
1

StratDef: Strategic Defense Against Adversarial

Attacks in ML-based Malware Detection

Aqib Rashid, Jose Such

Abstract—Over the years, most research towards defenses against adversarial attacks on machine learning models has been in the

image recognition domain. The ML-based malware detection domain has received less attention despite its importance. Moreover,

most work exploring these defenses has focused on several methods but with no strategy when applying them. In this paper, we

introduce StratDef, which is a strategic defense system based on a moving target defense approach. We overcome challenges related

to the systematic construction, selection, and strategic use of models to maximize adversarial robustness. StratDef dynamically and

strategically chooses the best models to increase the uncertainty for the attacker while minimizing critical aspects in the adversarial ML

domain, like attack transferability. We provide the first comprehensive evaluation of defenses against adversarial attacks on machine

learning for malware detection, where our threat model explores different levels of threat, attacker knowledge, capabilities, and attack

intensities. We show that StratDef performs better than other defenses even when facing the peak adversarial threat. We also show

that, of the existing defenses, only a few adversarially-trained models provide substantially better protection than just using vanilla

models but are still outperformed by StratDef.

Key words—Adversarial machine learning, Adversarial examples, Malware detection, Machine learning security, Deep learning

F

1 INTRODUCTION

The advantages of ML models in fields such as image
recognition, anomaly detection, and malware detection are
undisputed, as they can offer unparalleled performance on
large, complex datasets [1], [2]. Nevertheless, such models
are vulnerable to adversarial examples [3], [4] which are
inputs that are intentionally designed to induce a misclassi-
fication. Resilience against adversarial examples is essential
and critical, with much work having been carried out in
the image recognition domain to defend against adversarial
examples [5], [6], [7], [8], [9], [10]. However, these defenses
are often less effective in the more constrained malware
detection domain [11], [12]. Worryingly, out of the papers
published in the last seven years on adversarial machine
learning, approximately only 50 out of 3,000+ relate to the
malware detection domain [13]. In fact, a recent survey that
took an initial step towards evaluating defenses applied to
this domain painted a bleak picture [14].

While complete security is difficult to achieve, a system’s
goal should be to control the attack surface as much as
possible to thwart attacks. Existing defenses in this regard
are based on a variety of techniques [5] such as adversar-
ial training [6], [15], gradient-based approaches [6], [16],
feature-based approaches [7], [8] and randomization-based
approaches [9], [10] with mixed success. Despite these mul-
tiple research efforts at developing defenses, there is little
work approaching the problem from a strategic perspective.
For this purpose, in other areas of cybersecurity, a moving
target defense (MTD) is employed that continually varies
itself to increase the uncertainty and complexity for the
attacker, making reconnaissance and targeted attacks less
successful [17], [18]. There are numerous ways that an MTD

• The authors are with the Department of Informatics, King’s College
London, Strand, London WC2R 2LS, United Kingdom.
E-mail: {aqib.rashid, jose.such}@kcl.ac.uk

can vary itself, with some approaches having been applied
to adversarial ML before [10], [19], [20], [21], [22], [23], [24],
but not in the malware detection domain nor in the depth
we explore. Namely, we provide a method for constructing
a strategic defense that embraces the key areas of model
construction, model selection, and optimizer selection for a
strategic MTD.

In this paper, we present our defense method, StratDef.
We investigate how a strategized defense can offer better pro-
tection against adversarial attacks in the malware detection
domain. We suggest methods to combat attacks strategically
based on an MTD approach (rather than relying on a single
model) by considering various factors that have not been
explored in detail before, such as model heterogeneity,
threat level, and information available about the attacker.
Furthermore, we investigate various dimensions of a strate-
gic MTD, such as what, how, and when it should adapt
itself given the current environment it is operating within.
Our goal is to make the job of the attacker more difficult by
increasing the uncertainty and complexity of the problem.
Moreover, existing defenses do not consider a systematic
model selection process for the ensemble [10], [19], [20],
[21], [22], [23], [24], [25], [26], [27]. This process is non-
trivial and must deal with selecting the constituent models
of the ensemble and then how to strategically use them. We
demonstrate promising approaches for model selection and
the subsequent, strategic use of the selected models for of-
fering reliable predictions and protection against adversarial
ML attacks. We further provide an experimental evaluation
across Android and Windows to demonstrate the fragility
of individual models and defenses compared with StratDef.

The main contributions of our work can be summarized
as follows:

• We propose the first strategic defense against ad-

ar
X

iv
:2

20
2.

07
56

8v
6

 [c
s.L

G
]

24
 A

pr
 2

02
3

2

versarial attacks in the malware detection domain.
Our defense, StratDef, is based on an MTD ap-
proach where we propose different strategic and
heuristically-driven methods for determining what,
how, and when a defense system should move to
achieve a high degree of adversarial robustness. This
includes key steps related to model selection and the
development of strategies.

• We offer a detailed evaluation of existing defen-
sive approaches to demonstrate the necessity of a
strategized approach by comparing existing defenses
with ours. That is, we consider the constraints and
characteristics of this domain in a proper manner,
unlike prior evaluations. The results show that our
strategized defense can increase accuracy by 50+%
in the most adverse conditions in both Android and
Windows malware.

• We are the first to evaluate how a strategized defense
based on MTDs fares against a variety of attackers,
such as gray-box attackers with limited knowledge,
black-box attackers with zero-knowledge, and at-
tackers who only use adversarial examples generated
with Universal Adversarial Perturbations (UAPs).

The rest of this paper is organized as follows. Section 2
provides the background and puts StratDef in the context
of related work. In Section 3, we define the threat model
used in our work. In Section 4, we provide details about
our defensive method, StratDef. In Sections 5 and 6, we
present our experimental setting and results, respectively.
We present a discussion on our findings in Section 7 and we
conclude in Section 8.

2 BACKGROUND & RELATED WORK

Adversarial ML and Malware. Machine learning is increas-
ingly being relied on for the detection of malware. An ML-
based malware detection classifier must be accurate and ro-
bust, as well as precise with good recall. The quality of such
a classifier hinges on the features used during the training
procedure [28], [29], [30], [31]. For software, the process of
feature extraction is used to parse a software executable
into its feature representation. Accordingly, the use of APIs,
libraries, system calls, resources, or the accessing of network
addresses, as well as the actual code are parsed into discrete,
binary feature vectors to represent the presence or absence
of a feature. Then, together with the class labels (i.e., benign
and malware), models such as neural networks are trained
on the feature vectors to classify unseen inputs.

However, the problem with using ML-based detection
models is that they are vulnerable to adversarial examples
[15]. These are inputs to ML models that are intentionally
designed to fool a model by having the model output the
attacker’s desired prediction through an evasion attack [32]. For
example, an image of a panda may be incorrectly classified
as a gibbon [33] or a truly malicious executable may be
misclassified as benign [34]. In some cases, an adversarial
example generated for a particular model may also evade
another model too [15] due to transferability.

To generate a new adversarial example for an image,
an evasion attack can be performed by using one of several
attacks from prior work, which perturb values in the feature

vector representing the image (i.e., its pixels) [29], [33], [35],
[36], [37], [38], [39], [40]. However, these attacks cannot be
applied directly to the malware detection domain as they
make perturbations to continuous feature vectors without
due consideration for the domain’s constraints. When gener-
ating an adversarial example for the malware detection do-
main, the malicious functionality must be preserved (in the
feature-space) and the feature vector must remain discrete
[12], [41], [42], [43], [44], [45], [46], [47]. For example, a fea-
ture representing an API call (e.g., GetTempPath()) cannot
be perturbed continuously (e.g., GetTempPath() + 0.001).
Instead, an entirely new feature must be used [12], [42] that
offers the same functionality. This increases the complexity
of working in this domain. To deal with this, when perturba-
tions are applied by an attack, it must be ensured that they
are permitted and proper to cater to the constraints imposed
by this domain. For this, we present a method to achieve
a lower bound of functionality-preservation in the feature-
space (see Section 5 later). Recent work by Demetrio et al.
[41] has suggested that malware samples constructed as
adversarial examples may not always be functional. To this
end, the RAMEN framework has been proposed, which can
alter malware structure without affecting the functionality.
This approach has shown promise in adversarial attacks.

In Table 1, we provide an overview of the related lit-
erature on the subject of adversarial ML and malware. In
particular, the literature can be separated by the domain, the
aim of the paper (e.g., proposing a new defense or attack),
and whether the work is conducted in the feature-space
(where ML-based algorithms operate using feature vectors)
or the problem-space (where real-world objects such as
software executables exist).

Category Literature
Attacks [12], [28], [29], [30], [31], [34], [41], [42], [43], [45],

[47], [48], [49], [50], [51], [52], [53], [54]
Defenses [27], [44], [55], [56], [57]
Surveys/Evaluations [14], [28], [34], [57], [58], [59], [60], [61]
Feature-space [14], [27], [28], [29], [30], [31], [34], [41], [42], [43],

[44], [45], [47], [48], [49], [50], [51], [53], [54], [55],
[56], [58], [59]

Problem-space [12], [41], [48], [49], [52]
Android domain [12], [14], [27], [28], [31], [34], [44], [49], [53], [55],

[60], [61]
Windows domain [12], [29], [30], [41], [42], [43], [45], [47], [48], [49],

[51], [52], [54], [59], [60], [61]
PDF domain [56], [57], [60], [61]

TABLE 1: Overview of related literature on adversarial ML
in malware.

Defenses. To deal with the threat of adversarial ML, sev-
eral defenses have been proposed, mainly for the image
recognition domain, with mixed success [14], [62]. These
include a range of techniques such as adversarial training
[6], [15], gradient-based approaches [6], [16], feature-based
approaches [7], [8] and randomization-based approaches
[9]. For example, Papernot et al. proposed defensive dis-
tillation [16] which involves utilizing different-sized neural
networks to improve the generalization of the main model,
though Stokes et al. [63] found this to be ineffective when
applied to the malware detection domain. Wang et al.
proposed random feature nullification, which decreases the
attacker’s chances of using features that are important to
the model [8]. This is only effective if the attacker chooses
to perturb features randomly as well [14]. Xie et al. [9] also

5

models to be used. Recall that StratDef provides a tailored
defense by considering the information it may have about
its operating environment. That is, the model selection
(and the strategy derived for using those selected models
later) is tailored to the operating environment based on any
available information about it. However, if no specific infor-
mation is available, an environment with the highest threat
level is assumed (i.e., the strongest attacker and highest
attack intensity) with the model selection reflecting this. A
benefit of having a tailored model selection (provided that
information is available about the environment) is that the
StratDef ensemble will be appropriate for the level of threat,
potentially reducing the defender’s costs (e.g., resources,
time required for training, storage). For example, the costs of
training highly-robust models could be avoided if StratDef
is deployed in a less hostile environment where less robust
models might suffice.

To the best of our knowledge, with our model selection
approach, we are the first to offer a flexible method to select
models systematically by considering model performance
and threat levels. To achieve this model selection system,
we simulate threat levels by generating adversarial examples
and pooling them (we provide details in Sections 5.4 & 5.5
later on how the adversarial examples are generated and
pooled). Each candidate model F 2 U is then evaluated un-
der each threat level using several machine learning metrics.
This allows us to aggregate the metrics into a consideration
score, which encapsulates the performance of each candidate
model at different threat levels.

