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The outstanding performance of deep neural networks has promoted deep learning applications in a broad
set of domains. However, the potential risks caused by adversarial samples have hindered the large-scale
deployment of deep learning. In these scenarios, adversarial perturbations, imperceptible to human eyes,
signi!cantly decrease the model’s !nal performance. Many papers have been published on adversarial attacks
and their countermeasures in the realm of deep learning. Most focus on evasion attacks, where the adversarial
examples are found at test time, as opposed to poisoning attacks where poisoned data is inserted into the
training data. Further, it is di"cult to evaluate the real threat of adversarial attacks or the robustness of a
deep learning model, as there are no standard evaluation methods. Hence, with this article, we review the
literature to date. Additionally, we attempt to o#er the !rst analysis framework for a systematic understanding
of adversarial attacks. The framework is built from the perspective of cybersecurity to provide a lifecycle for
adversarial attacks and defenses.
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1 INTRODUCTION
Machine learning techniques have been applied to a broad range of scenarios and have achieved
widespread success, especially for deep learning, which is fast becoming a key instrument in
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various tasks. However, in many scenarios, the failure of a machine learning or deep learning
model can cause serious safety problems. For example, in autonomous vehicles, failure to recog-
nize a tra"c sign could lead to a severe accident [1]. Hence, it is critical to train an accurate and
stable model before it is deployed on a large scale. Unfortunately, in recent years, many studies
have revealed a disappointing phenomenon in model security in that deep learning models might
be vulnerable to the adversarial examples, i.e., samples that have been perturbed by an adversary
maliciously. With high probability, models that have been tampered with in this way will produce
wrong predictions, even though they may show high accuracy with benign samples [2–5]. Adver-
sarial attacks can then be broadly de!ned as a class of attacks that aim to fool a machine learning
model by inserting adversarial examples into either the training phase, known as a poisoning at-
tack [6–8], or the inference phase, called an evasion attack [2, 3]. Either attack will signi!cantly
decrease the robustness of the deep learning models and raise the model security problems. More-
over, the vulnerabilities of deep learning solutions beset with this model security problem have
been recently uncovered in the real world, which has led to the concerns over how much we can
trust deep learning technologies.

Due to the diversity of potential threats about privacy and security in the practical applications
of deep learning techniques, more and more organizations, such as ISO, IEEE, and NIST, are partici-
pating in the process of standardizing arti!cial intelligence. For some countries, this undertaking is
considered to be akin to the construction of new infrastructure in some countries [9]. The ISO has
proposed a project concerning the lifecycle of AI systems, which divides the technology’s lifecy-
cle into eight stages, including initialization, design and development, inspection and veri!cation,
deployment, operation monitoring, continuous veri!cation, re-evaluation, and abandonment [10].
What is not further addressed in this cycle is how adversarial attacks are hindering the commercial
deployment of deep learning models. For this reason, evaluating the threats to model security is
a critical component in the lifecycle of an AI project. And, further, given the fragmented, inde-
pendent, and diverse nature of possible adversarial attacks and defenses, how a model’s security
threats are analyzed should also be standardized. What is urgently needed is a risk map to help ac-
curately determine the multiple types of risks at each stage of a project’s lifecycle. More seriously,
the defense of the attacks is still in the early stage, so more sophisticated analysis technology is
highly required.

Some surveys related to adversarial machine learning have been published in recent years.
Chakraborty et al. [11] described the catastrophic consequences of adversarial examples in
security-related environments and review some strong countermeasures. However, their conclu-
sions showed that none of them can act as a panacea for all challenges. Hu et al. [12] !rst introduced
the lifecycle of an AI-based system, which is used to analyze the security threats and research ad-
vances at each stage. Adversarial attacks are allocated into training and inference phases. Serban
et al. [13] and Machado et al. [14] reviewed existing works about adversarial machine learning
in object recognition and image classi!cation, respectively, and summarized the reasons why ad-
versarial examples exist. Serban et al. [13] also described the transferability of adversarial exam-
ples between di#erent models. Similar to Reference [14] providing relevant guidance to devise the
defenses, Zhang et al. [15] also provided a comprehensive survey on relevant works from the de-
fender’s perspective and the summarized hypotheses of the origin of adversarial examples for deep
neural networks. There are also some surveys regarding the applications of adversarial machine
learning to speci!c domains such as recommender systems [16], cybersecurity domain [17], and
medical systems [18].

It has previously been observed that, in the cybersecurity context, Advanced Persistent
Threats (APT) are usually highly organized and have an extremely high likelihood of success
[19]. Take Stuxnet, for example—this is one of the most famous APT attacks. It was launched
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in 2009 and took down Iran’s nuclear weapon program [19]. The work$ow of APT considers the
security problems systematically, which allows APT-related technologies to both achieve outstand-
ing success rate, i.e., to bypass those defenses, and to evaluate the security of the system with a
high degree of e"cacy. Inspired by the work$ow of APT, we have applied this systematic anal-
ysis tool to cybersecurity problems as a potential way to analyze the threats of an adversarial
attack.

APTs mainly consist of multiple types of existing underlying cyberspace attacks (such as SQL
injection and malware). The combined strategies of di#erent kinds of underlying attacks and their
!ve-stage work$ow mean APTs enjoy extremely high success rates compared to that of a sin-
gle attack. Interestingly, however, it is possible to neatly !t the existing adversarial attacks into
those !ve stages according to their attack strategies. Based on this observation, we !nd that a
work$ow similar to the APT works when evaluating the threat of adversarial attacks. Thus, this
forms the basis of our analysis and countermeasures framework. Though some review papers have
summarized works in model security, the attack methods or defenses are still generally classi!ed
into dependent and segmented classes. This means the relationships between di#erent approaches
have not been identi!ed clearly. In this article, we provide a comprehensive and systematic review
of the existing adversarial attacks and defenses systematically from the perspective of APT. Our
contributions can be itemized as follows:
• We provide a novel cybersecurity perspective to investigate the security issues of deep learn-

ing. For the !rst time, we propose to incorporate the APT concept into the analysis of ad-
versarial attacks and defenses in deep learning. The result is a standard APT-like analysis
framework for model security. Unlike previous surveys conducted with a partial focus on,
say, mechanisms [13, 20], threat models [21], or scenarios [22], our work can o#er a global
and system-level view for understanding and studying this problem. Speci!cally, previous
studies tend to discuss the methods with similar strategies in groups. Adversarial attacks
with di#erent strategies are studied separately, which ignores the relationship between at-
tacks falling into di#erent groups. Instead, our work regards adversarial attacks as a global
system, and each group of attacks with similar strategies is just a part of this global sys-
tem. Similar to cybersecurity, considering the relationship between di#erent groups can help
boost the e#ectiveness of attacks further.
• Based on the APT-like analysis framework, we performed a systematic review regarding

existing adversarial attack methods. In line with the logic of APT, adversarial attacks can
be clearly classi!ed into !ve stages. In each stage, the common essential components and
short-term objectives are identi!ed, which help to improve the attacking performance in a
in-depth order.
• We also reviewed the defenses against adversarial attacks within the APT-like analysis frame-

work. Likewise, defenses are divided into !ve stages, providing a top-down sequence to elim-
inate the threats of adversarial examples. Relationships between defensive methods at di#er-
ent stages can be identi!ed, motivating a possible strategy of combining multiple defenses
to provide higher robustness for deep learning models.
• We summarized the hypotheses for the existence of adversarial examples from the perspec-

tive of data and models, respectively, and provided a comprehensive introduction of com-
monly used datasets in adversarial machine learning.

We hope this work will inspire other researchers to view the model security risks (and even
privacy threats) at the system level and to evaluate those risks globally. If a standard can be estab-
lished, then the various properties, such as the robustness, could be accessed more accurately and
in less time. As a result, con!dence in deep learning models would increase for their users.
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Fig. 1. The general workflow of a deep learning system. In the training phase, parameters θ are updated
iteratively based on training data. A"er ge!ing optimal parameters θ!, input would be fed into the trained
model in the inference phase, which will provide a corresponding output for decision.

2 PRELIMINARY
2.1 Deep Learning as a System
Deep learning refers to a set of machine learning algorithms built on deep neural networks
(DNNs) and has been widely applied in tasks such as prediction and classi!cation [21]. DNNs are
a kind of mathematical model comprising multiple layers with a large number of computational
neurons and nonlinear activation functions. The work$ow of a typical deep learning system in-
cludes two phases: the training phase and the inference phase. The detailed processes of the two
phases are shown as follows, as well as in Figure 1:

(1) In the training phase, the parameters of the DNN are updated continuously through iterative
feedforwards and backpropagations. The gradient descending direction in backpropagation
is guided by optimizing the loss function, which quanti!es the error between the predicted
label and the ground-truth label. Speci!cally, given a input space X and a label spaceY , the
optimal parameters θ! of the DNN f are expected to minimize the loss function L on the
training dataset (X,Y ). Therefore, the training process to !nd the optimal θ! can be de!ned
as:

θ! = arg min
θ

∑

xi ∈X,yi ∈Y
L ( fθ (xi ),yi ),

where fθ is the DNN model to be trained; xi ∈ X is a data instance sampled from the training
dataset, and yi and fθ (xi ) indicate the corresponding ground-truth label and the predicted
label, respectively.

(2) In the inference phase, the trained models f !θ with !xed optimal parameters θ! are applied
to provide decisions on unseen inputs that are not included in the training dataset. Given
an unseen input x j , the corresponding model decision yj (i.e., the predicted label of x j ) can
be computed through a single feedforward process: yj = f !θ (x j ). It is worth noting that
a successful adversarial attack often results in a manipulated prediction ŷ in the inference
phase, which could be far from the correct label of x j .
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Fig. 2. Threat models in adversarial a!acks, with illustrating the adversary’s goal, the adversarial specificity
and the adversary’s knowledge. Poisoning a!acks target the training phase (on the le" side of the figure).
The adversary’s knowledge is also illustrated in the middle, while the right side shows an example result of
adversarial specificity, where targeted a!acks have more rigorous requirements for success, i.e., the desired
output is a fixed label.

2.2 Threat Models against DNN
To classify these attacks, we have speci!ed the threat model against DNN by introducing the crit-
ical components of the model attacks. The threat is decomposed into three dimensions: the adver-
sary’s goal, the adversarial speci!city, and the adversary’s knowledge. These three dimensions can
help us identify potential risks and understand the attacking behaviors in the adversarial attack
setting. In Figure 2, we provide an overview of the threat models in adversarial attacks.

2.2.1 Adversary’s Goal.

• Poisoning Attacks. In poisoning attacks, the attackers can access and modify the training
dataset to impact the !nal trained models [23–26]. The way that the attackers inject fake
samples into the training data to generate a defective model can be viewed as “poisoning.”
Poisoning attacks generally lead to a decrease of accuracy [25] or misclassi!cation on the
given test samples [26].
• Evasion Attacks. In evasion attacks, the adversary’s goal is to attack a well-trained and

!xed DNN without any authority to modify the parameters of the target models [13, 18, 23].
In this way, the accessibility of the training dataset is no longer needed by the attackers.
Instead, the attackers generate deceptive test samples that the target models fail to recognize
to evade !nal detection [27, 28].

2.2.2 Adversarial Specificity. The di#erence in adversarial speci!city depends on whether the
attacker can prede!ne a speci!c fraudulent prediction for a given adversarial sample at the infer-
ence phase.
• Untargeted Attacks. In untargeted attacks, the adversary’s only purpose is to fool the tar-

get model into generating a false prediction without caring for which label is chosen as the
!nal output [29–32].
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• Targeted Attacks. In targeted attacks, for a given sample, the attacker not only wants the
target model to make an incorrect prediction, but also aims to induce the model to provide
a speci!c false prediction [33–36]. Generally, targeted attacks do not succeed as often as an
untargeted one.

