean images, but significantly improves the robustness
of the target model to black-box attacks. In what follows,
DUNET is used as the default PGD method.

A notable result is that the denoising loss and classifica-
tion accuracy of PGD are not so consistent. For white-box
attacks, DUNET has much lower denoising loss than DAE,
but its classification accuracy is significantly worse. To in-
vestigate this inconsistency, we analyze the layer-wise per-
turbations of the target model activated by PGD denoised
images. Let xp denote a perturbed image. The perturbation
level at layer l is computed as:

El(xp, x) = ||fl(xp)− fl(x)||/||fl(x)||. (6)

The El for PGD denoised images, adversarial images,
and Gaussian noise perturbed images are shown in Fig-
ure 5. The latter two are used as baselines. The curves
are the averaged results on 30 randomly picked adversar-
ial images generated by the ensemble attack ”IFGSM4 x

Table 3: The classification accuracy on test sets obtained by
different defenses. NA means no defense.

Defense Clean
WhiteTestSet BlackTestSet

ε = 4 ε = 16 ε = 4 ε = 16

NA 76.7% 14.5% 14.4% 61.2% 41.0%

PGD 75.3% 20.0% 13.8% 67.5% 55.7%

ensV3 [31] 76.9% 69.8% 58.0% 72.4% 62.0%

FGD 76.1% 73.7% 67.4% 74.3% 71.8%

LGD 76.2% 75.2% 69.2% 75.1% 72.2%

CGD 74.9% 75.8% 73.2% 74.5% 71.1%

IncV3/IncResV2/Res (ε = 16)”. For convenience, these
El are abbreviated as PGD perturbation, adversarial pertur-
bation, and random perturbation. Although the pixel-level
PGD perturbation significantly suppressed, the remaining
perturbation is progressively amplified along the layer hier-
archy. At the top layer, PGD perturbation is much higher
than random perturbation and close to adversarial perturba-
tion. Because the classification result is closely related to
the top-level features, this large perturbation well explains
the inconsistency between the denoising performance and
classification accuracy of PGD.

5.2. Evaluation results of HGD

Compared to PGD, LGD strongly suppress the error am-
plification effect (Figure 5). LGD perturbation at the final
layer is much lower than PGD and adversarial perturbations
and close to random perturbation.

HGD is more robust to white-box and black-box adver-
sarial attacks than PGD and ensV3 (Table 3). All three
HGD methods significantly outperform PGD and ensV3 for
all types of attacks. The accuracy of clean images only
slightly decreases (by 0.5% for LGD). The difference be-
tween these HGD methods is insignificant. In later sections,
LGD is chosen as our default HGD method for it achieves
a good balance between accuracy on clean and adversarial
images. When facing powerful ensemble black-box attacks,
LGD also significantly outperforms ensV3 (see supplemen-
tary material).

Compared to adversarial training, HGD only uses a small
fraction of training images and is efficient to train. Only
30K clean images are used to construct our training set,
while all 1.2M clean images of the ImageNet dataset are
used for training ensV3. HGD is trained for less than 30
epochs on 210K adversarial images, while ensV3 is trained
for about 200 epochs on 1.2M images [31].

To summary, with less training data and time, HGD
significantly outperforms adversarial training on defense
against adversarial attacks. These results suggest that learn-
ing to denoise only is much easier than learning the coupled
task of classification and defense.
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Table 4: The transferability of HGD to different model.
Resnet is used as the target model.

Denoiser for

Resnet
Clean

WhiteTestSet BlackTestSet

ε = 4 ε = 16 ε = 4 ε = 16

NA 78.5% 63.3% 38.4% 67.8% 48.6%

IncV3 guided

LGD
77.4% 75.8% 71.7% 76.1% 72.7%

Resnet guided

LGD
78.4% 76.1% 72.9% 76.5% 74.6%

Table 5: The transferability of HGD to different classes.
The 1000 ImageNet classes are separated in training and
test test.

Defense Clean
WhiteTestSet BlackTestSet

ε = 4 ε = 16 ε = 4 ε = 16

NA 76.6% 15.4% 15.3% 61.5% 41.7%

LGD 76.3% 73.9% 65.7% 74.8% 72.2%

5.3. Transferability of HGD

The learning objective of HGD is to remove the high-
level influence of adversarial noises. In other words, HGD
works by producing anti-adversarial perturbations on input
images. From this point of view, we expect that HGD can
be transfered to defend other models and images.

To evaluate the transferability of HGD over different
models, we use the IncV3 guided LGD to defend Resnet
[10]. As expected, this LGD significantly improves the ro-
bustness of Resnet to all attacks. Furthermore, it achieves
very close defending performance as the Resnet guided
LGD. (Table 4)

To evaluate the transferability of HGD over different
classes, we build another dataset. Its key difference from
the original dataset is that there are only 750 classes in the
TrainSet, and the other 250 classes are put in ValSet and
TestSets. The number of original images in each class in all
datasets are changed to 40 to keep the size of dataset un-
changed. It is found that although the 250 classes in the test
set are never trained, the LGD still learns to defend against
the attacks targeting at them (Table 5).