A higher consideration score for a model indicates its
better performance, which may increase its chances of being
selected for the StratDef ensemble. The actual formula for
the consideration score can vary based on the deployment
needs and requirements. For example, a defender may be
more interested in minimizing false positives over other
metrics (see Section 5.2 later for the specific formula we use
in our experimental evaluation). Therefore, in Equation 2,
we provide a general formula for the consideration score:

SF,�,↵ = �(m1
F,�,↵,m

2
F,�,↵, . . . ,m

n
F,�,↵) (2)

SF,�,↵ refers to the consideration score of a candidate
model F 2 U at attack intensity ↵ against attacker �. That
is, a particular combination of the metrics chosen by the
defender is considered (e.g., whether metrics are weighted,
maximized, minimized, etc.). For the n considered metrics,
mF,�,↵ refers to the metric m for the candidate model F
at attack intensity ↵ against attacker �. The defender can
choose the metrics and attribute weights to each in whatever
manner they require as part of the consideration score.
Depending on the situation, one may adjust the considered
metrics or use different metrics altogether to produce a new
model selection.

Once the consideration scores are produced, the candi-
date models are sorted in descending order by their consid-
eration scores at each threat level (i.e., each attack intensity ↵
and each attacker �). Essentially, this procedure ensures that
the candidate models can be sorted by their performance
considering several ML metrics at different threat levels.
This drives the model selection method for selecting which
candidate models will be part of the StratDef ensemble. We

explore two different model selection methods that use the
consideration scores and other characteristics of the candi-
date models (and evaluate these methods later in Section 6):

• Best selection method — This method selects the
best-performing models with the aim of maximizing
performance across the considered metrics. For each
attacker and attack intensity (i.e., each threat level),
we select the k highest-scoring models out of all
potential candidates in U . k is a hyperparameter and
can be chosen by the defender according to their
requirements and resources (e.g., a defender with
greater resources may want to use more models).
The models selected may be from the same model
families, yet they demonstrate some robustness and
are therefore chosen to deal with attacks.

• Variety selection method — This method aims to
reduce transferability among the selected models
by enforcing diversity in the model selection. The
highest-scoring model from each model family in
U is selected at each attack intensity against each
attacker. The number of models selected per attack
intensity is equal to the number of model families.

Once the selections are made according to the method,
the model selections for each attack intensity ↵ for each
attacker � are pooled together and represented by the set ⌃� ,
so that it contains all the models selected across all attack
intensities for the attacker �. Recall that if no information
is available about the operating environment, � represents
a strong attacker, with the most capable models selected to
deal with this kind of environment. This model selection
process offers a systematic yet flexible approach to the
defender, allowing them to adjust the considered metrics,
which would adapt StratDef to their needs. For example,
the defender could modify the formulation of consideration
score, the candidate models to be considered, or the model
selection method itself.

4.3 How to Move: Devising a Strategy
So far, StratDef has selected an ensemble of models for each
threat level (i.e., each attacker and attack intensity) that are
considered most suitable according to various criteria. The
models selected across the attack intensities for each attacker
(�) have then been pooled together into the set ⌃� . The
next step is to determine how these models will actually be
used at prediction-time to serve predictions to users. For
this, an optimizer is used to strategize how each model
in ⌃� (the models that were selected in the previous step)
will be chosen at prediction-time by StratDef for making
predictions. This step takes place offline and corresponds
to choosing an optimizer for developing the movement
strategy, as in Figure 2.

Each optimizer produces a global strategy vector Z� for
an attacker � using data about the models. The probability
of choosing each model from ⌃� at attack intensity ↵ against
attacker � at prediction-time is contained within Z�,↵. This
means that the strategy chooses from the most suitable
models to make the prediction by adapting to the attack
intensity and the attacker type (i.e., the threat level). With
the probabilities in Z� , a biased die is thrown at prediction-
time to select a model for making the prediction.

6

In order to devise the movement strategies and the
strategy vector Z� , we explore three optimizers and evaluate
them later in Section 6. We next provide a description of
how a strategy vector is produced by each optimizer that
we consider in this work.
Game-Theoretic Optimizer (GT). We can model the prob-
lem of adversarial examples as a min-max game between an
attacker and a defender, following the well-established con-
cept of Security Games. This has been successfully applied
to various areas of both physical security and cybersecurity
[81]. Specifically, in our problem setting, the attacker is try-
ing to maximize the loss of the classifier, while the defender
is trying to minimize it.

Hence, we model the interaction between the defender
(D) and the user — who can be either a legitimate user
(L) or an attacker (�) — as a Bayesian Stackelberg Game
[82]. The defender is the leader, and the user is the follower.
The defender aims to maximize its expected reward over
its switching strategy and the strategy vector played by
the followers. We produce payoff matrices for each game
between the defender and each user.

The game between the defender and the attacker is
modelled as a constant-sum game like previous work in
other domains [10], [19]. In prior related work, the utilities
in game-theoretic formulations of adversarial ML have been
based on the evasion rates of each attack (the attacker’s
possible move) against each model (the defender’s possible
move), but without any consideration for how many ad-
versarial examples are produced. In the malware detection
domain, attacks may be more or less effective because
of domain-specific constraints. Additionally, a stronger at-
tacker can generate a greater number of more evasive ad-
versarial examples than a weaker attacker. Therefore, we
instead use a normalized evasion rate as the utility value in the
game-theoretic formulation in order to encapsulate informa-
tion about the number of adversarial examples generated as
well as the evasion rate. We provide details of the procedure
below.

Let ⌦⌧,S represent the set of adversarial examples gener-
ated by an attack ⌧ for some substitute model S that is used
to generate adversarial examples (see Sections 5.4 & 5.5 later
for implementation and experimental instances):

1) Evaluate each set of adversarial examples ⌦⌧,S

against each selected model F 2 ⌃� to obtain
the evasion rate. That is, measure the proportion
of adversarial examples from ⌦⌧,S that evade the
model F .

2) Compute the normalized evasion rate (R⌧,S,F) to
reflect the evasive capability of the set ⌦⌧,S against
model F . For this, multiply the number of adver-
sarial examples in the set by the evasion rate and
normalize between 0 and 100. A constant-sum game
(= 100) is the frequent setup for the game between
an attacker and defender [10], [19].

3) Produce payoff matrices, where the defender is the
row player, for each game by calculating rewards:

a) For the constant-sum game between D and
�, the attacker’s reward is equal to the nor-
malized evasion rate R⌧,S,F . The defender’s

reward, because it is a constant-sum game, is
therefore equal to 100�R⌧,S,F .

b) For the game between D and L, the reward
for both players is equal to the accuracy of
the model F on a clean test set (i.e., the
defender’s possible move).

4) Feed both payoff matrices into a Bayesian Stackel-
berg solver (such as [81], [83]) along with the attack
intensities. This produces a strategy vector Z�,↵

containing the probability of playing (i.e., selecting)
each model F 2 ⌃� against attacker � at attack
intensity ↵ as p(F, �,↵).

In the optimization problem, ↵ is a hyperparameter
modelled as a trade-off between accuracy on legitimate and
adversarial inputs corresponding to the attack intensity. The
optimization problem may result in a pure strategy (where
only a single model is chosen for predictions) or a mixed
strategy (where there is a choice between multiple models).
A pure strategy can be produced when one of the models
is more robust than others. At ↵ = 0, StratDef is only
concerned with accuracy on legitimate inputs, and therefore
a pure strategy of the most accurate model is produced.
Strategic Ranked Optimizer (Ranked). With this optimizer
approach, we use the consideration scores for each model in
the set ⌃�,↵ (i.e., the models selected for attacker � at attack
intensity ↵) to produce a strategy vector. At ↵ = 0, a pure
strategy consisting of the most accurate model is produced.
Meanwhile, for ↵ > 0, each model in the set is sorted by its
consideration score. A rank is then assigned to each model
in the sorted set, with the lowest-scoring model having a
rank of 1. The rank increases as the model scores increase.
Based on this, each model is assigned a probability in Z�,↵

as per Equation 3:

p(F, �,↵) =
rF,�,↵P

G2⌃�,↵
rG,�,↵

(3)

rF,�,↵ is the rank of model F at attack intensity ↵ against
attacker �. In other words, the probability of a model F
being selected is its rank divided by the sum of all ranks.
Therefore, we assign the highest probability of being se-
lected to the highest-scoring model. In Z�,↵, a probability of
0 is assigned to models that are not in ⌃�,↵. In other words,
if a model was not selected at a particular attack intensity,
it will have a probability of 0 in the strategy vector. This
approach will always generate a mixed strategy at every
attack intensity except ↵ = 0.
Uniform Random Strategy (URS). This approach assigns a
uniform probability to each model in ⌃� and only acts as
a baseline for comparing with the other approaches, as it
is not expected to give the best performance. The uniform
random strategy approach maximizes the uncertainty for
the attacker with regard to the model that is selected at
prediction-time. Thus, the probability is calculated accord-
ing to Equation 4:

p(F, �,↵) =
1

|⌃� |
(4)

4.4 When to Move: Making a Prediction
After the offline generation and selection of the best models
as well as the creation of the strategies to move between the

7

selected models — that is, the strategy vector Z� to move
between models in the set ⌃� — StratDef is now ready to
be deployed online and start making predictions. As per
Figure 2, when a user requests a prediction, StratDef will
choose a model from ⌃� to pass the input to by rolling
a biased die using the probabilities in the strategy vector
Z�,↵ in real-time. The chosen model will actually make the
prediction that will be returned to the user. In the absence
of information about the threat level of the environment,
StratDef will assume it is facing the strong attacker at the
highest attack intensity. Because the actual model that is
used by StratDef to make each prediction will be chosen
dynamically, the user will have it difficult to know how
predictions are being produced, let alone which model was
used at prediction-time. Therefore, our hypothesis is that if
the previous steps are performed systematically following
our method, StratDef will offer sound and robust predic-
tions, while revealing minimal information about itself.

Next, we show how StratDef performs better than ex-
isting defenses in the malware detection domain in the
face of adversarial examples. In the following section, we
provide details of the experimental setup we consider for
the evaluation, together with details about how we generate
adversarial examples.

5 EXPERIMENTAL SETUP

5.1 Datasets
In malware detection, the number of publicly-available, up-
to-date datasets is a well-known, general problem, which
limits the remits and conclusions of academic work in this
domain [84], [85]. We therefore perform our evaluation with
two well-known datasets that cover different application
platforms, collection dates and have been widely used in
prior work.