2.2.3 Adversary’s Knowledge.

• White-box Attacks. In white-box settings, the adversary is able to access the details
of the target model, including structure information, gradients, and all possible parame-
ters [30, 34, 37]. The adversary thus can craft elaborate adversarial samples by exploiting
all the information at hand.
• Black-box Attacks. In black-box settings, attackers implement attacks without any knowl-

edge of the target model. An attacker can acquire some information by interacting with the
target model [36, 38, 39]. This is done by feeding input query samples into the model and
analyzing the corresponding outputs.

2.3 Adversarial A!ack
2.3.1 Evasion A!acks. Szegedy et al. [2] !rst introduced the concept of adversarial example in

adversarial attacks, which can mislead the target model with a high success rate in the inference
phase. They proposed a method to search for minimal distorted adversarial examples with the
targeted label through Equation (1):

minimize !!x ′ − x!!2
2 subject to f (x ′) = t and x ′ ∈ [0, 1]m . (1)

Through this equation, they can !nd the closest x ′ that has a minimal distance with benign
sample x by minimizing ‖x ′ − x ‖22 and would be misclassi!ed as targeted label t by the condition
of f (x ′) = t . This problem can lead to the objective in Equation (2), which can be solved by L-BFGS
algorithms:

minimize c !!x ′ − x!!2
2 + L ( f (x ′), t ) subject to x ′ ∈ [0, 1]m . (2)

Evasion attacks can be loosely described as methods of crafting adversarial examples by adding
imperceptible perturbations, which can result in the misbehavior of trained models.

2.3.2 Poisoning A!acks. Unlike evasion attacks happening in the inference attacks, poisoning
attacks aim to downgrade the accuracy of models by polluting the training data. Attackers need
some authorities to manipulate the training data, such as data injection and data modi!cation [11].
As a result, the goals of launching poisoning attacks can be categorized into two classes: avail-
ability violation and integrity violation. The former aims to reduce the con!dence or accuracy
of victim model and disrupt the entire system, while the latter tries to mislead the victim model
over some speci!c samples by introducing a backdoor without a#ecting other normal samples [11].
Speci!cally, the poisoned instances against neural networks only involving training samples can
be crafted via following two strategies: bi-level optimization and feature collision [23].
• Bi-level optimization: Classical data poisoning of modifying the data can be formalized

as a bi-level optimization problem [23]. However, for non-convex neural networks, bi-level
optimization problems are intractable. Muñoz-González et al. [24] proposed “back-gradient
descent” to approximate solutions of the inner problem and then conduct gradient descent
on the outer loss, although it is still computationally expensive. To speed up the produc-
tion of poisoned samples, Yang et al. [25] introduced GAN to generate poisons. MetaPoison
et al. [26] is also proposed as a !rst-order method to approximately solve the bi-level opti-
mization of producing poisons using the ensembling strategies.
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• Feature collision: Methods based on bi-level optimization usually are e#ective against both
transfer learning and end-to-end training, while feature collision strategy can be used to
design e"cient attacks against transfer learning in the targeted misclassi!cation setting. For
instance, Shafahi et al. [40] developed a method to generate the poisoning sample similar to
the target samples in the feature space, while it is close to the original benign sample in
the input space. These two categories of methods only require permission to manipulate the
training instead of the label, and the semantic of training data will remain. These poisoned
samples with clean-label will be more di"cult to be detected.

Moreover, in addition to poisoning attacks only manipulating training data, another type of
poisoning attacks are backdoor attacks, which need the additional capacity of inserting trigger to
the input in inference phase [23].
• Backdoor attacks: Adversaries in backdoor attacks usually have access to modify the label

of training samples [41]. These mislabeled data with backdoor triggers will be injected into
training dataset. As a result, the trained model based on this dataset will be forced to assign
the new sample (with the trigger) the desired target label. Most backdoor attacks require
mislabeling the training samples in the process of crafting poisons, which are more likely
to be identi!ed by defenders. Therefore, some clean-label backdoor attacks [42] are also
proposed and craft the backdoor samples using the strategy of feature collision presented
in Reference [40].

2.4 Advanced Persistent Threats
Advanced persistent threats (APTs) are a series of new de!ned attack process, in which the
attacks are continuous for a long period, such as over years. The work$ow of analyzing APTs
forms the basis of our analysis framework for adversarial attacks and defenses.

2.4.1 What is APT.

— Advanced: APTs are conducted by a group of advanced attackers who are sponsored by some
well-established organizations and have access to sophisticated, advanced tools. Conversely,
traditional attacks are often performed by a regular attacker.

— Persistent: APT attacks generally have long-term goals, and they do not give up on them
easily, whereas in traditional attacks, the attackers might choose to quit or change the targets
if they encounter seemingly intractable defenses. Further, in APT the attacks are usually
sustained for an extended period.

— Threat: The threats in APT tend to have little correlation to !nancial gain, but much to
do with competitive advantages and strategic bene!ts, such as the loss of sensitive data or
impediments to critical components.

2.4.2 Lifecycle in APT. To attack the target successfully, the attackers in APT need to go through
a complete lifecycle with multiple stages in a sequential manner. There are several di#erent forms
of this lifecycle that vary depending on di#erent considerations with respect to generalization or
speci!cation. We selected a representative !ve-stage APT lifecycle model with the goal to under-
mine critical infrastructure [19]. These stages are as follows.

— Stage 1: Reconnaissance. As the !rst step of attack, the goal of the reconnaissance phase is
to learn about the target organization extensively and to gather extensive information that
can help the attackers to !nd the weaknesses in the targets, such as the habits of employees
or their favorite websites. The more attackers can understand their targets, the better their
success rate.
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— Stage 2: Establish Foothold. In this phase, the adversaries use the information from the previ-
ous stage, Reconnaissance, to exploit vulnerabilities in the target system, such as software
bugs or known application vulnerabilities exposed from the well-known vulnerability data-
base. Malware, Spear-phishing, and Watering-hole Attack are usually used in this stage.

— Stage 3: Lateral Movement. After the attackers have gained access to the target system, they
can try to spread themselves to other systems within the same internal environment via
malware or privilege escalation. In this phase, attackers aim to transfer their foothold to
other systems to achieve further goals.

— Stage 4: Impediment. This phase is characterized by actions to undermine the essential compo-
nents of the target. That is to say, attackers start to implement actions in this stage, bringing
substantial impacts on the target.

— Stage 5: Post-impediment. Attackers can continue imposing impediments until the full attack
is lifted, which is viewed as one of the actions in Post-impediment. In addition, attackers can
delete evidence, such as installed tools and logs for clean exit.

3 ADVERSARIAL ATTACKS
Adversarial attacks present new challenges to deploying deep learning on a large scale. Many re-
search studies have embarked on this journey in recent years. APTs o#er a systematical framework
for modeling the process of cyber attacks and capturing the real features of di#erent attacks and
their inter-relations. We are also interested in understanding the threats of adversarial samples
from the cybersecurity perspective. However, the present taxonomies of adversarial attacks are of-
ten decided according to individual strategies, while neglecting the relationships between di#erent
attacks from a global view. Inspired by APTs, we propose an analysis framework for adversarial
attacks that could help to establish a standard in understanding the security problems of deep
learning systems. Speci!cally, we de!ned a lifecycle for adversarial attacks comprising !ve stages
based on the di#erent attack objectives. The logic of this framework aligns with the APT lifecycle.

3.1 Overview: APT-like A!ack Lifecycle
For a systematic understanding of adversarial attacks and to achieve better attacking performance,
we need a standard analysis framework through which to explore the vulnerabilities of a deep
learning system against adversarial samples. What follows is a !ve-stage lifecycle of an adversarial
attack based on the APT lifecycle. And the methods and objectives in di#erent stages are outlined
as follows:
• Stage 1: Vulnerability analysis. The !rst stage contains methods to theoretically analyze

the risks of adversarial examples, which shares a similar goal with the Reconnaissance stage
of APT—that is, improving the success rate of attacks by learning more knowledge about the
target. In an APT, scanning and social engineering methods can be used to help explore the
weaknesses in the target system [19].

Likewise, the robustness can be one of the potential vulnerabilities due to the poor inter-
pretability of DNNs [43]. In the !rst stage of adversarial attacks, adversaries will conduct a
theoretical analysis to investigate the intrinsic sensitivity of DNNs to perturbations [5, 44],
understand which factors will in$uence robustness, and the reasons why a DNN is not ro-
bust [45]. Such an analysis can help improve the design of attack methods by exploiting the
tensions between standard accuracy and network robustness.
• Stage 2: Crafting. Methods utilizing the information from Stage 1 to design general attacks

regardless of the target model’s structure fall into Stage 2, Crafting. These methods also
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share a similar goal with the second stage of APT (Establish Foothold), conducting attacks
(like Malware and Spear-phishing) to obtain an entry to the target system based on the in-
formation collected in the previous stage [19], which is essential to further impose advanced
attacks.

In this stage, some general and fundamental attacks exploiting the unavoidable vulnerabil-
ities of DNNs can be performed based on the exploration in Stage 1. Methods in the crafting
stage focusing on the generation of adversarial samples from scratch [2, 46] can be treated
as the “successful entry” to the target DNNs, while attacks in the next stage, Post-crafting,
are designed to further increase the success rate of general attacks or achieve more natural
adversarial examples, instead of simply crafting.
• Stage 3: Post-crafting. The third stage in adversarial attacks, Post-crafting, simulates the

process of the “Lateral Movement” stage in the APT lifecycle where the foothold is expanded
to other machines within the target system due to privilege escalation and search for critical
components or data [19]. In both APT and adversarial attacks, these methods in this stage
can be considered as advanced attacks based on existing “successful entry.”

Post-crafting includes “advanced” attacks working well with only black-box access to
DNNs [36, 39] or other attacks considering model-speci!c features (like the structure of
GNN) [47]. They can be thought of as extensions to the general attacks in stage Crafting.
Transferability means a black-box attack will generally have a high success rate on unknown
DNN [8] and impact more legitimate examples [48]. Model-speci!c features can empower
attackers to design successful attacks in more challenging scenarios [49].
• Stage 4: Practical Application. This stage is similar to the Impediment stage of the APT

lifecycle [19], as both aim to launch attacks in practical applications, overcome potential
problems hindering a successful attack in the real world, and cause actual impacts on the
target.

The adversarial attacks in this stage will deal with some practical applications in both the
digital space and the real world, considering the speci!c features of di#erent domains [35, 50]
to further increase an attack’s chances of success. The “robustness” of adversarial samples
against complex practical environments (such as the noises) will be improved further [51].
• Stage 5: Revisiting Imperceptibility. In the !nal stage of an APT, the adversary erases

the evidence of attacks to avoid exposing the traces of attackers and sponsors [19]. Similarly,
the attackers in adversarial attacks also desire to stay undetectable at all times.

In adversarial settings for DNNs, the goal of the adversarial samples is not just to fool
the target model, but to ensure the distortions remain imperceptible to humans, which is
another underlying requirement for the e"cacy of evasion [52]. Otherwise, these perturbed
examples might be recognized and discarded by the user of the victim model. Therefore,
the !nal stage of adversarial attacks is Revisiting Imperceptibility, where the objective is to
minimize the distortions added while maintaining the attack’s success rate [53, 54].