5.4. HGD as an anti-adversarial transformer

HGD is derived from a denoising motivation. However,
HGD denoised images have larger pixel-level noise than ad-
versarial images (see Figure 5), indicating that HGD even
elevates the overall noise level. This is also confirmed by
the qualitative result in Figure 6. LGD does not suppress
the total noise as PGD does, but adds more perturbations to
the image.

To further investigate this issue, we plot the 2D his-
togram of the adversarial perturbation (dx∗ = x∗ − x) and
the predicted perturbation (dx̂ = x∗− x̂) by PGD and LGD

(Figure 7), where x, x∗ and x̂ denote the clean, adversarial
and denoised images, respectively. The ideal result should
be dx̂ = dx∗, which means the adversarial perturbations are
completely removed.

Two lines dx̂ = kdx∗ are fit for PGD and LGD, respec-
tively (the red lines in Figure 7). The slope of PGD’s line
is lower than 1, indicating that PGD only removes a portion
of the adversarial noises. In contrast, the slope of LGD’s
line is even larger than 1. Moreover, the estimation is very
noisy, which leads to high pixel-level noise.

These observations suggest that HGD defends the target
model by two mechanisms. First, HGD indeed reduces the
adversarial noise level, which is revealed by the strong cor-
relation between adversarial noise dx∗ and HGD induced
perturbation dx̂ (Figure 7). Second, HGD adds to the im-
age some favorable perturbation which defends the target
model. In this sense, HGD can also be seen as an anti-
adversarial transformer, which does not necessarily remove
all the pixel-level noises but transforms the adversarial ex-
ample to some easy-to-classify example.

5.5. Results in NIPS adversarial defenses competi-
tion

In NIPS 2017 competition track, Google Brain organized
competition on adversarial attacks and defenses 4. The
dataset used in this competition contains 5000 ImageNet-
compatible clean images unknown to the teams. In the de-
fenses competition, each team submits one solution, which
are then evaluated on the attacks submitted by all teams.
In total there are 91 non-targeted attacks and 65 targeted
attacks. The evaluation is conducted on the cloud by orga-
nizers, and a normalized score is calculated based on the
accuracy on all attacks.

We used a FGD based solution. To train FGD, we
gathered 14 kinds of attacks, all with ε = 16. Most of
them were iterative attacks on an ensemble of many models
(for details, please refer to supplementary file). We chose
four pre-trained models (ensV3[31], ensIncResV2[31],
Resnet152[10], ResNext101[33]) and trained a FGD for
each one. The logits output of the four defended models
were averaged, and the class with the highest score was cho-
sen as the classification result.

Our solution won the first place among 107 teams and
significantly outperformed other methods (Table 6). More-
over, our model is much faster than the other top methods,
measured by average evaluation time.

6. Conclusion

In this study, we discovered the error amplification effect
of adversarial examples in neural networks and proposed to
use the error in the top layers of the neural network as loss

4https://goo.gl/Uyz1PR
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Figure 6: x, x∗ and x̂ denote the clean, adversarial and denoised images, respectively. The first row is an original image
(1st column), adversarial image (2nd column), denoised adversarial image generated by PGD (3rd column) and LGD (4th
column). The second row shows zoomed in images. The third row visualizes the L1 norm of differences between the original
image and the last three images in the second row, respectively.

Figure 7: The relationship between dx∗ and dx̂ in PGD and
HGD.

functions to guide the training of an image denoiser. This
method turned to be very robust against both white-box and
black-box attacks. The proposed HGD has simple training
procedure, good generalization, and high flexibility.

In future work, we aim to build an optimal set of training
attacks. The denoising ability of HGD depends on the rep-
resentability of the training set. In current experiments, we
used FGSM and iterative attacks. Incorporating other dif-
ferent attacks, such as the attacks generated by adversarial

Table 6: Results of the top five teams in NIPS defense com-
petition. Time stands for average evaluate time.

Team/Method Rank Normalized Score Time(s)

iyswim 2 0.9235 121.83
Anil Thomas 3 0.9148 95.29
erko 4 0.9120 86.44
Stanford & Suns 5 0.9106 127.39

FGD (ours) 1 0.9532 50.24

transformation networks [1], probably improves the perfor-
mance of HGD. It is also possible to explore an end-to-end
training approach, in which the attacks are generated online
by another neural network.

Acknowledgements

The work is supported by the National NSF of China

(Nos. 61620106010, 61621136008, 61332007, 61571261 and

U1611461), Beijing Natural Science Foundation (No. L172037),

Tsinghua Tiangong Institute for Intelligent Computing and the

NVIDIA NVAIL Program, and partially funded by Microsoft Re-

search Asia and Tsinghua-Intel Joint Research Institute.

1785



References

[1] Shumeet Baluja and Ian Fischer. Adversarial transformation

networks: Learning to generate adversarial examples. arXiv

preprint arXiv:1703.09387, 2017.

[2] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nel-
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