The Android DREBIN dataset [86] consists of 123,453 be-
nign samples and 5,560 malware samples collected between
2010 and 2012. There is a total of eight feature families con-
sisting of extracted static features ranging from permissions,
API calls, hardware requests and URL requests. DREBIN
contains several malware families such as FakeInstaller,
DroidKungFu and Plankton; we refer the reader to [86] for a
more detailed discussion. To keep our dataset balanced, we
use 5,560 samples from each class (benign and malware),
resulting in a total of 11,120 samples with 58,975 unique
features. Meanwhile, the Windows SLEIPNIR dataset [29]
consists of 19,696 benign samples and 34,994 malware sam-
ples collected prior to 2018. As our work is in the feature-
space, SLEIPNIR is used to represent Windows out of sim-
plicity because it offers a convenient binary feature-space,
enabling a clearer comparison between the Android and
Windows datasets. The features of this dataset are derived
from API calls in PE files parsed into a vector representation
by the LIEF library [29], [87]. We use 19,696 samples from
each class, resulting in a total of 39,392 samples with 22,761
unique features. Similar to recent publications [31], [34],
and for completeness, we use the maximum features for
each dataset. Both datasets are transformed into a binary
feature-space with each input sample transformed into a
feature vector representation. The datasets are initially split
using an 80:20 ratio for training and test data using the

Pareto principle. After this, the training data is further split
using an 80:20 ratio to produce training data and validation
data. This effectively produces a 64:16:20 split, which is a
technique that has been widely used before [88], [89], [90],
[91], [92], [93].

We consider the established guidelines for performing
malware-related research [94]. For example, as the models
in our evaluation decide whether an input sample is benign
or malicious, it is crucial to retain benign samples in the
datasets, and we do not need to strictly balance datasets
over malware families. Rather, we balance datasets between
the positive and negative classes (i.e., benign and malware)
and select unique samples from each class to appear in
the training and test sets randomly (without any chance of
repetition) [14], [29], [30].

5.2 Training Models & Defenses

Other Models & Defenses. To construct all models, we use
the scikit-learn [95], Keras [96] and Tensorflow [97] libraries.
We construct four vanilla models (see Appendix A for archi-
tectures). Vanilla models are the base models for defenses
such as ensemble adversarial training [6], [15], defensive
distillation [16], SecSVM [31], and random feature nullifi-
cation [28]. For adversarial training, we train the vanilla
models with different sized batches of adversarial examples
(ranging from 0.1% to 25%) from those generated previously.
For example, suppose the size of the test set is 2224 (which
is equally split between benign and malware samples); then
for a 0.05 model variant (e.g., NN-AT-0.05), we select 56
adversarial examples (i.e., 5% of half the test set size) and
add these to the training set. We then train the vanilla and
SecSVM models to produce adversarially-trained models.
We found in preliminary work that adversarially training
beyond 25% increases time and storage costs as well as
overfitting. We apply defensive distillation to the vanilla
NN model, while random feature nullification is applied
to all vanilla models. The vanilla SVM model acts as the
base model for SecSVM. We also compare StratDef with
the voting defense. Voting has been applied to other do-
mains [25] and to the malware detection domain [26], [27].
This is similar to a Multi-Variant Execution Environment
(MVEE) where an input sample is fed into multiple models
in order to assess divergence and majority voting is used
for the prediction [98], [99]. We use the same constituent
models for the voting defense as for StratDef (and thus the
naming conventions are similar). We consider two voting
approaches that have been tested in prior work [26], [27]:
majority voting and veto voting. The better of the two ap-
proaches is compared with StratDef. In preliminary work,
we discover that veto voting causes higher false positive
rate (FPR) in both datasets — as high as 25% in DREBIN
(see Appendix C). This poor performance may be because
the voting system is forced to accept any false positive
prediction from its constituent models. Therefore, we focus
on comparing StratDef with majority voting using the same
model selections.
StratDef. To construct different StratDef configurations, we
follow the offline steps described in Section 4 to construct
models and devise strategies. The candidate models are the
individual models and defenses trained as described above

8

(except voting). In the StratDef configuration that we use in
this work, we aim to maximize the performance and robust-
ness on input samples while minimizing false predictions.
Therefore, to achieve this, we use the formula in Equation 5
for the consideration scores, where we maximize accuracy
(ACC), AUC, F1 and minimize FPR and false negative rate
(FNR) across the threat levels.

(5)SF,�,↵ = ACCF,�,↵ + F1F,�,↵ +AUCF,�,↵

� FPRF,�,↵ � FNRF,�,↵

Recall that this process relates to “What to Move —
Phase 2” (see Section 4.2). In particular, SF,�,↵ is the con-
sideration score of the candidate model F at attack intensity
↵ against attacker �. By maximizing the accuracy, F1 and
AUC, while minimizing the false positives and negatives,
the selected models will offer sound performance, with
the use of Equation 5. The value of each metric for the
candidate model F at attack intensity ↵ against attacker �
is represented accordingly. We use all combinations of the
Best (with k = 5) and Variety model selection methods with
the three optimizers described in Section 4.3 to produce
six StratDef configurations (see Appendix B for example
strategies developed by StratDef).

5.3 Practical Considerations & Characteristics of Ad-
versarial Examples
When generating adversarial examples in the ML-based
malware detection domain, it is vital to ensure that feature
vectors remain discrete and that malicious functionality is
preserved by limiting the set of allowed perturbations that
can be applied to the feature vector.

In this domain, there are two types of perturbations
that can be applied to a feature vector. Feature addition
is where a value in a feature vector is modified from 0
to 1. In the problem-space, an attacker can achieve this in
different ways, such as adding dead code so that the feature
vector representing the software changes to perform this
perturbation, or by using opaque predicates [12], [100]. This
has proved to work well to create adversarial malware, for
instance in Windows [48]. It should be noted that analysis
of the call graph by a defender may be able to detect the
dead code. Meanwhile, feature removal is where a value
in a feature vector is modified from 1 to 0. This is a
more complex operation, as there is a chance of removing
features affecting functionality [12], [55], [101], [102]. For
Android apps, an attacker cannot remove features from
the manifest file nor intent filter, and component names
must be consistently named. Furthermore, the S6 feature
family of DREBIN is dependent upon other feature families
and cannot be removed. Therefore, the opportunities for
feature removal lie in areas such as rewriting dexcode to
achieve the same functionality, encrypting system/API calls
and network addresses. For example, obfuscating API calls
would allow those features to be removed (since they would
then count as new features) even though the functionality
would remain [12], [55].

For each dataset, it is necessary to consider the al-
lowed perturbations for generating adversarial examples.
We achieve this by consulting with industry documentation
and previous work [12], [29], [49], [55], [101], [102]. We

find that DREBIN allows for both feature addition and
removal, with Table 2 providing a summary of the allowed
perturbations for each of the feature families [101], [102].
Meanwhile, for SLEIPNIR, we can only perform feature
addition because of the encapsulation performed by the
feature extraction mechanism of LIEF when the dataset was
originally developed.

Feature families Addition Removal Usage in AE
generation

manifest

S1 Hardware 3 7 0.1%
S2 Requested permissions 3 7 1%
S3 Application components 3 3 41.4%
S4 Intents 3 7 1.8%

dexcode

S5 Restricted API Calls 3 3 0.5%
S6 Used permission 7 7 0%
S7 Suspicious API calls 3 3 0.5%
S8 Network addresses 3 3 54.7%

TABLE 2: Allowed perturbations for DREBIN feature fami-
lies. The final column presents the frequency of each feature
family in their use for perturbing input samples for generat-
ing adversarial examples (AEs) following the procedure in
Section 5.4.

To ensure that perturbations remain valid, we include a
verification step in our attack pipeline to monitor perturba-
tions applied to a feature vector. Firstly, attacks are applied
to malware samples to generate adversarial examples with-
out any limitations. Then, because the attacks we use pro-
duce continuous feature vectors, their values are rounded
to the nearest integer (i.e., 0 or 1) to represent the presence
or absence of that feature. Each adversarial example is then
inspected for prohibited perturbations, which are reversed.
For example, if a feature from the S2 family is removed by
an attack for DREBIN, then the original value is restored as
it is not allowed to be removed. As this process can change
back features used to cross the decision boundary (e.g., from
malware to benign), we then ensure that the adversarial
example is still adversarial by testing it on the model.

In Section 5.4, we provide a description of the procedure
used for generating adversarial examples. Based on these
generated adversarial examples, there are certain practical
chracteristics that are interesting to study. For example, for
DREBIN, Table 2 presents a summary of the feature families
and whether features from those families can be added
or removed to generate adversarial examples. This table
additionally shows an interesting analysis of the frequency
of each family in how they contribute to the generation for
adversarial examples. We find that features from the the
families S8 (network addresses) and S3 (application com-
ponents) are most frequently perturbed in order to generate
adversarial examples. This is further reflected in Table 3,
which presents the top 10 most perturbed features used for
generating adversarial examples in the following section.
Here, we once again observe that features from the S3 and S8
are most commonly perturbed to have input samples cross
the decision boundary.

Although a similar analysis can be conducted for SLEIP-
NIR, the original dataset does not provide the names of the
API calls that form the features. Hence, it is not possible to
report the names of the API calls that are most frequently
used to generate adversarial examples.

9

Actual Feature Feature Family
activity::.optionsapp S3
activity::.resend S3
url::45667 S8
url::34992 S8
activity::.mservice S3
activity::11628 S3
activity::.6244 S3
service receiver::.calllistener S3
call::getsystemservice S7
activity::.rebootbutton S3

TABLE 3: Top 10 features that are perturbed most in order
to generate adversarial examples for DREBIN. We have
obfuscated some activities and network addresses.

5.4 Procedure for Generating Adversarial Examples

We generate adversarial examples in the feature-space like
previous work [29], [31], [34], [55]. When doing this, we en-
sure that feature vectors remain discrete and that malicious
functionality is preserved by limiting the set of allowed
perturbations that can be applied to the feature vector. This
ensures that adversarial examples remain close to realistic
and functional malware, without the need for testing in a
sandbox environment.

As detailed in Section 3, our threat model mainly consists
of a gray-box scenario where the attacker’s knowledge is
limited [32], [69], [70], [71], so we focus in this section on
describing the process we follow for this. We also consider a
black-box scenario, but this is described in detail in Section
6.5. In particular, for the gray-box scenario, attackers have
access to the same training data as the target model and
have knowledge of the feature representation. Therefore, to
simulate this scenario, we construct four substitute vanilla
models using the training data: a decision tree (DT), neu-
ral network (NN), random forest (RF) and support vector
machine (SVM) (see Appendix A for model architectures).
It is well established that using models with architectures
different from the target model can be used to evade it [15].
Therefore, we apply the attacks listed in Table 4 against
these substitute models to generate adversarial examples.
We can apply white-box attacks to the substitute models
because we have access to their gradient information. An
overview of the procedure for generating adversarial exam-
ples is provided:

1) With an input malware sample and an (applicable)
substitute model (S), an attack (⌧) is performed,
to generate an adversarial example. The malware
samples are those from our test set.

2) If the generated feature vector is continuous, the
values within are rounded to the nearest integer
(i.e., 0 or 1), in order to restore it to a discrete vector.

3) We then verify that all perturbations are valid ac-
cording to the dataset. Any invalid perturbations
are reverted, to offer a lower bound of functional-
ity preservation within the feature-space, similar to
prior work [34], [66], [101].

4) The adversarial example is then evaluated to ensure
it is still adversarial. The substitute model S makes
a prediction for the original input sample and the
adversarial example; a difference between them in-
dicates that the adversarial example has crossed the
decision boundary. If so, it is added to the set of

adversarial examples generated by attack ⌧ against
S, which is represented by ⌦⌧,S .

5) The sets of adversarial examples can be tested on
StratDef, following the steps in the next sections.