The correspondences between the stages of our framework for adversarial attacks/defenses (see
Section 4) and the APT framework are illustrated in Table 1 in an intuitive way. The second column
and third column represent the lifecycle with !ve stages of APT and that of adversarial attacks,
respectively. In each row, methods from these two domains will share the similar short-term goals
in their lifecycle.

By studying the features and ideas of di#erent adversarial attacks, we can catalog the various
adversarial attack methods ranging from theoretical analysis to practical application based on our
framework and compose our work$ow for increasing the success rate of attacks or broadening the
scope of attacks. In the remainder of this section, we review the literature pertinent to each of the
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Table 1. Mapping from Five Stages of APT to that of Adversarial A!acks and Defenses

Stage APT Adversarial Attacks Adversarial Defenses
Stage 1 Reconnaissance → Vulnerability Analysis Robustness Certi!cation
Stage 2 Establish Foothold → Crafting: Underlying Attack Anti-Crafting: Training-based Defenses
Stage 3 Lateral Movement → Post-crafting: Advanced Attacks Post-crafting: Puri!cation Defenses
Stage 4 Impediment → Practical Application Application speci!c Defenses
Stage 5 Post-Impediment → Revisit Imperceptibility Detection Defenses

The second column refers to the lifecycle with !ve stages of APT. Similarly, the third column and fourth column
represent the lifecycle of adversarial attacks and adversarial defenses, respectively. In each row (i.e., one speci!c stage),
methods from di#erent domains share the similar objective. For example, in Stage 1, Reconnaissance aims to scan the
vulnerabilities of target system for further attacks, while attackers in adversarial settings try to explore the potential
sensitivity of DNNs for perturbations. Additionally, defenses in Stage 1 aim to eliminate the vulnerabilities that can be
exploited by adversaries in the reconnaissance.

!ve stages of the attack lifecycle. Unlike previously published reviews of adversarial attacks, we
are the !rst attempt to identify a lifecycle for adversarial attacks in deep learning. A summary is
shown in Figure 3 with the goals of the di#erent stages listed in the last column.

3.2 Stage 1 - Vulnerability Analysis
Most researchers focus on devising attacks that directly and e#ectively craft adversarial examples.
By contrast, few approaches have been developed to quantify the vulnerabilities of adversarial
examples, such as a comprehensive measure of robustness, which can be regarded as the power of
adversarial examples for one DNN model.

Mahloujifar et al. [45] are interested in the intrinsic nature of robustness and factors that in-
$uence it. They investigated why it is challenging to make machine learning models robust. They
performed a theoretical analysis for robustness in machine learning classi!ers, demonstrating their
conclusions that connect robustness and the phenomenon of “concentration of measure” in met-
ric. That is, for any classi!cation model with some initial constant error, if the concentrated metric
probability spaces are used, such as Lévy instance spaces, then the model is inherently vulnerable
to adversarial perturbations.

Tsipras et al. [5] point to the inherent tension between the standard accuracy and robustness
against adversarial perturbations of models. As a complement to Reference [5] and Ding et al. [44]
have shown that there are di#erent levels of tradeo#s between clean accuracy and adversarial
robustness, which depend on the characteristics of the input data distribution. Based on the con-
clusions of Tsipras et al. [5] and Ilyas et al. [55] also explored the robust features and non-robust
features. They considered non-robust features to be one class of features, which are highly predic-
tive but brittle.

Discussion. The vulnerability of DNNs against adversarial examples might be caused by prop-
erties of models or data. For example, the metrics used in the training [45] or the di#erent goals
of standard generalization and adversarial robustness [5] would cause constraints for robustness
from the perspective of models. In addition, non-robust features [55] might lead to brittle DNNs
from the data perspective. Neither of them might be the only cause of this vulnerability. However,
it is possible to design e#ective attacks based on any possible hypothesis. And the details about
the hypotheses for existence of adversarial examples are discussed in Section 5.

3.3 Stage 2 - Cra"ing: General A!acks
In this section, our review begins with a brief description of some seminal works, even though
they have been described many times in other surveys, such as References [20, 21]. Subsequently,
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Fig. 3. The five stages of the lifecycle of adversarial a!acks are demonstrated here. The component in the
second column refers to the types of critical methods used in each stage. And the objective of each stage is
summarized in the last column.

we will also illustrate some state-of-the-art general attack approaches, which provide a direc-
tion for studying general adversarial attacks. Because numerous relevant works have been pub-
lished recently, this section is divided into three categories further according to their strategies:
Optimization-based Attacks, Gradient-based Attacks, and GAN-based Attacks.

3.3.1 Optimization-based A!acks. As mentioned above, Szegedy et al. [2] !rst introduced an
attack scheme, L-BFGS Attack, against DNNs in 2014. This is widely considered the !rst study on
adversarial attacks in deep learning. Their work formulated how to craft a sample for a targeted
label as a searching problem for a minimal distorted adversarial example x ′. To further improve the
performance of the L-BFGS method, Carlini and Wagner [33] proposed a set of optimization-based
attacks, termed the Carlini and Wagner (C&W) attacks. Unlike the L-BFGS attack relying on a
cross-entropy lossL ( f (x ), t ), C&W attacks involves a margin lossLm ( f (x ), t ) as the loss function,
which can be customized by attackers. Several di#erent distance measures D (·) including L0, L2,
and L∞ norm can be used by attackers in C&W attacks.

To reduce the size of L2 distortion and improve the imperceptibility between original samples
and the adversarial samples in classi!cation models, Moosavi-Dezfooli et al. [30] proposed an at-
tack algorithm named DeepFool. However, few works have designed algorithms using the L1 met-
ric to craft adversarial samples, though the L1 distortion is a distance metric that can account for
the total variation. Chen et al. [56] proposed an Elastic-net attack against DNNs (EAD), which
was the !rst to introduce the L1 norm into an adversarial attack. Their optimization problem is
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shown in Equation (3), where L ( f (x ′), t ) is the target adversarial loss function, and the additional
two terms are used to minimize the perturbation in terms of L1 and L2 distance in searching:

minimize c · L ( f (x ′), t ) + β !!x ′ − x!!1 + !!x ′ − x!!2
2 subject to x ′ ∈ [0, 1]m . (3)

The algorithms mentioned above chose the Lp norm to evaluate the perturbations. By contrast,
Zhao et al. [29] used information geometry to understand the vulnerabilities of DNNs to adver-
sarial attacks. They formalized the optimization problem as a constrained quadratic form of the
Fisher Information Metric (FIM) and presented this novel attack algorithm named one-step
spectral attack (OSSA) as a way of computing the optimal perturbations with the !rst eigenvec-
tor. Zhang et al. [57] proposed blind-spots attacks, which !nd some inputs that are far enough
from the existing training distribution to fool the target model, because they discovered the adver-
sarially trained network gradually loses its robustness on these data.

3.3.2 Gradient-based A!acks. Although optimization-based L-BFGS attacks achieve high mis-
classi!cation rates, an expensive linear search method is needed to !nd optimal hyperparameter c
in Equation (2), which has a high computational cost. Thus, Goodfellow et al. [46] proposed a fast
one-step method of generating adversarial perturbations called FGSM. This algorithm is described
in Equation (4), where siдn(·) is the signum function and 'x (L ( f (x ),y)) represents the gradient
of loss w.r.t. x :

∆x = ϵ · sign('x (L ( f (x ),y))). (4)
Because FGSM computes the perturbation with only one backpropagation step of calculating

the gradient, it is much quicker at !nding adversarial samples than L-BFGS attacks. However,
FGSM has a low success rate. To address this shortcoming, Kurakin et al. [4] proposed an iterative
version, Basic Iterative Method (BIM). To constrain the adversarial perturbations, BIM adds
a clip function (Equation (5)), such that the generated sample is located in the ϵ − L∞ ball of
the benign image, where x ′i is the intermediate result in ith iteration, and α is the size of the
perturbation. In addition to BIM, Dong et al. introduced a momentum optimizer to optimize BIM,
which is called momentum iterative FGSM (MI-FGSM) [58]. Madry et al. [3] presented the
Projected Gradient Descent (PGD) attack. PGD replaces the Clip function in BIM with the Proj
function, which is one of the strongest attacks that use the !rst-order information of target models.

x ′i+1 = Clip{x ′i + α · sign('x (L ( f (x ′i ),y)))} (5)
Papernot et al. [34] proposed a targeted attack focusing on the perturbations under an L0 dis-

tance metric, called Jacobian-based Saliency Map Approach (JSMA). A Jacobian matrix is used
to determine which element is more important for crafting e#ective adversarial examples. How-
ever, generated perturbations by JSMA are greater than that of DeepFool [30]. Based on the idea
of DeepFool, Alaifari et al. [37] proposed a novel kind of adversarial attack, ADef, which !nds
“small” perturbations of the images. Due to the projection nature, iterative algorithms usually lead
to large-scale distortions. Chen et al. [59] aimed to address this problem with an attack frame-
work, Frank-Wolfe, which uses momentum mechanisms to avoid projection and leads to better
distortions.

In early studies, it was common to generate attack perturbations independently for each speci!c
input based on the loss function. However, Zheng et al. [60] proposed an algorithm called Distri-
butionally Adversarial Attack (DAA) [60] to generate deceptive examples by introducing direct
dependency between all data points, which is a variant of PGD [3] to maximally increase the gen-
eralization risk. Besides, PGD is also shown to lead to overestimation of robustness because of the
sub-optimal step-size and problems of the objective loss [61]. Therefore, Croce and Hein [61] pro-
posed a parameter-free version of PGD with an alternative objective function, Auto-PGD, avoiding
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the selection of step size for l2 and l∞ perturbations. Their extensive experiments showed that Auto-
PGD can decrease the accuracy of the target model under multiple existing defenses by more than
10%. In addition, when taking into account l1-perturbations, PGD is not e#ective and is weaker
than some state-of-the-art l1 attacks [56]. Croce and Hein [62] analyzed the reason why PGD is
sub-optimal under l1 perturbations and identi!ed the correct projection set, which is computation-
ally feasible. Their method can encourage adversarial training to yield a more robust l1-model with
ϵ = 12 when compared to the original PGD [3].

3.3.3 GAN-based A!acks. Malicious perturbations can lead to some unnatural or not seman-
tically meaningful examples. To craft natural adversarial samples, Zhao et al. [63] presented a
framework to craft natural and legible adversarial examples using the GAN in black-box settings.
A Generator G on corpus X and a corresponding Inverter I are trained separately by minimizing
the reconstruction error of x and the divergence between the sampled z and I (G (z)). Given an
instance x , they searched the perturbations with Inverter in the dense representation of z ′ = I (x ).
And then, they mapped it back to x ′ with the trained Generator G. The perturbations from the
latent low-dimensional z space can encourage these adversarial samples to be valid.

Xiao et al. [64] also proposed a GAN-based attack, AdvGAN, to generate adversarial samples
with good perceptual quality e"ciently. They added a loss for fooling the target model and another
soft hinge loss to limit the magnitude of the perturbation. Once the generator is trained, the pertur-
bations can be generated e"ciently for any input, which can potentially accelerate some defensive
methods such as Adversarial Training. Based on the architecture of Reference [64], Wei et al. [28]
also proposed a GAN-based adversarial attack named Uni!ed and E"cient Adversary (UEA)
to address problems with high computation costs and the weak transferability of existing methods
in image and video object detection. In their method, the generation process only involves the
forward networks, so it is computationally fast. In addition, Phan et al. [65] proposed to use GAN
to design black-box attacks, improving the transferability of existing attacks.