This process results in 4608 unique adversarial exam-
ples for DREBIN and 5640 for SLEIPNIR. ⌦DREBIN

and ⌦SLEIPNIR are the sets of adversarial examples for
DREBIN and SLEIPNIR respectively. The procedure is per-
formed by the defender and the attacker independently.
Different attacker profiles are then constructed as described
in Section 5.5 based on the generated adversarial examples.
The defender uses the generated adversarial examples (to-
gether with the training and validation data) as part of the
process described in the next sections.

Attack Name Applicable Model Families
Basic Iterative Method (A) [36] NN
Basic Iterative Method (B) [36] NN
Boundary Attack [78] DT, NN, RF, SVM
Carlini Attack [37] NN, SVM
Decision Tree Attack [44] DT
Deepfool Attack [103] NN, SVM
Fast Gradient Sign Method [33], [104] NN, SVM
HopSkipJump Attack [38] DT, NN, RF, SVM
Jacobian Saliency Map Approach [40] NN, SVM
Project Gradient Descent [39] NN, SVM
Support Vector Machine Attack [44] SVM

TABLE 4: Attacks used to generate adversarial examples.
Some attacks can only be applied to certain model families.

5.5 Modelling Gray-Box Attacker Profiles
After generating each set of adversarial examples ⌦⌧,S as
detailed in the previous section, we assign each set to
different attacker profiles, according to Table 5. The aim
of this is to simulate and evaluate StratDef’s performance
against different types of attackers, similar to prior work
[12], [62], [66], [71], [72], [73].

When modeling attacker profiles, we ensure that the
strongest attacker only uses the sets of adversarial examples
with higher normalized evasion rates1 against each model
F 2 ⌃� . Weaker attackers use those sets with lower nor-
malized evasion rates. Additionally, stronger attackers can
observe transferability. If an attacker cannot observe trans-
ferability, then when assigning them a set of adversarial
examples, we only consider the normalized evasion rate
against the substitute model S, which is the original appli-
cable substitute model, and not against models in ⌃� , which
could be higher due to transferability.

Once an attacker has been assigned sets of adversarial
examples, the sets are aggregated into a single set so that
each attacker has a selection of adversarial examples to
model and represent their capability. Using these, we create
datasets to represent different attack intensities, denoted by
↵, for each attacker. The attack intensity represents the pro-
portion of adversarial examples in the dataset (i.e., adversar-
ial queries made by attackers). Each dataset corresponds to
a value of ↵ 2 [0, 1] with increments of 0.1. For example,
at ↵ = 0.1, 10% of the dataset consists of adversarial
examples. The remaining 90% consists of an equal number

1. Recall that the normalized evasion rate encompasses the number
of adversarial examples in a particular set and their overall evasiveness
(see Section 4.3).

10

of benign and non-adversarial malware samples from the test
set described in Section 5.1. This would therefore represent
a system condition (or operating environment) with a lower
attack or adversarial intensity as compared with ↵ = 0.9,
for example. The pooling procedure in Table 5 governs how
the adversarial examples for the ↵ datasets are chosen. For
the strong attacker, the construction of these datasets gives
preference to more evasive adversarial examples from their
aggregated set. That is, to construct the ↵ datasets, adversar-
ial examples that are from more evasive sets have a higher
chance of being chosen. This is unlike for other attackers,
where the adversarial examples are chosen randomly from
their aggregated set. Meanwhile, the universal attacker only
gets assigned adversarial examples with universal adversar-
ial perturbations (UAPs) [49], [105]. In total, there are 1,541
such universal examples for DREBIN (UAPDREBIN) and
2,217 for SLEIPNIR (UAPSLEIPNIR) (see Section 6.4 later).

Attacker Strength Observe
Transferability

Pooling
Procedure

Weak R⌧,S,F  40 7 Random
Medium 40  R⌧,S,F  80 3 Random

Strong 80  R⌧,S,F 3
Weighted
based on R⌧,S,F

Random Any 3 Random
Universal UAPs only 3 Random

TABLE 5: Profiles of different gray-box attackers who inter-
act with StratDef. For the black-box attacker, see Section 6.5.

The datasets generated for each attacker are also used by
the defender for developing strategies (as per Section 4.2)
and evaluating the performance of each defense by simulat-
ing attackers with different levels of adversarial queries. We
next present our experimental evaluation and results.

6 EVALUATION

In this section, we present an evaluation across Android and
Windows in the experimental setting described previously.
In Section 6.1, we analyze the performance of StratDef under
different threat levels. Then, we compare StratDef’s perfor-
mance with other defenses in Section 6.2 and compare its
efficiency with other defenses in Section 6.3 later. Following
this, we evaluate how StratDef performs against Universal
Adversarial Perturbations in Section 6.4. Finally, we show
how StratDef copes with a complete black-box attacker in
Section 6.5.

6.1 Performance of StratDef
In this section, we present the results for the StratDef config-
urations against different attackers and attack intensities. In
our discussion, we focus on the aggregate results but refer
the reader to Appendix D for extended results.

Figure 3 demonstrates that as the threat level increases
(with stronger attackers and higher intensities), there is a
greater effect on the performance of StratDef. Notably, as
the threat level increases, we observe decreases in accuracy
in many cases, as one may expect. However, at the peak
threat level, StratDef can achieve up to 52.6% accuracy
for DREBIN and 100% accuracy for SLEIPNIR, with the
highest average accuracy of 72.7% for DREBIN and 96.2%
for SLEIPNIR across all attack intensities for all config-
urations. These results demonstrate that the adversarial
examples for DREBIN are more evasive than those for
SLEIPNIR, as indicated by StratDef’s lower accuracy. This
is likely because there are more perturbations that can be
used to generate adversarial examples with DREBIN (i.e.,
feature addition and removal). Hence, the attack surface is
widened as there are more avenues for evasion leading to
more effective attacks. In the case of SLEIPNIR, defenses

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

↵

A
cc

ur
ac

y
(%

)

(a) DREBIN, Weak

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

↵

A
cc

ur
ac

y
(%

)

(b) DREBIN, Medium

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

↵

A
cc

ur
ac

y
(%

)

(c) DREBIN, Strong

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

↵

A
cc

ur
ac

y
(%

)

(d) DREBIN, Random

0 0.2 0.4 0.6 0.8 1
60

80

100

↵

A
cc

ur
ac

y
(%

)

(e) SLEIPNIR, Weak

0 0.2 0.4 0.6 0.8 1
60

80

100

↵

A
cc

ur
ac

y
(%

)

(f) SLEIPNIR, Medium

0 0.2 0.4 0.6 0.8 1
60

80

100

↵

A
cc

ur
ac

y
(%

)

(g) SLEIPNIR, Strong

0 0.2 0.4 0.6 0.8 1
60

80

100

↵

A
cc

ur
ac

y
(%

)

(h) SLEIPNIR, Random

StratDef-Best-GT StratDef-Variety-GT StratDef-Best-Ranked StratDef-Variety-Ranked StratDef-Best-URS StratDef-Variety-URS

Fig. 3: Accuracy of different StratDef configurations against different attackers under varying attack intensities. In
Figures 3b, 3e and 3h, StratDef-Best-GT and StratDef-Variety-GT have the same performance because of identical strategies.

11

have it easier to defend themselves. In fact, for SLEIPNIR,
the weakest StratDef configuration (StratDef-Best-URS) only
drops to ⇡ 80% accuracy at the peak threat level. The weaker
adversarial examples for SLEIPNIR can be attributed to
more limitations in the perturbations that can be applied,
therefore reducing the attack surface. Interestingly in some
cases for SLEIPNIR, the performance of StratDef increases
with the attack intensity (↵). Recall that as ↵ increases, the
model selections and strategies are designed to cope better
with more hostile conditions. Hence, such configurations
exhibit greater accuracy as they can identify weaker adver-
sarial examples, especially when they are increasing in their
number (which occurs as ↵ increases) leading to improved
performance. As the adversarial examples for SLEIPNIR
are less evasive (as explained prior), this phenomenon is
primarily observed for this dataset.

In terms of the model selection, the configurations using
the Variety model selection perform well at all threat levels.
Recall that this model selection enforces diversity among
the constituent models of the ensemble (see Section 4.2). The
results show that the increased diversity in this model selec-
tion offsets the transferability of adversarial examples better
than the configurations using the Best model selection. This
is further reflected, albeit marginally, across all metrics, as
visible in Figure 4. This figure shows the values of different
metrics for StratDef configurations averaged across attack
intensities for both datasets against the strong attacker.

Meanwhile, regarding the optimizer, the game-theoretic
(GT) configurations offer slightly better performance for
both datasets than the configurations using the strategic
ranked optimizer (Ranked). However, a potential limitation
of the GT configurations is that they switch between pure
and mixed strategies, with adversarially-trained models
featuring more often in the strategies. In fact, with the GT
configurations, only up to 30% of the model selection is used
against the strong attacker, meaning that the majority of the
model selection may never actually be used. It is important
to understand that employing a StratDef configuration (or
an MTD) that uses fewer models may increase the risk of
an attacker discovering the profile and configuration of the
deployed defense. However, due to transferability, using
more models may open an avenue for greater evasion as
there is a higher chance that a vulnerable constituent model
is chosen at prediction-time. Therefore, an inherent trade-off
exists between the number of models used in the ensemble
and the robustness of the system. If a more diverse set of
models is used to reduce the transferability, the attacker will
be less successful.

Accuracy F1 AUC FPR

0

20

40

60

80

100

%

(a) DREBIN

Accuracy F1 AUC FPR

0

20

40

60

80

100

%

(b) SLEIPNIR
StratDef-Best-GT StratDef-Variety-GT StratDef-Best-Ranked StratDef-Variety-Ranked

Fig. 4: Average values of metrics across attack intensities for
StratDef configurations against the strong attacker.

The configurations using the strategic ranked optimizer
only produce mixed strategies since this optimizer does not
give complete preference to the strongest model. Intrigu-
ingly, despite using more models, these configurations offer
similar performance to those that use the GT optimizer.
This is especially visible in Figure 4, where we observe that
the F1 and AUC tend to remain generally high, while the
FPR tends to remain quite low, for the GT and Ranked
configurations across the board. Overall, these results il-
lustrate the capability of our strategic defense to produce
correct predictions across a number of scenarios, especially
adversarial ones, which is quite encouraging. In contrast,
the poorer performance expected of the uniform random
strategy (URS) approach can be seen in Figures 3 and 4,
which highlights the need for good movement strategies
regardless of how sound the model selection itself is. Recall
that under this configuration — which is only included
as a baseline — a model is chosen randomly from the
ensemble to serve a user’s prediction, rather than with a
strategic or heuristic approach. The results show that using
a randomized approach for choosing models at prediction-
time is no match for a game-theoretic or heuristically-driven
strategy. For maximal robustness, only strategic or game-
theoretic movement approaches are suitable.

6.2 StratDef vs. Other Defenses

We next compare StratDef with a range of other models and
defenses. We present a selection of the results in Figure 5
covering a number of defenses that we evaluate. In our
discussion, we focus on the aggregate results specifically
under the strong attacker scenario. For extended results, we
refer the reader to Appendix D.

Overall, our evaluation shows that the other models
and defenses that we evaluate perform significantly worse
than StratDef, except for high levels of adversarial training
(which we discuss further later). This is especially clear at
the highest threat level, with the highest attack intensity and
the strongest attacker. For example, as one might expect,
the vanilla NN and SVM models perform poorly and only
achieve 7% and 2% accuracy, respectively, at the peak threat
level for DREBIN, with only marginally better performance
for SLEIPNIR. However, even after some robustness pro-
cedures are applied to these models, the performance only
improves by ⇡ 10-15% in accuracy for defensive distillation
(NN-DD) and SecSVM. The random feature nullification
(RFN) approach offers an insignificant improvement to the
vanilla models from all model families, especially, at the
peak threat level. These results demonstrate the general in-
effectiveness of these defensive approaches. Interestingly, in
some instances, the vanilla random forest (RF) for DREBIN
and the decision tree (DT) for SLEIPNIR can even surpass
defenses such as random feature nullification (RFN), though
for SLEIPNIR at the cost of a higher number of false pos-
itives. Nonetheless, all of these defenses and models still
significantly underperform in comparison to our StratDef
approach as shown in Figure 5, whose average accuracy
across the attack intensities sits comfortably above 70% for
both datasets.

StratDef also outperforms the voting defense. At
the peak adversarial threat, the Voting-Best-Majority and

12

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

↵

A
cc

ur
ac

y
(%

)

(a) DREBIN

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

↵

A
cc

ur
ac

y
(%

)

(b) SLEIPNIR
DT RF NN-DD

SecSVM DT-RFN DT-AT-0.1
NN-AT-0.25 RF-AT-0.25 StratDef-Variety-GT

StratDef-Variety-Ranked Voting-Best-Majority Voting-Variety-Majority

Fig. 5: Comparison of StratDef with other best-performing
defenses against the strong attacker. For SLEIPNIR, the
StratDef configurations, NN-AT-0.25 and RF-AT-0.25 have
very similar performance.

Voting-Variety-Majority configurations are on par with the
vanilla models and other defenses for DREBIN, only achiev-
ing a maximum of 30% accuracy. For SLEIPNIR, although
the voting defense can achieve 90+% accuracy with ade-
quate F1, this comes at the cost of slightly higher FPR and
FNR as well as a lower AUC compared with the StratDef
Best and Variety configurations (see Appendix D).

Generally, defenses for SLEIPNIR are more consistent
and appear to work better because of fewer allowed per-
turbations, reducing the attack surface and limiting the av-
enues for evasion. Hence, stronger defenses have it easier to
defend themselves against the weaker adversarial examples.
Meanwhile, in the more complex scenario with DREBIN,
the attacker has greater opportunity with the perturbations
as the attacker can perform feature addition and removal,
which leads to greater evasion. There, our evaluation shows
that StratDef is much superior in dealing with adversarial
examples across the attacker scenarios. Intriguingly, from
the other defenses we evaluate, we find that only high levels
of adversarial training provide any notable robustness. This
is similar to findings in previous work [6], [10], [14]. For ex-
ample, at the peak threat level, 50+% accuracy for DREBIN
and 90+% accuracy for SLEIPNIR can be achieved with
high levels of adversarial training across the model families
(typically the 0.1-0.25 variants). As a side-effect, however,
the adversarially-trained models can sometimes result in
more false positives. For example, the highly adversarially-
trained models based on the NN and SVM model families
for DREBIN, and DT for SLEIPNIR cause more false pos-
itive predictions, though this is less observable with the
adversarially-trained RF model in both datasets.

Overall, we observe that highly adversarially-trained RF
and DT models are the most balanced all-rounders from
existing defenses for both datasets, offering decent F1 and
AUC while maintaining fewer false predictions than other
defenses. In some cases, while StratDef may perform simi-
larly to such adversarially-trained models, a significant ad-
vantage of StratDef is that it simplifies the process of select-
ing an appropriate model to deploy. Additionally, StratDef
has a benefit over single adversarially-trained models as
it complicates the attacker’s efforts to construct substitute
models, reducing the success of black-box attacks as it does

not behave like a fixed, static target (see Section 6.5).

6.3 Efficiency of StratDef
We also assess the efficiency of StratDef, voting, and some
of the other best-performing defenses. This is important, as
we hypothesize that defenses may differ in their prediction
times and resource consumption due to their particular con-
figuration. For this experiment, we query each considered
defense 1000+ times continuously and then measure the
time taken to produce a prediction.

Figure 6 shows the average time taken by each defense
to produce a single prediction against the strong attacker.
Evidently, there is a significant time difference between
StratDef and voting, with voting exhibiting higher costs.
This is because, with voting, all constituent models must be
waited for while they produce their individual predictions
before the final prediction can be returned. Meanwhile,
StratDef returns predictions in a similar time to single-
model defenses, as only a single constituent model is used
for a prediction, with minimal overhead involved in rolling
a biased die to choose that particular model at prediction-
time. In fact, StratDef returns faster predictions on average
than RF-AT-0.25 for both datasets. Intriguingly, some prior
work has found that random forests are generally slower
than other models to produce predictions [106], [107], [108],
and in our work, this also seems to be the case in this
experimental setting when comparing random forests with
StratDef.

0 0.2 0.4 0.6 0.8 1

10�3

10�2

10�1

↵

A
ve

ra
ge

tim
e

pe
r

pr
ed

ic
tio

n
(s

ec
on

ds
)

(a) DREBIN

0 0.2 0.4 0.6 0.8 1

10�3

10�2

10�1

↵

A
ve

ra
ge

tim
e

pe
r

pr
ed

ic
tio

n
(s

ec
on

ds
)

(b) SLEIPNIR
DT-AT-0.1 NN-AT-0.25 RF-AT-0.25

StratDef-Variety-GT Voting-Variety-Majority

Fig. 6: Average time taken per prediction against the strong
attacker.

We also examine the average memory consumption
incurred when producing a prediction against the strong
attacker. This is because we are interested in analyzing the
overhead of keeping models in memory to serve predic-
tions. Figure 7 shows the average memory consumption
of each defense across attack intensities. Defenses besides
StratDef have static memory consumption because they
are not strategized for the attack intensity. The single-
model defenses we evaluate consume less memory, with
minor differences due to the particular model family. Mean-
while, ensemble defenses require access to more models at
prediction-time, leading to higher memory costs. However,
voting has the highest memory consumption since it uses all
models in the ensemble for a single prediction. For example,
in the case of Voting-Variety-Majority for SLEIPNIR, a sin-
gle, memory-intensive model requires over 0.7GB memory.

13

Meanwhile, StratDef is efficient and better than voting, as
it only loads models for each attack intensity with a non-
zero probability (i.e., those that have a non-zero chance of
being chosen to make a prediction) rather than keeping all
constituent models in memory. Overall, StratDef — which
is an ensemble defense — performs as efficiently as (and
sometimes better than) single-model defenses, considering
both time and memory costs.

0 0.2 0.4 0.6 0.8 1

10�2

10�1

100

101

↵

M
em

or
y

co
ns

um
pt

io
n

(M
B)

(a) DREBIN

0 0.2 0.4 0.6 0.8 1
10�3

10�2

10�1

100

101

102

103

↵

M
em

or
y

co
ns

um
pt

io
n

(M
B)

(b) SLEIPNIR
DT-AT-0.1 NN-AT-0.25 RF-AT-0.25

StratDef-Variety-GT Voting-Variety-Majority

Fig. 7: Average memory consumption of models against the
strong attacker.

6.4 StratDef vs. UAPs
Recent work has uncovered universal adversarial pertur-
bations (UAPs) as a cost-effective method of generating
adversarial examples where perturbations can be reused
[49], [105]. We therefore evaluate how StratDef performs
against the universal attacker, who only uses adversarial
examples generated from UAPs. For this, we determine if
a set of perturbations has been precisely reused to generate
adversarial examples (from Section 5.4). In such situations,
adversarial examples are regarded as having been generated
by UAPs. For example, if the application of the same set
of perturbations to several distinct malware samples has
produced adversarial examples, the set of perturbations
counts as UAPs. In total, there are 1,541 such adversarial ex-
amples for DREBIN (UAPDREBIN) and 2,217 for SLEIPNIR
(UAPSLEIPNIR). We present the results of this experiment
in Figure 8 (with Appendix D containing all results).

Figure 8 shows the accuracy of the StratDef configura-
tions and other best-performing models against the uni-
versal attacker. The adversarial examples in UAPDREBIN

and UAPSLEIPNIR appear less evasive than before, as the
accuracy of most models is hardly affected. That is, the
universal attacker is unable to achieve effective evasion
against most defenses, including any StratDef configuration,
with its accuracy remaining largely over 90%. Similar to
the previous sections, we observe that the performance of
some defenses increases as ↵ increases. This is due to the
increased number of weaker adversarial examples that are
detected more easily by the defenses. Only vanilla and
weakly-defended NN and SVM models fall prey to the
universal attacker, with their accuracy reduced to less than
⇡ 40% across both datasets (these are not shown in Figure 8
but are available in Appendix D). Evidently, the results
are more closely concentrated for StratDef, with generally
sound performance across both datasets, particularly in its
GT configurations.

0 0.2 0.4 0.6 0.8 1
80

90

100

↵

A
cc

ur
ac

y
(%

)

(a) DREBIN

0 0.2 0.4 0.6 0.8 1
80

90

100

↵

A
cc

ur
ac

y
(%

)

(b) SLEIPNIR
StratDef-Best-GT StratDef-Best-Ranked StratDef-Variety-GT

StratDef-Variety-Ranked DT-AT-0.1 DT-RFN
NN-AT-0.25 RF-AT-0.25 Voting-Variety-Majority

Fig. 8: Accuracy of different defenses against universal
attacker. For SLEIPNIR, StratDef-Best-GT and StratDef-
Variety-GT have same performance. Some models have sim-
ilar performance — see Appendix D for extended results.

6.5 StratDef vs. Black-box Attacks
We also explore how StratDef performs against a complete
black-box attack. In this setting, a zero-knowledge black-box
attacker queries the target model (e.g., StratDef) as an oracle
to develop a substitute model [65]. The substitute model
is then attacked in anticipation that adversarial examples
transfer to the target model. Hence, the adversarial exam-
ples generated in this attack are of an unknown nature; for
example, StratDef is not strategized to deal with the attack,
nor are any models adversarially-trained on them.
Procedure. For this experiment, we follow the standard pro-
cedure to attack a target model using a black-box transfer-
ability attack strategy. This is based on the well-established
idea that adversarial examples generated for a substitute
model may transfer to the target model [15].

Initially, we query the target model (whether it is Strat-
Def or some other defense) with an equal number of benign
and malware samples2 and record the predicted outputs
from the model. We vary the number of [these] samples at
training-time to examine if this affects the success of attacks,
as more interactions at training-time should produce a
better representation of the target model. The input-output
relations from querying the target model are then used to
train a substitute DNN (see Appendix A for the model
architecture), which acts as an estimation of the target
model. Against this substitute DNN, we then use white-
box attacks (BIM [36], FGSM [33], [104], JSMA [40] and PGD
[39]) to generate adversarial examples, in anticipation that
they will transfer to the target model. As before, procedures
are applied to ensure a lower bound of functionality preser-
vation in the feature-space when generating the adversarial
examples (see Section 5.4). The adversarial examples are
then tested against the target models, such as StratDef and
other defenses.