Discussion. Attack methods discussed in this section show the representative strategies of craft-
ing adversarial examples. Despite the strong performance of optimization-based attacks, most at-
tackers are willing to explore gradient-based attacks, because these kinds of attacks are simpler
than their optimization-based counterparts. In addition, e"cient attacks can be easily incorporated
into defensive techniques against adversarial examples, such as adversarial training, which can in-
crease the e"ciency of defenses as an ultimate goal. However, common gradient-based methods
need full knowledge of target models, which mainly consist of white-box attacks.

3.4 Stage 3 - Post-cra"ing: Advanced A!acks
This section introduces some “advanced attack” that can be thought of as extensions to the general
attacks mentioned above. These extensions stretch in two directions: horizontally to broaden the
scope of the attack and vertically to improve the depth and success rate of attack. Improving the
depth and success rate of attacks vertically can be done by combining the common vulnerabilities
of DNNs with the model-speci!c properties.

Improving the scope of the attack expands the in$uence of adversarial samples to more models
or instances. Extending an attack horizontally can be accomplished in three ways: (1) cross-sample
transferability of the crafted adversarial perturbations to impact more inputs; (2) cross-model trans-
ferability of perturbations to improve their e#ectiveness on more unknown target models; and (3)
some other techniques to attack models in more challenging settings, like a black-box hard-label
setting.

3.4.1 Universal Adversarial A!ack. Cross-sample transferability captures the ability of a per-
turbation against one benign sample to be e#ective against other benign instances within the
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same models. General methods aforementioned craft di#erent perturbations for each single sam-
ple. Thus, it is not clear about the transferability across the benign samples. Moosavi-Dezfooli
et al. [48] !rst showed the existence of universal adversarial perturbations and provided a sys-
tematic algorithm to create these perturbations. At each iteration, they compute the minimal per-
turbation according to the boundary of the current classi!cation region and then aggregate them
into the original input. When a crafted universal perturbation is added to any benign example in
the training dataset, all generated adversarial examples are misclassi!ed with a high probability.
Sarkar et al. [66] proposed black-box universal adversarial attacks, which can produce targeted
misclassi!cation when compared to the initial works [48]. They used a residual generating net-
work to produce an image-agnostic perturbation for each class to misclassify the samples with
this perturbation as being from the corresponding class.

Shafahi et al. [67] proposed an e"cient optimization-based method to produce the universal per-
turbations by solving some common problems for DNNs. Speci!cally, they use stochastic gradient
methods to solve the optimization problem of crafting perturbations and introduce a “clipped”
version of the cross-entropy loss to mitigate problems caused by unbounded cross-entropy. As a
result, their methods dramatically reduce the time needed to craft adversarial examples as com-
pared to Reference [48]. Co et al. [68] proposed to leverage procedural noise functions to generate
universal adversarial perturbations. It is simpler to implement, and the smaller search space of
procedural noise makes a black-box attack on large-scale applications feasible. Zhang et al. [69]
reviewed existing universal adversarial attacks, discussed the challenges, and studied the underly-
ing reasons for why universal adversarial perturbations exist.

3.4.2 Transfer-based A!acks. So far, white-box attacks are based on the assumption that the
adversary has access to information such as input data, model structure, gradients, and so on.
However, in most scenarios, attackers have little information about models except the input-output
pairs. The target models can only be used in a black-box manner. So, black-box attacks are far more
common. Transfer-based attacks are probably the most common methods of exploring the cross-
model transferability and attacking a black-box target model with the help of white-box substitute
models.

Szegedy et al. [2] !rst described the phenomenon that adversarial examples crafted carefully
for one model could be transferred to other models, regardless of its structural properties, like the
number of layers. Papernot et al. [39] further explored the property to study how the adversarial
samples could be transferred between di#erent machine learning techniques and proposed the !rst
e#ective algorithm to fool DNN classi!cation models in a black-box manner. They assumed that
attackers have no access to the parameters of the classi!ers but do have some partial knowledge
of the training data (e.g., audios, images) and the expected output (e.g., classi!cation).

To further increase the transferability of adversarial perturbations, ensemble attacks have been
a category of crafting transferable perturbations for black-box models. Che et al. [36] proposed
Serial-Mini-Batch-Ensemble-Attack, where they consider the process of crafting adversarial sam-
ples to be the training of DNNs, and the transferability of the adversarial examples is thought of
as the model’s generalizability. Phan et al. [65] proposed a GAN-based black-box attack method,
called Content-aware Adversarial Attack Generator, which improves on the low transferability of
existing attacks in the black-box settings by introducing random dropout.

Domontis et al. [8] provided a comprehensive analysis of transferability for adversarial attacks.
They highlighted three metrics: the magnitude of the input gradients, the gradient alignment, and
the variability of the loss landscape. In addition, Sharma et al. [70] proposed another factor, per-
turbation’s frequency, from the perspective of perturbations instead of models. They validated
adversarial examples are more transferable and can be generated faster when perturbations are
constrained to a low-frequency subspace.
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To address the weak transferability of black-box attacks (especially under the existing defenses),
some state-of-the-art works introduced some novel techniques to improve the cross-model trans-
ferability, such as meta learning [71], variance tuning [72], and feature importance-aware
(FIA) [73].

3.4.3 "ery-based A!acks. The performance of the black-box attacks can be in$uenced by poor
transferability in transfer-based attacks using substitute models. In addition to transfer-based at-
tacks, black-box adversaries can use some zeroth-order optimization methods to estimate numeri-
cally the gradient through a number of queries, which are denoted as query-based attacks. To avoid
using the transferability, a zeroth order optimization (ZOO)-based method has been proposed
that has high visual quality [74]. However, ZOO relies on the coordinate-wise gradient estimation
technique, which demands an excessive number of queries on the target model. As such, it is not
query-e"cient and rather impractical in the real world. Tu et al. [75] proposed a generic frame-
work for implementing query-e"cient black-box attacks, termed as Autoencoder-based Zeroth
Order Optimization Method (AutoZOOM). They proposed a scaled random full gradient esti-
mator and dimension reduction techniques (e.g., autoencoder) to reduce the query counts. Ilyas
et al. [76] used natural evolutionary strategies to construct an e"cient unbiased gradient estimator,
which requires far fewer queries than the traditional attacks based on !nite-di#erence.

Square attacks were proposed to further improve the query e"ciency and success rate of black-
box adversarial attacks, which combines the classical randomized search schemes and heuristic
update rule [77]. Yatsura et al. [78] argued that the performance of attacks based on random search
depends on the manual tuning of the proposal distributions. Therefore, they formalize square at-
tack as a meta-learning problem to perform automatic optimization, which can circumvent the
heuristic tuning and decrease the impact of manual design.

Query-based attacks would be ine#ective in real-world scenarios due to the limited informa-
tion [76]. Brendel et al. [38] proposed a decision-based attack, called a Boundary Attack, which
requires less information about or from the models and solely relies on the !nal decision. For the
label-only setting, Ilyas et al. [76] also proposed a concept of discretized score to quantify how
adversarial the perturbed image is, which was used to estimate the absent output scores. Likewise,
Cheng et al. [79] assumed that the adversary can only observe a !nal hard-label decision. They
reformulated the task as a real-valued optimization problem by binary search. Cheng et al. [80]
also optimized their previous work [79] and directly estimated the sign of the gradient rather than
the gradient itself, which reduces the number of queries signi!cantly.

The amount of queries for query-based attacks has decreased from millions to less than a thou-
sand [81]. Maho et al. [81] proposed a geometrical approach, SurFree, based on the decision in a
black-box setting. They bypassed the usage of surrogate of the target model and estimation of the
gradient. Ilyas et al. [82] introduced a framework unifying a previous black-box attack methodol-
ogy. They proposed bringing gradient priors into the problem to further improve the performance
of untargeted attacks. Narodytska and Kasiviswanathan [83] proposed a black-box attack in an
extremely limited scenario where only a few random pixels can be modi!ed when crafting ad-
versarial examples. They found that a tiny number of perturbed pixels is su"cient to fool neural
networks in many cases. Su et al. [84] proposed the one-pixel attack and restricted the perturbation
to only one pixel. They used di#erential evolution to !nd the optimal position of the perturbation
and modi!ed its RGB value to fool the target model.

3.4.4 Model-specific A!acks. Designing an attack that exploits transferability to invalidate
more models can be viewed as a horizontal extension to underlying attacks. Beyond this, there
are studies on vertical extensionsthat exploit the properties of speci!c models (like the structure
of GNN) to increase the chance of an attack’s success. For example, !rst-order optimization can not
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be applied directly to attacks on node classi!cation tasks using edge manipulations for GNNs be-
cause of the discrete structure of graphs. Xu et al. [47] presented an approach to generate topology
attacks (i.e., edge manipulation attacks) via convex relaxation, which empowers the gradient-based
attacks that can be applied to GNNs. Chang et al. [49] provided a general framework, Graph Fil-
ter Attack, to attack graph embedding models in restricted black-box setting without requiring
information in Reference [47].

The indi#erentiable operations in a Deep product quantization network (DPQN) lead to
one of the challenges to attack DPQN-based retrieval systems. To avoid the backpropagation, Feng
et al. [85] proposed to formulate the generation problem as a minimization of similarity between
the original query and the adversarial query. Tsai et al. [86] proposed an attack against a special
network for point cloud classi!cation. In addition, PGD might not perform as well on the Bina-
rized Neural Networks (BNNs) because of their discrete and non-di#erentiable nature. There-
fore, Khalil et al. [87] formulated the generation of adversarial samples on BNNs as a mixed integer
linear programming problem and proposed integer propagation to tackle the intractability.

Moreover, Chhabra et al. [88] !rst investigated the adversarial robustness of unsupervised learn-
ing algorithms like clustering. Through their strategy, perturbing only one sample can lead to the
perturbation of decision boundaries between clusters. Reinforcement learning often adopts some
self-organization techniques to develop self-managed complex distributed systems [89, 90]. Huang
et al. [91] showed the impact of existing adversarial attacks on trained policies in reinforcement
learning. They applied FGSM to compute adversarial perturbations for policies. Wu et al. [92] fo-
cus on adversarial attacks in reinforcement learning by training an adversarial agent to e#ectively
exploit the vulnerability of the victim without manipulating the environment.

Discussion. There are two challenges in designing adversarial examples for DNNs, limited
knowledge and special properties of model. Universal adversarial perturbations usually general-
ize well across di#erent classi!cation models [48, 68], which can also be used to address limited
knowledge. Though transfer-based attacks do not rely on the detailed information of models, the
adversary needs to have some partial knowledge of the training data. Transfer-based attacks are
prone to su#er from low success rates due to the lack of adjustment procedures for information
from surrogate models. Query-based attacks usually achieve higher success rates while they are
likely to lead to an enormous number of queries [38, 75, 79, 80]. P-RGF [93] combines transfer-
based methods and query-based methods. The transfer-based prior from the surrogate model is
utilized to query the target model e"ciently, which simultaneously guarantees the attack success
rates and query e"ciency.

3.5 Stage 4 - Practical Applications
This section reviews adversarial attacks in multiple domain, including image domain [32, 35, 50, 94,
95], text domain [96–98], audio domain [1, 31, 51, 99–101], and systems with streaming input [92,
102]. For applications in di#erent domains, there are various challenges in the implementation of
adversarial attacks. For instance, contextual information (in object detection systems) and rigid
lexical and syntactical constraints (in code authorship attribution) will prevent from successful
generation of adversarial examples.

3.5.1 Image Domain and Video Domain. Eykholt et al. [50] extended an existing algorithm for
image classi!cation to object detection domain. They modi!ed the adversarial loss functions to
minimize the probability of the target object appearing in the scene. Zhang et al. [32] conducted
an experimental study to attacking object detectors for vehicles in the physical world. They tried
to learn a camou$age pattern and painted the pattern on the vehicles, !nding it could hide the
vehicles e#ectively. Considering the limitations of static adversarial patches, Lovisotto et al. [94]
proposed a novel method of generating physically robust real-world adversarial examples through
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a projector, which can enhance the robustness of patch-based adversarial examples by increasing
the non-printability score.

Sensors are fundamental to the perception system of Autonomous Vehicles. Unlike camera-
based perception, only a few papers touch on the feasibility of adversarial attacks on the sensor
inputs of LiDAR perception. Cao et al. [35] conducted the !rst study on the security of LiDAR-based
perception against adversarial perturbations by formulating adversarial attacks as an optimization
problem. Hamdi et al. [95] also demonstrated that semantic attacks, including changes in camera
viewpoint and lighting conditions, are more likely to occur naturally in autonomous navigation
applications. Thereby, they proposed a semantic attack based on GAN, treating the process of
mapping the parameters into environments as a black-box function.

Zhao et al. [1] provided systematic solutions to craft robust adversarial perturbations for practi-
cal object detectors at longer distances and wider angles. Wei et al. [101] focused on the adversarial
samples in the video domain, which di#ers from the images domain given the temporal nature of
videos. They leveraged the temporal information to improve the attacking e"ciency and proposed
the concept of propagating perturbations. A heuristic algorithm to further improve the e"ciency
of the method is in Reference [79].

3.5.2 Text Domain. Liang et al. [96] applied adversarial attacks to DNN-based text classi!ca-
tion. Like FGSM, they also leveraged a cost gradient to generate the adversarial examples, while
keeping the text readable. They identi!ed important text items like hot training phrases accord-
ing to the gradients and proposed three strategies, including insertion, modi!cation, and removal,
to manipulate these important items. Finlayson et al. [18] reviewed the adversarial behaviors in
medical billing industry, illustrating the in$uences on fraud detectors for medical claims.

The peculiarities like code layout in the code usually can be used in the tasks to identify author-
ship information, also called authorship attribution. Quiring et al. [97] proposed the !rst black-box
adversarial attack to forge the coding style by combining compiler engineering and adversarial
learning. Other than authorship attribution, it is more di"cult to generate robust adversarial sam-
ples in source code processing tasks due to the constraints and discrete nature of the source domain.
Zhang et al. [98] treated adversarial attacks against code processing as a sampling problem and
proposed the Metropolis-Hastings Modi!er algorithm, which can craft a sequence of adversarial
samples of source code with a high success rate.

3.5.3 Audio Domain. Yakura and Sakuma [51] proposed a special over-the-air condition to
describe the di"culties of attacking practical Automatic Speech Recognition (ASR) systems,
where the audio adversarial sample is played by the speaker and recorded by a device. In this sce-
nario, such attacks can be impacted by reverberation and noise from the environment. Hence, they
simulated the transformations caused by replaying the audio and incorporated them into adver-
sarial audio samples. However, several hours are needed to craft just one adversarial sample. Liu
et al. [99] proposed weighted-sampling adversarial audio examples, which can be computed at the
minute level.

Zhang et al. [100] focused on the non-negligible noise introduced by previous works attacking
ASR like Reference [51]. This noise can in$uence the quality of the original audio and reduce
the robustness against a defensive detector by breaking temporal dependency properties. They
proposed to extract Mel Frequency Cepstral Coe"cient features of audio instances. For some ASR
tasks with combinatorial non-decomposable loss functions, gradient-based adversarial attacks are
not amenable for them [103]. Usually, a di#erentiable surrogate loss function is required in this
case, while the poor consistency might a#ect the e#ectiveness of adversarial examples signi!cantly.
Houdini [103] is proposed to be tailored for these task losses to generate e#ective adversarial
examples with high transferability, which can be used in the black-box scenario.
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Discussion. In the practical tasks based on DNNs, it would be harder to implement adversarial
attacks, because various domain-speci!c peculiarities and challenges have to be considered. Com-
pared to conventional image classi!ers, contextual information and location information in object
detection can be used to prevent mispredictions [50]. Some factors in the diverse environments also
a#ect the success rate of attacks, including noise and reverberation from playback in ASR [51, 100],
changes in camera viewpoint and lighting conditions [95]. Likewise, generating samples of source
code would also encounter rigid lexical and syntactical constraints [97].

3.6 Stage 5 - Revisit Imperceptibility
Adversaries are required to consider the magnitude of their adversarial perturbations and their
imperceptibility. The commonly used Lp distortion metrics, including L0, L2, and L∞ norm, are
objective and can be detected easily by human eyes. Thus, it may not be optimal to adopt these
metrics to evaluate the similarity between benign and adversarial samples. As mentioned by Xu
et al. [52], attacks aiming to generate perturbations with a small L0 norm can cause the L∞ norm
to be very large. Therefore, some researchers have started to develop non-Lp metrics to gauge the
distortions over samples to explore the exact imperceptibility for humans.

As opposed to the studies that directly manipulate the pixel values to generate adversarial
examples, Xiao et al. [53] proposed the spatially transformed adversarial example opti-
mization method (stAdv). StAdv avoids modifying the pixel values and instead changes the
positions of the pixels. Speci!cally, the pixel in the adversarial image can be synthesized using
the 4-pixel neighbors of its corresponding pixel in the original image. As a result, it can craft
perceptually realistic examples and preserve the semantics of real instances. Xu et al. [52] also
pointed out that the Lp metric is neither necessary nor su"cient, because no single measure can
be perfect for human perceptual similarity. They proposed a structured attack, which explores
the concept of group sparsity. In their approach, an input image is divided into sub-groups of
pixels, and the corresponding group-wise sparsity would be penalized. Like Xu et al. [52] and
Liu et al. [54] focused on the image formation process, developing a novel physically based
di#erentiable renderer to perform perturbations in the underlying image formation parameter
space. The process changes the pixels to an alternative color.

Discussion. Most studies in the image domain use Lp norms to measure the distortions, and
information about spatial structures of images is more likely to be ignored. Despite the simplicity
of pixel norm-balls for perturbations, they have been shown not to align with human perceptual
similarity well [52]. Some structural metrics, such as positions of the pixels [53] and group spar-
sity [52], can be introduced, which can help search most e#ective adversarial examples under the
constraints of perturbation magnitude.

The attack methods in di#erent stages of the proposed framework are presented in Table 2.
However, the methods falling into Stage 1 (Vulnerability Analysis) are not contained in this table,
because most of them only focus on exploring the reason for vulnerability, and no attack schemes
are provided in these papers. The attacks are presented along with the information about the threat
model, including attacker’s goal and knowledge. Speci!cally, untargeted attacks are strictly less
powerful than targeted attacks and can be regarded as one simple form of running a targeted
attack for one random target. In turn, some untargeted attacks can be adapted to the targeted
version easily. Therefore, the untargeted attacks in this table only mean that authors focused on
the untargeted settings in writing. Moreover, many black-box attacks can be achieved by running
white-box attacks on substitute models. The white-box attacks in Table 2 also mean that authors
mainly focused on a white-box attacker in their work, instead of its inability to impede a model in
a black-box scenario.
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Table 2. Catalog of Adversarial A!acks Following the Analysis Framework Proposed
and the Performance Demonstrated

Stage Attacks Attack Strategy Attacker Goal Attacker Knowledge DatasetTargeted Untargeted Black-box White-box
2 L-BFGS [2] Optimization-based ! ! - ! M, IN
2 C&W [33] Optimization-based ! - - ! M, C-10, IN
2 OSSA[29] Optimization-based - ! ! ! M, C-10, IN
2 Blind-spots [57] Optimization-based - ! - ! M, FM, C-10
2 DeepFool [30] Optimization-based - ! - ! M, C-10, IL12
2 FGSM [46] Gradient-based ! ! - ! M, C-10
2 BIM [4] Gradient-based ! ! ! ! M, C-10
2 MI-FGSM [58] Gradient-based ! ! ! ! IL12
2 PGD [3] Gradient-based ! ! ! ! M, C-10
2 Auto PGD [61, 62] Gradient-based ! ! - ! M, C-10, C-100, IN
2 JSMA [34] Gradient-based ! - - ! M
2 Frank-Wolfe [59] Gradient-based ! - ! ! M, IN
2 ADef [37] Gradient-based ! ! - ! M, IN
2 DAA [60] Gradient-based - ! - ! M, FM, C-10, IN
2 LatentGAN [63] Model-based - ! ! - M, LSUN, TE
2 AdvGAN [64] Model-based ! ! ! ! M, C-10, IN
2 UEA [28] Model-based ! - ! - PASCAL, IN
3 Universal Examples [48] Cross-sample - ! - ! IN, IL12
3 UniAdvTraining [67] Cross-sample - ! - ! C-10, IN
3 Procedural Noise [68] Cross-sample - ! - ! IN, IL12, COCO
3 UPSET [66] Cross-sample ! - ! - M, IN
3 Substitute [39] Transfer-based - ! ! - M, GTSRB
3 SMBEA [36] Transfer-based ! - ! - CS, F, GGS, LSUN
3 CAG [65] Transfer-based ! - ! ! C-10, IN
3 Explain Transferability [8] Transfer-based - ! ! ! M, Drebin
3 Using Frequency [70] Transfer-based ! ! ! ! IN
3 Meta Gradient [71] Transfer-based ! ! ! - C-10, IN
3 FIA [73] Transfer-based ! ! ! ! IN
3 Variance Tuning [72] Transfer-based ! ! ! ! IN
3 Boundary Attacks [38] Query-based ! ! ! - M, C-10, IN
3 SurFree [81] Query-based - ! ! - M, IN
3 AutoZoom [75] Query-based ! - ! - M, C-10, IN
3 Bandit Optimization [82] Query-based - ! ! - C-10, IN
3 Query-e"cient [76, 79, 80] Query-based ! ! ! - M, C-10, IN
3 P-RGF [93] Query-based - ! ! - IN
3 Square Attack [77, 78] Query-based ! ! ! - M, C-10, C-100, IN
3 A Few Pixels [83, 84] Query-based ! - ! - M, C-10, SVHN, IN, STL10
3 Topology Attacks [47] Model-speci!c ! ! - ! Cora, Citeseer
3 GF-Attacks [49] Model-speci!c - ! - ! Cora, Citeseer, Pubmed
3 PQ-AG [85] Model-speci!c - ! ! ! C-10, NUS-WIDE
3 PointNet++ [86] Model-speci!c ! ! - ! ModelNet40
3 IProp [87] Model-speci!c ! ! - ! M, FM
3 Clustering [88] Model-speci!c ! - ! - U-HD, M, U-WS, MHP
4 Image Domain [32, 50] Application - ! ! ! Unreal
4 Image Domain [35] Application ! - - ! Velodyne
4 Text Domain [96] Application ! - ! - -
4 Code Domain [97] Application ! ! ! - Google Code Jam
4 Code Domain [98] Application - ! ! - Open Judge
4 Audio Domain [51, 99, 100] Application ! - - ! CSN1, TTS / MCV/LS
4 Houdini [103] Application ! ! ! ! CS, LS
4 Video Domain [1, 101] Application ! ! - ! COCO / UCF101
4 Video Domain [31] Application - ! ! - UCF101, HMDB-51
4 streaming input [102] Application - ! ! - Speech commands[104]
5 stAdv [53] Imperceptibility ! - - ! M,C-10, IN
5 StrAttack [52] Imperceptibility ! - - ! M,C-10, IN
5 Parametric Norm [54] Imperceptibility ! ! ! ! C-100

In the table, the following abbreviations have been used: M for MNIST, FM for FashionMNIST, C for CIFAR, IN for
ImageNet, IL12 for ILSVRC2012, TE for Textual Entailment, COCO for Microsoft Common objects in context, CS for
Cityspaces, F for Facades, GGS for Google Satellites, U-HD for UCI Handwritten Digits, U-WS for UCI Wheat Seeds,
MHP for MoCap Hand Postures, CSN1 for Cello Suite No.1, TTS for To The Sky, MCV for Mozilla Common Voice
dataset, and LS for LibriSpeech.
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4 ADVERSARIAL DEFENSES
Countermeasures against the adversarial attacks mentioned above eliminate some of the risks,
and the more vulnerabilities that can be stemmed, the greater the likelihood that deep learning
techniques can be deployed on a large scale. To this end, we have developed a defensive lifecycle
akin to the framework above for attacks.