In this attack setting, StratDef assumes the highest threat
level (i.e., the strongest attacker at the highest attack inten-
sity). Beyond this, StratDef is not strategized to deal with
a black-box attack of any kind. Therefore, this attack also
helps us understand how StratDef may work against an
unknown attacker.

2. Therefore, Figure 9 starts with 2 samples because a single sample
from each class is used to build the training set for the substitute DNN.

14

Results. In Figure 9, we present the results of this ex-
periment, where we compare StratDef with other well-
performing defenses from the prior subsections. We find
that StratDef works well across both datasets, with a rela-
tively low evasion rate compared with other defenses. For
DREBIN, the attacker achieves a 19% evasion rate against
StratDef in the worst-case which is lower, and hence better,
than other defenses, and around 16% evasion rate on av-
erage across all results, which is still lower than the other
defenses. Recall that StratDef is not currently strategized
to deal with such an attack despite its better performance.
As StratDef cycles between models during predictions, we
also observe variations in the attacker’s performance. Mean-
while, although the adversarially-trained DT model per-
forms adequately against DREBIN, it performs much worse
for SLEIPNIR, while other models also exhibit mixed per-
formance. Regardless, in the more complex scenario involv-
ing DREBIN, StratDef offers superior performance against
black-box attacks. There, we generally observe that as the
number of samples at training-time increases, the evasion
rate also increases up to a certain level. This supports the
hypothesis that substitute models that are trained using a
higher number of input-output relations of the target model
are better representations of it.

2 100 200 300 400 500
0

10

20

30

Number of samples at training-time

Ev
as

io
n

ra
te

(%
)

(a) DREBIN

2 100 200 300 400 500
0

10

20

30

Number of samples at training-time

Ev
as

io
n

ra
te

(%
)

(b) SLEIPNIR
DT-AT-0.1 NN-AT-0.25 RF-AT-0.25

StratDef-Variety-GT Voting-Variety-Majority

Fig. 9: Results of black-box attack against various defenses.

For SLEIPNIR, the attacker is less successful, which is
a theme we have seen previously. This is due to a more
limited feature-space (i.e., the set of allowed perturbations
for generating adversarial examples) and is reflected in the
results for the black-box attack, where the evasion rate
decreases considerably against the stronger defenses such
as StratDef (< 1% evasion rate). However, the DT-based
model is greatly evaded, with an evasion rate of 25+%.
StratDef makes use of the DT-AT-0.1 model in its strategy
at the considered threat level and therefore suffers slightly
in comparison to other models.

7 DISCUSSION & LIMITATIONS

In this section, we discuss the overall findings from our eval-
uation of StratDef and the other defenses. This is followed
by a discussion on the limitations we see of our work.

In contrast to prior work, StratDef selects the best models
to use in an MTD in a way that is both dynamic and
strategic. We focus on the fundamental aspects of the design
of MTDs, such as model construction, model selection, and
optimizer selection. This helps not only to increase accuracy

and the level of uncertainty for attackers, but also reduces
the transferability of adversarial examples, as demonstrated
by our results. In particular, the StratDef configurations
using the Variety model selection perform better than other
configurations, as this model selection enforces diversity
among the constituent models which offsets transferabil-
ity better. When this model selection is paired with the
game-theoretic (GT) optimizer, StratDef exhibits peak per-
formance against adversarial attacks. Intriguingly, however,
the GT configurations sometimes use pure strategies (and
therefore use fewer models), which may increase the risk
of an attacker profiling the defense. This is in contrast
with the strategic ranked optimizer (Ranked), which uses
more constituent models but can lead to greater evasion
due to transferability, owing to an increased chance that
a vulnerable constituent model is chosen at prediction-
time. Hence, there is a trade-off between the number of
models from the ensemble that are used and the robustness
of the system, with the attacker’s success reduced only
with diverse constituent models. Nonetheless, both of these
optimizers are far superior to the uniform random strategy
(URS) approach, demonstrating the importance of proper
prediction-time strategies irrespective of the soundness of
the model selection.

When compared with other models and defenses, our
results show that StratDef performs better than the majority
of them across the different threat levels. Defenses such
as defensive distillation, random feature nullification, and
SecSVM exhibit minimal adversarial robustness, with per-
formance that is quite comparable to that of their vanilla
counterparts, especially at the peak threat level. Meanwhile,
despite using the same model selections, voting defense is
less successful against attacks than StratDef and more costly
to deploy, especially in the more complex scenario with
DREBIN. This demonstrates the superiority of a strategic
MTD approach. Intriguingly, from the existing defenses,
only high levels of adversarial training provide effective
robustness against attacks. While in some instances, StratDef
may perform similarly to adversarially-trained models, an
advantage is that StratDef significantly simplifies the pro-
cess of selecting an appropriate model to deploy. Addition-
ally, StratDef complicates the attacker’s efforts to construct
substitute models, making black-box attacks less successful
than against other defenses, as it does not behave like a
fixed, static target as other defenses do.

Despite showing promise against adversarial attacks,
we see some limitations for our defense. Depending on
the optimizer (e.g., the game-theoretic optimizer), a pure
strategy may be developed, which is akin to employing
a single constituent model. This may reduce the benefits
of an MTD approach and increase the risk of the system
being profiled. It would be interesting to explore whether
the optimizer could be developed to limit the phenomenon.
As discussed, however, using mixed strategies with more
models can widen the attack surface.

StratDef is not currently strategized to deal with black-
box attacks, such as black-box substitute model attacks (e.g.,
[65]). In an experiment with such an attack, StratDef exhib-
ited greater robustness than most models. However, there is
still scope for improvement in its performance against such
an attack. For example, methods to limit how an attacker

15

could obtain information for constructing substitute models
in the first place could be explored.

Furthermore, while StratDef aims to prevent the evasion
of the model itself by an individual adversarial example,
it cannot detect whether an attack is in progress. This is
especially pertinent in light of the threat posed by query
attacks (e.g., [38], [42]). Such attacks generate adversarial
examples by iteratively perturbing input samples towards
the desired class through feedback received from the target
model, rather than through substitute models. Against such
attacks, stateful defenses (e.g., [79]) have been proposed that
monitor and analyze the distribution of queries received
by the system. It would be interesting to examine how
StratDef could be developed or combined with such stateful
detection systems to mitigate these attacks.

Additionally, while the focus of our work has been in the
ML-based malware detection domain, it would be interest-
ing to examine whether StratDef, or a similar strategic MTD,
could produce similar promising results in other domains.

8 CONCLUSION

In this paper, we presented our strategic defense, Strat-
Def, for defending against adversarial attacks for ML-based
malware detection. We have demonstrated the superiority
of StratDef over existing defenses across both Android
and Windows malware. StratDef embraces the key de-
sign principles of a moving target defense and provides
a complete framework for building a strategic ensemble
defense using different heuristically-driven methods for
determining what, how and when a moving target de-
fense system should move to achieve a high degree of
adversarial robustness. We have illustrated the dynamic
nature of StratDef, which offers flexible methods to promote
model heterogeneity, adversarial robustness, and accurate
predictions. Moreover, we have shown how StratDef can
adapt to the threat level based on the information it has
about its operating environment. Experimentally, we have
demonstrated StratDef’s ability to achieve high levels of
adversarial robustness across different threat levels without
compromising on performance when compared with other
defenses. Overall, we have demonstrated the ability to con-
struct a strategic defense that can increase accuracy by 50+%
while reducing the success of targeted attacks by increasing
the uncertainty and complexity for the attacker.

The results in this paper motivate and provide evi-
dence supporting a strategic MTD approach for dealing
with adversarial examples in the malware detection domain.
Beyond the work presented in this paper, multiple avenues
exist for future work on strategic defenses in this domain.
For example, we plan to investigate how to deal with black-
box attacks even better. This may be achieved by adapting
the defense strategy according to the current perceived
threat levels that could be based on automated, stateful
approaches [79], or on cyber-threat intelligence [74], [75].

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet clas-
sification,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1026–1034.

[2] C. Chio and D. Freeman, Machine learning and security: Protecting
systems with data and algorithms. ” O’Reilly Media, Inc.”, 2018.

[3] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world
attacks on deep learning visual classification,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[4] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash,
A. Rahmati, and D. Song, “Robust physical-world attacks on
machine learning models,” arXiv preprint arXiv:1707.08945, vol. 2,
no. 3, p. 4, 2017.

[5] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, “Adversarial attacks and defences: A sur-
vey,” arXiv preprint arXiv:1810.00069, 2018.

[6] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh,
and P. McDaniel, “Ensemble adversarial training: Attacks and
defenses,” arXiv preprint arXiv:1705.07204, 2017.

[7] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting
adversarial examples in deep neural networks,” arXiv preprint
arXiv:1704.01155, 2017.

[8] Q. Wang, W. Guo, K. Zhang, X. Xing, C. L. Giles, and X. Liu,
“Random feature nullification for adversary resistant deep archi-
tecture,” arXiv preprint arXiv:1610.01239, 2016.

[9] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigat-
ing adversarial effects through randomization,” arXiv preprint
arXiv:1711.01991, 2017.

[10] S. Sengupta, T. Chakraborti, and S. Kambhampati, “Mtdeep:
boosting the security of deep neural nets against adversarial
attacks with moving target defense,” in Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[11] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Au-
tomated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach,” computers
& security, vol. 73, pp. 326–344, 2018.

[12] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro,
“Intriguing properties of adversarial ml attacks in the
problem space,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2020, pp. 1308–
1325. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/SP40000.2020.00073

[13] N. Carlini. A complete list of all (arxiv) adversarial
example papers. [Online]. Available: https://nicholas.carlini.
com/writing/2019/all-adversarial-example-papers.html

[14] R. Podschwadt and H. Takabi, “On Effectiveness of Adversarial
Examples and Defenses for Malware Classification.” International
Conference on Security and Privacy in Communication Systems, pp.
380–393, 2019.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2014.

[16] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distilla-
tion as a defense to adversarial perturbations against deep neural
networks,” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 582–597.

[17] D. of Homeland Security. Moving target defense. [Online]. Avail-
able: https://www.dhs.gov/science-and-technology/csd-mtd

[18] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher,
T. J. Moore, D. S. Kim, H. Lim, and F. F. Nelson, “Toward
proactive, adaptive defense: A survey on moving target defense,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 709–
745, 2020.

[19] Y. Qian, Y. Guo, Q. Shao, J. Wang, B. Wang, Z. Gu, X. Ling,
and C. Wu, “Ei-mtd: Moving target defense for edge intelligence
against adversarial attacks,” ACM Trans. Priv. Secur., vol. 25, no. 3,
may 2022. [Online]. Available: https://doi.org/10.1145/3517806

[20] A. Amich and B. Eshete, “Morphence: Moving target defense
against adversarial examples,” in Annual Computer Security
Applications Conference, ser. ACSAC. New York, NY, USA:
Association for Computing Machinery, 2021, p. 61–75. [Online].
Available: https://doi.org/10.1145/3485832.3485899

[21] Q. Song, Z. Yan, and R. Tan, “Moving target defense for deep
visual sensing against adversarial examples,” arXiv preprint
arXiv:1905.13148, 2019.

[22] F. Ahmed, P. Vaishnavi, K. Eykholt, and A. Rahmati, “Ares: A
system-oriented wargame framework for adversarial ml,” in 2022
IEEE Security and Privacy Workshops (SPW), 2022, pp. 73–79.

https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00073
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00073
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://www.dhs.gov/science-and-technology/csd-mtd
https://doi.org/10.1145/3517806
https://doi.org/10.1145/3485832.3485899

16

[23] A. Roy, A. Chhabra, C. A. Kamhoua, and P. Mohapatra, “A
moving target defense against adversarial machine learning,”
in Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, ser. SEC ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 383–388. [Online]. Available:
https://doi.org/10.1145/3318216.3363338

[24] R. Izmailov, P. Lin, S. Venkatesan, and S. Sugrim, Combinatorial
Boosting of Classifiers for Moving Target Defense Against Adversarial
Evasion Attacks. New York, NY, USA: Association for
Computing Machinery, 2021, p. 13–21. [Online]. Available:
https://doi.org/10.1145/3474370.3485661

[25] W. Wang, X. Xiong, S. Wang, and J. Zhang, “Mtdnnf: Building
the security framework for deep neural network by moving
target defense,” in 2020 3rd International Conference on Algorithms,
Computing and Artificial Intelligence, 2020, pp. 1–1.

[26] R. K. Shahzad and N. Lavesson, “Comparative analysis of vot-
ing schemes for ensemble-based malware detection,” Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications, vol. 4, no. 1, pp. 98–117, 2013.

[27] S. Y. Yerima and S. Sezer, “Droidfusion: A novel multilevel
classifier fusion approach for android malware detection,” IEEE
transactions on cybernetics, vol. 49, no. 2, pp. 453–466, 2018.

[28] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel, “Adversarial perturbations against deep neural networks
for malware classification.” arXiv preprint arXiv:1606.04435, 2016.

[29] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Ad-
versarial deep learning for robust detection of binary encoded
malware,” in 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, 2018, pp. 76–82.

[30] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic
black-box end-to-end attack against state of the art api call based
malware classifiers,” in International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer, 2018, pp. 490–510.

[31] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be
more secure! a case study on android malware detection,” IEEE
Transactions on Dependable and Secure Computing, 2017.

[32] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok:
Security and privacy in machine learning,” in 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2018, pp.
399–414.

[33] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” arXiv preprint arXiv:1412.6572,
2014.

[34] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel, “Adversarial examples for malware detection,” in Euro-
pean symposium on research in computer security. Springer, 2017,
pp. 62–79.

[35] W. Yang, D. Kong, T. Xie, and C. A. Gunter, “Malware detection in
adversarial settings: Exploiting feature evolutions and confusions
in android apps,” in Proceedings of the 33rd Annual Computer
Security Applications Conference, 2017, pp. 288–302.

[36] A. Kurakin, I. Goodfellow, S. Bengio et al., “Adversarial examples
in the physical world,” 2016.

[37] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 ieee symposium on security and privacy
(sp). IEEE, 2017, pp. 39–57.

[38] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack:
A query-efficient decision-based attack,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 1277–1294.

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
arXiv preprint arXiv:1706.06083, 2017.

[40] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in 2016 IEEE European symposium on security and privacy
(EuroS&P). IEEE, 2016, pp. 372–387.

[41] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando,
and F. Roli, “Adversarial exemples: A survey and experimental
evaluation of practical attacks on machine learning for windows
malware detection,” ACM Trans. Priv. Secur., vol. 24, no. 4, sep
2021. [Online]. Available: https://doi.org/10.1145/3473039

[42] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Query-
efficient black-box attack against sequence-based malware clas-
sifiers,” in Annual Computer Security Applications Conference, 2020,
pp. 611–626.

[43] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Ex-
plaining vulnerabilities of deep learning to adversarial malware
binaries,” arXiv preprint arXiv:1901.03583, 2019.

[44] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. Mc-
Daniel, “On the (statistical) detection of adversarial examples,”
arXiv preprint arXiv:1702.06280, 2017.

[45] M. Ebrahimi, N. Zhang, J. Hu, M. T. Raza, and H. Chen, “Bi-
nary black-box evasion attacks against deep learning-based static
malware detectors with adversarial byte-level language model,”
arXiv preprint arXiv:2012.07994, 2020.

[46] M. Sewak, S. K. Sahay, and H. Rathore, “Adversarialuscator:
An adversarial-drl based obfuscator and metamorphic malware
swarm generator,” in 2021 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2021, pp. 1–9.

[47] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and
H. Yin, “Mab-malware: A reinforcement learning framework for
blackbox generation of adversarial malware,” in Proceedings of
the 2022 ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 990–1003. [Online]. Available:
https://doi.org/10.1145/3488932.3497768

[48] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando,
“Functionality-preserving black-box optimization of adversarial
windows malware,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 3469–3478, 2021.

[49] R. Labaca-Castro, L. Muñoz-González, F. Pendlebury, G. D.
Rodosek, F. Pierazzi, and L. Cavallaro, “Universal adversarial
perturbations for malware,” arXiv preprint arXiv:2102.06747, 2021.

[50] W. Hu and Y. Tan, “Generating adversarial malware examples for
black-box attacks based on gan,” arXiv preprint arXiv:1702.05983,
2017.

[51] O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial ex-
amples in malware detection,” in 2019 IEEE Security and Privacy
Workshops (SPW). IEEE, 2019, pp. 8–14.

[52] L. Demetrio, B. Biggio, and F. Roli, “Practical attacks on machine
learning: A case study on adversarial windows malware,” IEEE
Security & Privacy, vol. 20, no. 5, pp. 77–85, 2022.

[53] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang,
and K. Ren, “Android hiv: A study of repackaging malware
for evading machine-learning detection,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 987–1001, 2019.

[54] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth,
“Learning to evade static pe machine learning malware models
via reinforcement learning,” arXiv preprint arXiv:1801.08917, 2018.

[55] D. Li, Q. Li, Y. Ye, and S. Xu, “Enhancing deep neural net-
works against adversarial malware examples,” arXiv preprint
arXiv:2004.07919, 2020.

[56] Y. Chen, S. Wang, D. She, and S. Jana, “On training robust
{PDF} malware classifiers,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2343–2360.

[57] D. Maiorca, B. Biggio, and G. Giacinto, “Towards adversarial
malware detection: Lessons learned from pdf-based attacks,”
ACM Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–36, 2019.

[58] D. Li, Q. Li, Y. F. Ye, and S. Xu, “Arms race in adversarial
malware detection: A survey,” ACM Comput. Surv., vol. 55, no. 1,
nov 2021. [Online]. Available: https://doi.org/10.1145/3484491

[59] X. Ling, L. Wu, J. Zhang, Z. Qu, W. Deng, X. Chen, Y. Qian,
C. Wu, S. Ji, T. Luo et al., “Adversarial attacks against windows pe
malware detection: A survey of the state-of-the-art,” Computers &
Security, p. 103134, 2023.

[60] K. Aryal, M. Gupta, and M. Abdelsalam, “A survey on adversar-
ial attacks for malware analysis,” arXiv preprint arXiv:2111.08223,
2021.

[61] D. Li, Q. Li, Y. Ye, and S. Xu, “Arms race in adversarial malware
detection: A survey,” ACM Computing Surveys (CSUR), vol. 55,
no. 1, pp. 1–35, 2021.

[62] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber,
D. Tsipras, I. Goodfellow, A. Madry, and A. Kurakin, “On eval-
uating adversarial robustness,” arXiv preprint arXiv:1902.06705,
2019.

[63] J. W. Stokes, D. Wang, M. Marinescu, M. Marino, and B. Bus-
sone, “Attack and defense of dynamic analysis-based, ad-
versarial neural malware classification models,” arXiv preprint
arXiv:1712.05919, 2017.

[64] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients
give a false sense of security: Circumventing defenses to adver-

https://doi.org/10.1145/3318216.3363338
https://doi.org/10.1145/3474370.3485661
https://doi.org/10.1145/3473039
https://doi.org/10.1145/3488932.3497768
https://doi.org/10.1145/3484491

17

sarial examples,” in International conference on machine learning.
PMLR, 2018, pp. 274–283.

[65] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Celik, and
A. Swami, “Practical black-box attacks against machine learn-
ing.” Proceedings of the 2017 ACM on Asia conference on computer
and communications security, pp. 506–519, 2018.

[66] G. Severi, J. Meyer, S. Coull, and A. Oprea, “Explanation-guided
backdoor poisoning attacks against malware classifiers,” in 30th
{USENIX} Security Symposium ({USENIX} Security 21), 2021.

[67] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learn-
ing at test time,” in Joint European conference on machine learning
and knowledge discovery in databases. Springer, 2013, pp. 387–402.

[68] G. Apruzzese, H. S. Anderson, S. Dambra, D. Freeman, F. Pier-
azzi, and K. A. Roundy, “”real attackers don’t compute gradi-
ents”: Bridging the gap between adversarial ml research and
practice,” in Proceedings of the 1st IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML), 2023.

[69] P. Laskov et al., “Practical evasion of a learning-based classifier:
A case study,” in 2014 IEEE symposium on security and privacy.
IEEE, 2014, pp. 197–211.

[70] E. J. Santana, R. P. Silva, B. B. Zarpelão, and S. Barbon Junior,
“Detecting and mitigating adversarial examples in regression
tasks: A photovoltaic power generation forecasting case study,”
Information, vol. 12, no. 10, p. 394, 2021.

[71] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, pp.
317–331, 2018.

[72] N. Carlini and D. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” in Proceedings of the
10th ACM workshop on artificial intelligence and security, 2017, pp.
3–14.

[73] O. Suciu, R. Marginean, Y. Kaya, H. D. III, and T. Dumitras,
“When does machine learning FAIL? generalized transferability
for evasion and poisoning attacks,” in 27th USENIX Security
Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 1299–1316.

[74] X. Shu, F. Araujo, D. L. Schales, M. P. Stoecklin, J. Jang, H. Huang,
and J. R. Rao, “Threat intelligence computing,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1883–1898.

[75] Z. Zhu and T. Dumitras, “Chainsmith: Automatically learning the
semantics of malicious campaigns by mining threat intelligence
reports,” in 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2018, pp. 458–472.

[76] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversar-
ial attacks with limited queries and information,” in International
Conference on Machine Learning. PMLR, 2018, pp. 2137–2146.

[77] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in
machine learning: from phenomena to black-box attacks using
adversarial samples,” arXiv preprint arXiv:1605.07277, 2016.

[78] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversar-
ial attacks: Reliable attacks against black-box machine learning
models,” arXiv preprint arXiv:1712.04248, 2017.

[79] S. Chen, N. Carlini, and D. Wagner, “Stateful detection of black-
box adversarial attacks,” in Proceedings of the 1st ACM Workshop
on Security and Privacy on Artificial Intelligence, 2020, pp. 30–39.

[80] H. Li, X. Xu, X. Zhang, S. Yang, and B. Li, “Qeba: Query-efficient
boundary-based blackbox attack,” in CVPR, 2020.