4.1 Overview: APT-like Defense Lifecycle
Our analyzing framework for adversarial defenses provides a standard procedure through which
to improve a model’s robustness against adversarial samples. Like the attack lifecycle, the defense
lifecycle also has !ve stages.
• Stage 1: Robustness Certi!cation. To a certain extent, this stage of adversarial defenses

can be considered as one where the vulnerability of DNNs against adversarial examples is
thoroughly eliminated. As a result, the “scanning” for vulnerabilities of DNNs will fail under
the certi!ed robustness guarantees. This stage consists of provable defenses with theoretical
guarantees [105, 106]. These can theoretically certify a DNN model’s robustness, i.e., the
ability of keeping prediction unchanged for small modi!cations of the input. However, as
mentioned, this expectation may be unrealistic for some complex models.
• Stage 2: Anti-crafting. This stage addresses the unavoidable complexity and di"culties

associated with providing a provable guarantee of robustness for DNNs. Hence, defenders
must change their objectives to that of preventing adversarial samples from being generated
using attack strategies in Crafting stage of attack lifecycle. The focus here is on the training
phase of the target model and trying to develop robust models for which it is di"cult to !nd
e#ective adversarial examples [3, 107]. Training robust models by injecting more augmented
data or distillation techniques can ensure that general attacks are ine#ective.
• Stage 3: Post-crafting. In the third stage of adversarial defenses, defenders assume that the

adversarial samples have been crafted successfully. As a result, they have to focus on the
scenarios where adversarial samples are inevitable in the training phase and make e#orts to
prevent the further damage caused by existing vulnerabilities. Defenses covered in this stage
can be thought of as reactive defenses. They can modify the architecture of DNNs [108, 109]
or deploy preprocessing methods to transform them into legitimate samples to mitigate their
impact [110, 111].
• Stage 4: Application-speci!c Defenses. Adversarial attacks in Stage 4 of the attack lifecy-

cle would exploit the features of speci!c scenarios or special data structures. Thereby, they
can be mitigated and defended from the level of applications with some unique properties.
Some domain-speci!c features and factors in the physical world are known to be resistant
to adversarial examples [112, 113]. These techniques can be thought of as countermeasures
to attacks launched on speci!c practical applications. They have poor generalization to be
transferred to other scenarios but they can achieve high robustness.
• Stage 5: Detection Defenses. In adversarial settings, attackers in the Revisiting Impercep-

tibility stage will be trying to remove evidence of their foul play, avoiding being recognized
by humans. In that case, defenders should attempt to identify the malicious adversarial ex-
amples by designing e#ective detectors to circumvent those e#orts of attackers [114]. These
detecting techniques constitute the !nal stage of defense lifecycle, Detection Defense. If the
defenses in the previous stages have failed to prevent the adversarial samples, then the best
strategy left is to minimize their impact on the !nal predictions.

Table 1 also describes the correspondences between these stages for defenses and the APT frame-
work. It is worth noting that despite the similarity in the stages of the attack and defense lifecycle,
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Fig. 4. The five stages of the lifecycle of adversarial defenses are demonstrated here. The component in the
second column refers to the types of critical methods used in each stage. The objective of each stage is
summarized in the last column.

they do not strictly have a one-to-one correspondence. The similarity only results from the similar
short-term objective in the corresponding stages in attacks and defense lifecycle. Moreover, the
proposed attack/defense lifecycle presenting a sequence of di#erent attack/defense strategies does
not mean to view each strategy in isolation. On the contrary, the lifecycle helps us consider dif-
ferent strategies as a whole, where sometimes a “one versus some” could be used to resist attacks
in di#erent stages, and other times a “some versus one” defensive strategy from multiple stages
could be integrated to resist one attack. The defenses against adversarial attacks are classi!ed into
di#erent stages according to their defensive goals. The components and objectives of the defensive
methods in di#erent stages are summarized in Figure 4.

4.2 Stage 1 - Robustness Certification
Most defenses are only validated experimentally; they are not proven to be e#ective with a theoret-
ical guarantee of error rates. Despite their excellent techniques, their e"cacy was short-lived, as
the systems discussed were simply attacked again with more aggressive adversarial attacks. Prov-
able defense guarantees falling into Stage 1 are the most e#ective defensive methods, and they will
always work, regardless of types of attacks.

Weng et al. [105] proposed the !rst attack-independent robustness metric to estimate the lower
bound of the minimum adversarial perturbations. They converted the evaluation of robustness into
a local Lipschitz constant estimation problem and provided a theoretical justi!cation. Their metric,
CLEVER, has been corroborated to be computationally feasible. However, Goodfellow [115] has
subsequently reported that the lower bound estimated by CLEVER is incorrect. Ruan et al. [106]
proposed a global robustness problem as a generalization of the local robustness problem. Global
robustness is de!ned as the maximal safe radius with the lower bounds and upper bounds over a
test dataset, while the local robustness represents the safe radius for one input. Their method was
the !rst algorithm to provide a bound of robustness for a Hamming distance (L0). Yu et al. [116] pro-
posed a quantitative evaluation metric of robustness regardless of the datasets and attack methods.

ACM Computing Surveys, Vol. 55, No. 8, Article 163. Publication date: December 2022.



163:22 S. Zhou et al.

Raghunathan et al. [117] proposed a certi!able defense for two-layer neural networks in ad-
versarial settings. However, the convex relaxations in Reference [117] could not scale to large net-
works. To adapt similar certi!cation methods to deeper networks, Wong and Kolter [118] proposed
to construct a convex outer approximation for the activation values as an adversarial polytope
against the norm-bounded adversarial perturbations. Sinha et al. [119] defend against adversarial
perturbations from the perspective of a distributionally robust optimization. Xiao et al. [120] also
focused on the intractability of exact veri!cation problems for adversarial robustness. They pro-
posed the idea of co-design to train neural networks, which aligns the model training with veri!ca-
tion and ensures that robust models are easy to verify. Tjeng et al. [121] proposed a Mixed-Integer
Linear Programming (MILP) veri!er to address the veri!cation for piecewise-linear networks,
which was considered as a mixed-integer program. Singh et al. [122] combined over-approximation
techniques with MILP solvers and proposed a system called Re!neZono that chooses neurons to
re!ne their bounds. Their system improves the precise loss for large networks and has faster veri-
!cation than the work of Tjeng et al. [121].

Discussion. The defenses demonstrated in this section provide certi!cations of the robustness
of machine learning models. In other words, they provide a theoretical guarantee against adver-
sarial samples, which can be considered the strongest defenses. However, incomplete robustness
veri!ers based on over-approximation methods, like Reference [117], can su#er from a loss of pre-
cision when scaled to DNNs. And complete veri!ers that leverage MILP usually lack scalability.
Therefore, these techniques are too complex and have poor applicability for DNNs.

4.3 Stage 2 - Anti-cra"ing: Training-based Defenses
To avoid general attacks, we need defenses that can really improve the robustness of the models,
rather than some preprocessing techniques or detection strategies for abnormal samples. So, the
defenses in Training-based Defenses can be thought of as proactive defenses consisting of Adver-
sarial Training and Network Distillation.

4.3.1 Adversarial Training Techniques. Adversarial Training is a simple and common method
of decreasing the test error for adversarial examples by incorporating crafted examples into the
training data. Goodfellow et al. [46] proposed an adversarial training method, where adversarial
samples are generated using FGSM and then injected them into the training dataset. Adversarial
training can promote regularization for DNNs. However, although these adversarially trained mod-
els have robustness against one-step attacks, they are still easy to be fooled by iterative attacks.
Madry et al. [3] subsequently proposed adversarial training with adversarial examples crafted by
PGD attacks. They focused on the “most adversarial” sample in the L∞ ball around the benign
sample. Thus, with this method, universally robust models can be developed against a majority of
!rst-order attacks.

However, adversarial training still has some limitations. For example, because the process of
generating each adversarial sample involves an iterative attack [3], adversarial training usually
carries a high computational cost, which limits its practicality for large datasets. In addition, the
e#ectiveness of adversarially trained models has been shown to be in$uenced by some factors,
such as other Lp adversaries [107], more complex datasets like CIFAR [123, 124], and the perturba-
tions occurring in the latent layer [125]. Another problem in adversarial training is a decrease in
generalization [126, 127].

4.3.2 Distance Metrics and Latent Robustness. Li et al. [107] proposed an improvement for ad-
versarial training. They introduced Triplet Loss (one popular method in Distance Metric Learn-
ing) to the adversarial training, which enlarges the distance in embedding space between the
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adversarial examples and other examples. By incorporating a regularization term, this new algo-
rithm e#ectively smooths the boundary and improves the robustness.

Most previous works focus on the robustness of the input layer of DNNs. Kumari et al. [125]
found that the latent layers of the robust adversarial-trained model were still vulnerable to pertur-
bations, though the input layer had high robustness. Based on this observation, they proposed La-
tent Adversarial Training, a !ne-tuning technique, to improve the e"cacy of adversarial training.

4.3.3 Complex Tasks. Moreover, Buckman et al. [123] aimed to adapt adversarial training tech-
niques to complex datasets where PGD-based Adversarial Training [3] is usually ine#ective. Based
on the hypothesis in Reference [46] that the over-generalization in models that are too linear leads
to the vulnerabilities toward adversarial samples, they proposed to leverage the quantization of
inputs to introduce a strong non-linearity. What they found was that combining them with the
adversarial training increases adversarial accuracy. However, applying quantization alone can be
broken easily. Thereby, Cai et al. [128] proposed curriculum adversarial training technique to im-
prove the resilience of adversarial training and increase the performance on complex tasks. Specif-
ically, they used a weak attack to train the model !rst and then increased the strength of the attack
gradually until it reached an upper bound. Liu et al. [124] also addressed scaled up problems with
complex datasets by combining the adversarial training with Bayesian learning.

4.3.4 Generalization. Considering the decreasing performance of adversarial training in the
face of random perturbations from other models, Tramèr et al. [126] proposed Ensemble Ad-
versarial Training (EAT) to improve the generalization of defenses in the face of di#erent at-
tacks. The premise is to generate and transfer some one-step adversarial examples from other
pre-trained models to augment the training data. Unlike the adversarial training in References
[3, 46], EAT decouples the training phase from the generation process of adversarial examples.
Similarly, Na et al. [127] also use already-trained models to design adversarial training, referred
to as cascade adversarial training. Farnia et al. [129] proposed using regularization techniques
to increase the adversarial test performance for adversarial training. They provided a theoretical
analysis for the improving generalization with DNNs after introducing a computationally e"cient
regularization technique (spectral normalization) that signi!cantly decreases generalization errors.
Song et al. [130] also aimed to increase the generalization of existing methods based on adversarial
training to resist adversarial perturbations from the perspective of domain adaptation.