[81] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez,
and S. Kraus, “Playing games for security: An efficient exact
algorithm for solving bayesian stackelberg games,” in Proceed-
ings of the 7th international joint conference on Autonomous agents
and multiagent systems-Volume 2. International Foundation for
Autonomous Agents and Multiagent Systems, 2008, pp. 895–902.

[82] M. Tambe, Security and game theory: algorithms, deployed systems,
lessons learned. Cambridge university press, 2011.

[83] Gurobi Optimization, LLC, “Gurobi Optimizer Reference
Manual,” 2022. [Online]. Available: https://www.gurobi.com

[84] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and don’ts of
machine learning in computer security,” in Proc. of the USENIX
Security Symposium, 2022.

[85] O. A. Aslan and R. Samet, “A comprehensive review on malware
detection approaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020.

[86] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection of

android malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–
26.

[87] R. Thomas, “Lief - library to instrument executable formats,”
https://lief.quarkslab.com/, April 2017.

[88] J. Ma, H. Xie, G. Han, S.-F. Chang, A. Galstyan, and W. Abd-
Almageed, “Partner-assisted learning for few-shot image classifi-
cation,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 10 573–10 582.

[89] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” 2016.

[90] A. Li, T. Luo, T. Xiang, W. Huang, and L. Wang, “Few-shot
learning with global class representations,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
9715–9724.

[91] H. Yao, Y. Wei, J. Huang, and Z. Li, “Hierarchically structured
meta-learning,” in International Conference on Machine Learning.
PMLR, 2019, pp. 7045–7054.

[92] Y. Du, H. Sun, X. Zhen, J. Xu, Y. Yin, L. Shao, and C. G. Snoek,
“Metakernel: Learning variational random features with limited
labels,” arXiv preprint arXiv:2105.03781, 2021.

[93] H.-J. Ye and W.-L. Chao, “How to train your maml to excel in
few-shot classification,” arXiv preprint arXiv:2106.16245, 2021.

[94] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. v. Steen, “Prudent practices for
designing malware experiments: Status quo and outlook,” in
2012 IEEE Symposium on Security and Privacy, 2012, pp. 65–79.

[95] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[96] F. Chollet et al., “Keras,” https://keras.io, 2015.
[97] Abadi et al., “TensorFlow: Large-scale machine learning

on heterogeneous systems,” 2015. [Online]. Available: https:
//www.tensorflow.org/

[98] T. Jackson, C. Wimmer, and M. Franz, “Multi-variant program
execution for vulnerability detection and analysis,” in Proceedings
of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, 2010, pp. 1–4.

[99] T. Jackson, B. Salamat, G. Wagner, C. Wimmer, and M. Franz,
“On the effectiveness of multi-variant program execution for
vulnerability detection and prevention,” in Proceedings of the 6th
International Workshop on Security Measurements and Metrics, 2010,
pp. 1–8.

[100] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis
for malware detection,” in Twenty-third annual computer security
applications conference (ACSAC 2007). IEEE, 2007, pp. 421–430.

[101] D. Li, Q. Li, Y. Ye, and S. Xu, “A framework for enhancing deep
neural networks against adversarial malware,” IEEE Transactions
on Network Science and Engineering, vol. 8, no. 1, pp. 736–750, 2021.

[102] Z. Abaid, M. A. Kaafar, and S. Jha, “Quantifying the impact of
adversarial evasion attacks on machine learning based android
malware classifiers,” in 2017 IEEE 16th International Symposium
on Network Computing and Applications (NCA), 2017, pp. 1–10.

[103] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a
simple and accurate method to fool deep neural networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2574–2582.

[104] J. Dhaliwal and S. Shintre, “Gradient similarity: An explainable
approach to detect adversarial attacks against deep learning,”
arXiv preprint arXiv:1806.10707, 2018.

[105] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard,
“Universal adversarial perturbations,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp.
1765–1773.

[106] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model com-
pression,” in Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2006, pp. 535–
541.

[107] S. Buschjager, K.-H. Chen, J.-J. Chen, and K. Morik, “Realization
of random forest for real-time evaluation through tree framing,”
in 2018 IEEE International Conference on Data Mining (ICDM), 2018,
pp. 19–28.

[108] C. Tang, D. Garreau, and U. von Luxburg, “When do random
forests fail?” in NeurIPS, 2018, pp. 2987–2997.

https://www.gurobi.com
https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/

18

APPENDIX A
ARCHITECTURE OF VANILLA MODELS

The following vanilla models are used in some instances
(Section 5).

Model Parameters
Decision Tree max depth=5, min samples leaf=1

Neural Network 4 fully-connected layers (128 (Relu),
64 (Relu), 32 (Relu), 2 (Softmax))

Random Forest max depth=100
Support Vector Machine LinearSVC with probability enabled

TABLE 6: Architectures of vanilla models.

APPENDIX B
STRATDEF STRATEGIES

5 attacker types, 2 datasets and 6 StratDef configurations,
leads to 60 strategy vectors. For brevity, we only include
some examples of the StratDef strategies for both datasets.
For each strategy vector, the rows correspond to the models
selected through our model selection methods (Best & Va-
riety). Within each row, the probability of that model being
selected at a particular attack intensity is listed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DT-AT-0.01 0 0 0 0 0 0 0 0 0 0 0
DT-AT-0.1 0 0 0 0 0 0.985507 0.985507 0.985507 0.985507 0.985507 0.985507
DT-RFN 0 0 0 0.510791 0.510791 0.014493 0.014493 0.014493 0.014493 0.014493 0.014493
NN-RFN 0 0 0 0 0 0 0 0 0 0 0
RF 0 0 0 0 0 0 0 0 0 0 0
RF-AT-0.25 1 1 1 0.489209 0.489209 0 0 0 0 0 0
RF-RFN 0 0 0 0 0 0 0 0 0 0 0
SECSVM-AT-0.25 0 0 0 0 0 0 0 0 0 0 0
SVM 0 0 0 0 0 0 0 0 0 0 0

TABLE 7: DREBIN, StratDef-Best-GT, Strong attacker

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DT-AT-0.01 0 0 0 0 0 0 0 0 0 0 0
DT-AT-0.1 0 0 0.133333 0.133333 0.266667 0.266667 0.266667 0.266667 0.333333 0.333333 0.333333
DT-RFN 0 0 0 0 0.066667 0.066667 0.066667 0.066667 0.066667 0.066667 0.2
NN-RFN 0 0.066667 0 0 0 0 0 0 0 0 0
RF 0 0.266667 0.2 0.266667 0.2 0.2 0.2 0.133333 0.2 0.133333 0.066667
RF-AT-0.25 1 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.266667 0.266667 0.266667
RF-RFN 0 0.2 0.266667 0.2 0.133333 0.133333 0.133333 0.2 0.133333 0.2 0.133333
SECSVM-AT-0.25 0 0.133333 0.066667 0.066667 0 0 0 0 0 0 0
SVM 0 0 0 0 0 0 0 0 0 0 0

TABLE 8: DREBIN, StratDef-Best-Ranked, Strong attacker

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DT AT 0.01 0 0 0 0 0 0 0 0 0 0 0
DT AT 0.1 0 0 0 0 0 0 0.890756 0.890756 0.890756 0.890756 0.897638
DT AT 0.25 0 0 0 0 0 0 0 0 0 0 0
NN 0 0 0 0 0 0 0 0 0 0 0
NN AT 0.25 0 0 0 0 0 0 0 0 0 0 0.102362
RF AT 0.25 1 1 1 1 1 1 0.109244 0.109244 0.109244 0.109244 0
SECSVM AT 0.05 0 0 0 0 0 0 0 0 0 0 0
SECSVM AT 0.25 0 0 0 0 0 0 0 0 0 0 0
SVM 0 0 0 0 0 0 0 0 0 0 0

TABLE 9: DREBIN, StratDef-Variety-GT, Weak attacker

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DT AT 0.01 0 0 0 0 0 0 0 0 0 0 0
DT AT 0.1 0 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
NN AT 0.25 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
NN RFN 0 0.2 0 0 0 0 0 0 0 0 0
RF AT 0.25 1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
SECSVM AT 0.25 0 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
SVM 0 0 0 0 0 0 0 0 0 0 0

TABLE 10: DREBIN, StratDef-Variety-Ranked, Random at-
tacker

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DT AT 0.1 0 0 0 0 0 0 0 0 0 0 0
DT AT 0.25 0 0 0 0 0 0 0 0 0 0 0
NN 1 0 0 0 0 0 0 0 0 0 0
NN AT 0.01 0 0 0 0 0 0 0 0 0 0 0
NN AT 0.1 0 0 0 0 0 0 0 0 0 0 0
NN AT 0.25 0 0 0 0 0 0 0 0 0 0 0.333333
RF 0 0 0 0 0 0 0 0 0 0 0
RF AT 0.1 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.333333
RF AT 0.25 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.333333
RF RFN 0 0 0 0 0 0 0 0 0 0 0
SECSVM AT 0.1 0 0 0 0 0 0 0 0 0 0 0
SECSVM AT 0.25 0 0 0 0 0 0 0 0 0 0 0

TABLE 11: SLEIPNIR, StratDef-Best-GT, Medium attacker

APPENDIX C
FPR OF MAJORITY VOTING VS. VETO VOTING

DREBIN SLEIPNIR

10

20

FP
R

(%
)

Voting-Variety-Majority

Voting-Variety-Veto

Fig. 10: Average FPR of Voting-Variety-Majority & Voting-
Variety-Veto against the strong attacker across intensities.

APPENDIX D
EXTENDED RESULTS

The extended results are located in the follow-
ing repository: https://osf.io/93yzt/?view only=
bac46b0ab58b42758a133ac48f36b017

Note that AUC and FPR require two classes. At ↵ = 1,
there is only one class (malware) and therefore the values of
these metrics are undefined or “nan” at this attack intensity.
If these metrics are used in the consideration score, for ↵ =
1, we use average value of these metrics across all other
attack intensities instead.

https://osf.io/93yzt/?view_only=bac46b0ab58b42758a133ac48f36b017
https://osf.io/93yzt/?view_only=bac46b0ab58b42758a133ac48f36b017

	1 Introduction
	2 Background & related work
	3 Threat Model
	4 StratDef
	4.1 What to Move: Phase 1 — Model Generation
	4.2 What to Move: Phase 2 — Model Selection
	4.3 How to Move: Devising a Strategy
	4.4 When to Move: Making a Prediction

	5 Experimental Setup
	5.1 Datasets
	5.2 Training Models & Defenses
	5.3 Practical Considerations & Characteristics of Adversarial Examples
	5.4 Procedure for Generating Adversarial Examples
	5.5 Modelling Gray-Box Attacker Profiles

	6 Evaluation
	6.1 Performance of StratDef
	6.2 StratDef vs. Other Defenses
	6.3 Efficiency of StratDef
	6.4 StratDef vs. UAPs
	6.5 StratDef vs. Black-box Attacks

	7 Discussion & Limitations
	8 Conclusion
	References
	Appendix A: Architecture of vanilla models
	Appendix B: StratDef strategies
	Appendix C: FPR of majority voting vs. veto voting
	Appendix D: Extended results