4.3.5 Network Distillation. Distillation is a popular transfer learning method, where smaller
target models can be trained based on larger source DNNs. The knowledge of the source models
can be transferred to the target models in the form of con!dence scores. Papernot et al. [131]
proposed the !rst defense method using network distillation against adversarial attacks in DNNs.
Here, the computer could not !nd the gradient of the target model and, therefore, the gradient-
based attacks would not work. Goldblum et al. [132] studied the distillation methods for generating
robust target neural networks. They observed that the adversarial robustness could be transferred
from a source model to a target model, even if the source model had been trained using clear
images. They also proposed a new method, called Adversarially Robust Distillation (ARD) for
distilling robustness onto smaller target networks. ARD encourages target models to imitate the
output of their source model within an ϵ−ball of training samples, which is essentially an analog
of adversarial training.

Discussion. The strength of adversarial training with the worst-case perturbations is satis-
factory. Adversarial training with PGD is a state-of-the-art defense, and this technique is easy to
apply when compared with the certi!ed robustness [121]. However, adversarial training requires
re-training models and much computational resources, which causes the poor scalability to DNNs.
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4.4 Stage 3 - Post-cra"ing: Purification Defenses
Training-based defenses might be impractical as a category of recourse-consuming defenses, es-
pecially with a large amount of training data. In this stage, defenders aim to mitigate the risks of
adversarial samples caused by the existing vulnerabilities of DNNs by preprocessing the input.

4.4.1 Architectural Defenses. Due to the limitations of adversarial training, some defenses
follow a di#erent strategy of modifying the architecture of models without the need for addi-
tional training. Controlling Lipschitz constants layer-wise [108] and decreasing the invariance of
DNNs [133, 134] can improve their robustness against adversarial perturbations. However, meth-
ods based on controlling Lipschitz constants are usually weaker than adversarial training [3].
Along these lines, Qian et al. [108] proposed a new method of controlling the Lipschitz constants of
networks by modifying the regularization and loss functions. Schott et al. [109] highlighted the lim-
itations of adversarial training especially for non-L∞ perturbations and focused on the in$uence
of unrecognizable images, modeling the class-conditional distributions by means of a Bayesian
model.

Neklyudov et al. [133] also demonstrated that the variance layers they proposed (a di#erent
family of the stochastic layer) could provide higher robustness against targeted adversarial attacks.
Jacobsen et al. [134] provided a novel view that the failures of machine learning models result
from an excessive invariance to changes that are semantically meaningful. To address this issue,
they modi!ed the loss function by means of invertible networks, which can provably reduce the
unwanted invariance.

4.4.2 Input Transformation. The strategy of these defenses is to directly denoise the input in-
stances and transform them into legitimate samples before they are fed into the target model. Song
et al. [110] empirically evaluated a hypothesis that the adversarial examples usually lie in low
probability even though the perturbations are very small. Thereby, they chose a neural density
model to model image distributions to detect adversarial examples e#ectively, which can compute
the probabilities of all images and the probability density of one input. Further, to mitigate the
impact of adversarial perturbations, they proposed PixelDefend to purify adversarial examples
by searching a probable image within a small deviation to the original input with a true label.
Samangouei et al. [111] proposed a GAN-based denoising technique for adversarial examples re-
gardless of the types of model. They leveraged the expressive capability of the generator to model
the distribution of clean images. In addition, randomization is a commonly used technique in ad-
versarial defenses [135, 136].

Discussion. As reactive defenses, puri!cation including architectural defenses and input trans-
formation are compatible with other defenses to improve the robustness further. Speci!cally,
variance layers [133] can be combined with the idea of ensembles [126]. Input transformation
techniques are model-agnostic and are regardless of whether an adversarial attacks appears or
not [110, 111, 135]. Therefore, most of them can be combined with the other proactive defenses.

4.5 Stage 4-Application-specific Defenses
Some domain-speci!c features and factors in the physical world are known to be resistant to ad-
versarial examples in various applications, which can be used to mitigate the e#ectiveness of the
malicious examples.

4.5.1 Image Domain and Audio Domain. Face recognition is one of the simplest applications
of image classi!ers. Goswami et al. [113] analyzed the impacts of adversarial perturbations from
preprocessing on face recognition tasks and demonstrated that simple distortions such as black
grid lines could decrease the face veri!cation accuracy. They proposed a countermeasure to detect
the adversarially modi!ed faces by evaluating the response from hidden layers of target models.
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For the identi!ed faces with distortions, they exploited selective dropout to preprocess them before
the recognition, which can rectify them to avoid the signi!cant performance decrease.

Guo et al. [112] pointed that input transformations using JPEG compression have not been ver-
i!ed to be e#ective for strong adversarial attacks like FGSM. Thereby, they aimed to increase the
e#ectiveness of input transformation-based defenses while preserving the necessary information
for classi!cation. They provided !ve transformations that can surprisingly defend existing attacks
when the training data for DNNs was processed in a similar way before training. Xiang et al. [137]
proposed a general defense framework against localized adversarial patches in the physical world,
PatchGuard, which is compatible with any CNN with small receptive !elds. Yang et al. [138]
explored the potentials of audio data towards mitigating adversarial inputs and demonstrated
the discriminative power of temporal dependency in audio data against adversarial examples.
Hussain et al. [139] also studied the e#ectiveness of audio transformation-based defenses for de-
tecting adversarial examples.

4.5.2 Graph-based Domain. In addition, the structure of training data in the graph-based do-
main can be used in the design of adversarial defenses. Svoboda et al. [140] proposed new
paradigms to develop more advanced models directly with higher robustness. The family of deep
learning models on graphs named Peer-regularized Networks can exploit the information from
graphs of peer samples and perform non-local forward propagation. Wu et al. [141] investigated
the defense on graph data and pointed out that the robustness issue of GCN models was caused by
the information aggregation of neighbors. They proposed a defense that leverages the Jaccard sim-
ilarity score of nodes to detect adversarial attacks, because these attacks can improve the number
of neighbors with poor similarity. Yang et al. [27] paid attention to the rumor detection problems
on social media using camou$age strategies. They proposed a graph adversarial learning method
to train a robust detector to resist adversarial perturbations, which increased the robustness and
generalization simultaneously. Goodge et al. [142] focused on unsupervised anomaly-detecting
autoencoders and analyzed its adversarial vulnerability.

4.5.3 Defenses in Privacy. Apart from the adversarial perturbations crafted maliciously to mis-
lead models, there are some “benign” perturbations that can cause positive in$uences to existing
tasks based on DNNs by mitigating privacy concerns in deployment. Privacy attacks in machine
learning can often be addressed using Di#erential Privacy (DP) technique, which has been
well studied [143–145]. For example, due to the advantageous properties of di#erential privacy,
it can also contribute to stabilize learning [146] or build heuristic models for game-theoretic so-
lutions [147, 148]. Interestingly, benign adversarial perturbations can be used to build defenses to
protect privacy in machine learning, such as membership privacy of training data [149, 150].

Discussion. Most works have been focusing on the adversarial examples in the image domain.
In physical world, when conventional extensions of existing attacks for images fail to remove ad-
versarial threats e#ectively in other domain, defenders can exploit some domain-speci!c features
to resist adversarial examples. For example, due to the subtle e#ects of input transformation de-
fenses from the image domain in speech recognition systems, temporal dependency in audio data
can be used to improve the e#ectiveness of detection [138]. However, domain-speci!c features
are usually used to improve the strength of input transformation defenses [112, 137, 138, 141] to
preprocess examples, while few of them, such as information of peer samples in graphs [140], can
help train model with higher robustness.

4.6 Stage 5 - Detection Defenses
Some metrics of DNNs might be correlated with the adversarial examples, such as the dimensional
properties [114], feature attribution scores [151], and distances between adjacent classes [152].
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These metrics can be used to detect whether adversarial samples exist or not. Carlini and
Wanger [114] showed us the limitations of previous detection-based defenses. Subsequently, Ma
et al. [153] considered measures of intrinsic dimensionality to e#ectively detect the adversarial sam-
ples. They proposed a metric to characterize the dimensional properties of the adversarial regions
in which adversarial examples lie, referred to as local intrinsic dimensionality (LID). They re-
vealed that adversarial samples had higher LID characteristics than normal samples. He et al. [152]
proposed an attack method, OPTMARGIN, which can evade the defense that only considers a small
ball around an input sample. To address these threats, they provided to look at the decision bound-
aries around an example to characterize adversarial examples from the proposed OPTMARGIN,
because the decision boundaries around them are di#erent from that of normal examples.

Huang et al. [154] proposed a simple but e#ective model-agnostic detector based on the obser-
vation that the decision boundaries of the adversarial region are usually close to the legitimate
instances. Yang et al. [151] found that adversarial attacks could lead to signi!cant changes in fea-
ture attribution even if the visual perturbation were imperceptible. Therefore, they leveraged the
feature attribution scores to distinguish the adversarial samples from clean examples. Given the
impracticality of acquiring labeled instances for all possible adversarial attacks, Cintas et al. [155]
proposed an unsupervised detection approach by means of a subset scanning technique commonly
used in anomalous pattern detection. Ghosh et al. [156] proposed a variational autoencoder
(VAE) model as a detector of adversarial samples. In this generative model, they tried to search
for a latent variable to perform classi!cation with a Gaussian mixture prior.

Discussion. Though it is impossible to distinguish adversarial examples and benign exam-
ples for human, some metrics might be in$uenced by adversarial perturbations for DNNs, such as
the distances between the instance [152] and adjacent classes and dimensional properties [153].
Through these metrics of DNNs, the stealthiness of adversarial attacks would be destroyed, pro-
viding more possible solutions for defenses.

The defensive methods in di#erent stages of the proposed framework are presented in Table 3,
and a comparison of their performance is provided there. The performance presented includes the
attack strength and complexity, which are mainly based on the performance against white-box
attacks for the convenience of comparison. We note that strong defenses can defend against
existing state-of-the-art attacks on most of datasets (e.g., PGD [3] or C&W [33]). So defenses
based on verifying robustness can be considered as strong defensive methods. Moderate strength
means that the defenses can defend against most existing attacks while being ine#ective against
strong attacks. And weak defenses represent the methods that aim to identify the malicious
examples instead of providing satisfactory accuracy over these detected samples. In terms of
complexity gauge, we note that the defenses that cannot be applied to large networks have
high complexity. Defenses with moderate complexity can be scaled to large networks, but they
still require additional training. Some e"cient defenses without the requirements of additional
training are deemed to be low complexity.

5 EXPLANATIONS FOR THE PHENOMENON OF ADVERSARIAL EXAMPLES
In this section, we discuss the existing hypotheses to provide a further understanding of adversarial
examples against DNNs. These works analyzing the intrinsic vulnerabilities of DNNs fall under
two headings: (1) Point of view of data and (2) Point of view of model.

5.1 Data Perspective
The training of DNNs usually demands a great deal of data with high quality to perform well,
which is the driving force behind popular DNNs. However, the vulnerabilities of non-robust DNNs
against adversarial examples can come from training data.
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Table 3. Catalog of Adversarial Defenses Following the Analysis Framework Proposed
and the Performance Demonstrated

Stage Defenses Defensive Strategy Strength Complexity Experiment
Target Attack Dataset

1 Two-layer model [117] Over-approximation Strong High PGD M
1 ReLU-based model [118] Over-approximation Strong High F, PGD M, FM, HAR, SVHN
1 Distributional robustness [119] Over-approximation Strong Moderate F, I-F, PGD M
1 Co-design [120] Over-approximation Strong Moderate PGD M, C-10
1 MIPVerify [121] MILP Strong Moderate PGD M, C-10
1 Re!neZono [122] MILP Strong Moderate L∞norm Attack M, C-10
2 FGSM-training [46] Adversarial Training Moderate Moderate F M
2 PGD-training [3] Adversarial Training Strong High PGD M, C-10
2 Triplet Loss [107] Adversarial Training Moderate Moderate I-F, C&W, DF CvD, M, C-10
2 Discretization [123] Adversarial Training Strong Moderate F, PGD M, C-10, C-100, SVHN
2 CAT [128] Adversarial Training Strong Moderate C&W, PGD C-10, SVHN
2 Adv-BNN [124] Adversarial Training Strong Moderate PGD C-10, STL-10, IN
2 EAT [126] Adversarial Training Moderate Moderate S-LL M, IN
2 ADTA [130] Adversarial Training Strong Moderate F, PGD, Rand+F FM, SVHN, C-10, C-100
2 Cascade AT [127] Adversarial Training Moderate Moderate S-LL, I-F, C&W C-10
2 LAT [125] Adversarial Training Strong Moderate PGD M, C-10, C-100, SVHN, IN
2 Distillation [131] Distillation Weak Moderate JSMA M, C-10
2 ARD [132] Distillation Strong Moderate PGD C-10, C-100
3 Controlling Lipschitz [108] Architectural Defenses Strong Moderate C&W M, C-10
3 ABS [109] Architectural Defenses Strong Moderate C&W M, C-10
3 Variance Layers [133] Architectural Defenses Moderate Low F C-10
3 PixelDefend [110] Input Transformation Weak Moderate F, DF, C&W, BIM FM, C-10
3 Defense-GAN [111] Input Transformation Strong Moderate F, R+F, C&W M, FM
3 SAP [135] Input Transformation Moderate Low F C-10
3 Randomization [136] Input Transformation Weak Low F, DF, C&W IN
5 LID [153] Detection Weak Low F, BIM, JSMA M, C-10, SVHN
5 Desion Boundary [152] Detection Weak Low F M, C-10
5 Model-agnostic Detector [154] Detection Weak Low F, BIM, JSMA, DF, C&W M, C-10, IN
5 Subset Scanning [155] Detection Weak Low F, BIM, DF M, FM
5 VAE Detector [156] Detection Weak Low F M, SVHN, COIL-100
5 ML-LOO [151] Detection Weak Low F, PGD, C&W M, C-10, C-100

In the table, the following abbreviations have been used in the Dataset column: M for MNIST, FM for FashionMNIST, C
for CIFAR, IN for ImageNet, CvD for Cats vs Dogs. In the Target Attack, the following abbreviations have been used: F
for FGSM, S-LL for Single-Step Least-Likely Class Method, DF for DeepFool.

• Non-robust features: Ilyas et al. [55, 157] demonstrated that the phenomenon of adver-
sarial examples is a consequence of data features. They split features into robust and non-
robust features (incomprehensible to humans and more likely to be manipulated by attack-
ers). Wang et al. [157] investigated the features extracted by DNNs from the perspective of
frequency spectrum in the image domain. They observed high-frequency components are
almost imperceptible to humans. Adversarial vulnerabilities can be considered as a conse-
quence of generalization mysteries caused by non-robust high-frequency components.
• High dimension: To explore the relationship between data dimension and robustness,

Gilmer et al. [158] induced a metric to quantify the robustness of classi!ers. Speci!cally,
X is denoted as the set of benign examples with label y. Given x ∈ X , x ′ is the nearest point
with labely ′ ! y, which is assigned to labely by target model. The average distance between
x ′ and x can be used to quantify the robustness of target model. However, it is veri!ed to be
inversely proportional to the dimension of data d . Likewise, adversarial examples are shown
to be inevitable for lots of problems, and high dimension of data could limit the robustness
of models [159, 160].
• Insu"cient data: Schmidt et al. [161] observed unavoidable adversarial examples are

model-agnostic. Through some empirical results, they concluded that existing datasets are
not large enough to obtain robust models. Hendrycks et al. [162] also proposed that pre-
training on larger datasets can e#ectively improve the robustness, though the traditional
classi!cation performance is not enhanced.
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5.2 Model Perspective
Alternatively, properties of DNNs were thought of as the potential cause of adversarial threats.
• Non-linearity: Szegedy et al. [2] !rst explored the adversarial vulnerability of DNNs from

the perspective of models. They argued that high non-linearity of DNNs led to low proba-
bility pockets in the data manifold. These pockets can be found in the search progress of
adversarial examples, though they are hard to reach randomly in the input space.
• Linearity: By contrast, Goodfellow et al. [46] refuted the non-linearity hypothesis and

proposed that overlinearity of DNNs caused the vulnerability. Speci!cally, they thought
some easy activation functions (e.g., ReLU and sigmoid) were likely to lead to linear
behaviors of DNNs. As a result, summing small perturbations for high-dimensional inputs
will amplify the perturbations and cause a misclassi!cation. Fawzi et al. [163] also observed
that linear classi!ers are more prone to be misled by adversarial examples when compared
to deeper models.
• Decision boundary tilting: Some researchers argued that local linearity behaviors alone

cannot lead to adversarial vulnerability [164]. Tanay and Gri"n [164] believed this might
be caused by over!tted models. Moreover, they presented a concept, boundary tilting, to
describe the phenomenon that the learned boundary of a well-trained model is close to
the training data manifold but tilted beyond this manifold. As a result, perturbing the
benign example towards the learned boundary can produce an e#ective adversarial example
causing classi!cation.
• Training procedure: Bubeck et al. [165] focused on the training procedure and considered

adversarial vulnerability as an unavoidable result of computational constraints in standard
training. Tsipras et al. [5] and Nakkiran et al. [166] also proposed that it is hard to attain
accuracy and robustness simultaneously using current training techniques. More complex
classi!ers should be introduced for higher robustness.

5.3 Summary
Up to now, there is no unanimous explanation for the existence of adversarial examples for DNNs.
Though several hypotheses have been proposed, some of them are even in con$ict. Although some
hypotheses are challenged as not convincing, there is still no su"cient evidence to deny them com-
pletely, because a number of attacks designed based on these hypotheses are veri!ed empirically
to be e#ective against DNNs. In our opinion, the vulnerability might be the joint e#ect of multiple
hypotheses instead of one single property. As shown in Reference [164], complex data manifold
can also lead to adversarial examples, implying linearity is not the only root cause. Therefore, to
discover a unanimous hypothesis, it is necessary to bridge the inner connections between di#erent
factors. Speci!cally, factors from the perspective of data might be linked to the model-related hy-
potheses. For example, increasing the number of training data using data augmentation seemingly
also helps mitigate the e#ect of tilting boundary from the perspective of model [166]. Moreover,
adversarial training can force the DNNs to be less linear than counterparts using standard train-
ing [167], while it can also be explained as a class of methods for feature puri!cation to remove the
non-robust features [168]. Therefore, linking di#erent hypotheses might be a direction to develop
a universally accepted explanation for the existence of adversarial examples.

6 DATASETS
This section will provide a comprehensive introduction of the datasets used in adversarial learning.
The Attack Success Rate (ASR, the proportion of adversarial examples achieving misclassi!ca-
tion successfully) and adversarial accuracy (classi!cation accuracy under adversarial examples)
are two common metrics.
ACM Computing Surveys, Vol. 55, No. 8, Article 163. Publication date: December 2022.
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6.1 MNIST and CIFAR-10
The MNIST is a database of bi-level handwritten digits (from 0 to 9) with 60,000 training examples
and 10,000 test examples. Each of them is translated to a 28×28 image via size normalization [169].
The CIFAR-10 contains 10 classes of color images with 32 × 32 pixels, where there are 50,000 and
10,000 images in training set and test set, respectively. Because of the simplicity and small size
of MNIST and CIFAR-10, they have been proved to be easy to attack and defend. For example, as
shown in Reference [170], when l2 norm of adversarial perturbations reaches about 3 in white-box
scenarios, some gradient-based methods (e.g., BIM, MI-FGSM, and PGD) can achieve ASR close to
100% for untargeted attacks on both MNIST and CIFAR-10.

6.2 CIFAR-100
CIFAR-100 is similar to the CIFAR-10 except it has 100 classes. For white-box untargeted attacks,
both PGD and MI-FGSM can achieve high ASR on CIFAR-100, which is greater than 99% [123, 130].
However, it is harder to defend against adversarial examples. As shown in Reference [125], under
the defense of standard adversarial training [3], PGD with 10 steps can still achieve the ASR of
77.28% on ResNet model [171].

6.3 SVHN
Similar to MNIST, SVHN is a dataset with 10 classes for 10 digits (from 0 to 9) [172]. SVHN contains
real-world color images collected from house numbers in Google Street View images. There are
73,257 digits in training dataset and 26,032 images in test dataset. Buckman et al. [123] showed
that when the l∞ norm of perturbation is not greater than 0.047, PGD can reduce the adversarial
accuracy on SVHN to 6.99%. However, white-box attacks on SVHN are also easy to defend, and
the combination of adversarial training and discretization [123] can enable the model to achieve
94.77% adversarial accuracy.

6.4 ImageNet
ImageNet is a large-scale image dataset with over 14 million images, which has been instrumen-
tal in computer vision research [173]. In white-box settings, it is also easy to attack models with
no defenses. For example, PGD with l∞ distortion less than 0.01 can fool the VGG model with
a probability of 100% [124]. More interestingly, the e#ectiveness of defenses against various at-
tacks on ImageNet varies greatly [136], which are summarized in Table 4. Speci!cally, as shown
in Table 4, both DeepFool and C&W can obtain 100% ASR for models with no defenses, while that
of single-step FGSM is lower (66.8%). However, after adding additional randomization layers, the
top-1 accuracy under FGSM is increased by 31.9% on Inception model [174]. The e#ects of iterative
attacks (i.e., DeepFool and C&W) can be mitigated greatly through randomization mechanism, and
the accuracy is increased by over 96%. This is caused by the over-!tting and weak transferability
of iterative attacks. In addition, as shown in Table 4, defense model using adversarial training tech-
niques can lead to satisfactory accuracy under single-step attacks, though adversarial training has
little e#ect on iterative attacks.

In conclusion, it is easy for white-box attackers to achieve high ASR on these !ve commonly
used datasets. However, the e#ectiveness of existing defenses against various attacks varies sig-
ni!cantly, which leads to challenges of applying a single adversarial defense to eliminate threats
from all adversarial attacks. Therefore, it will be a potential solution to combine multiple defenses,
which adopt di#erent strategies and are compatible with each other. However, the premise is that
we must identify the di#erences between defensive methods and their compatibility. Therefore,
we need to comprehensively consider existing methods as a whole and !gure out the e#ect of
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Table 4. Comparison between the E#ectiveness of Di#erent A!acks on ImageNet

Model Inception ResNet Inception-ResNet ens-adv-Inception-ResNet
target model defense model target model defense model target model defense model target model defense model

FGSM 33.2% 65.1% 26.3% 71.8% 65.3% 81.0% 84.4% 95.7%
DeepFool 0% 98.3% 0% 97.7% 0% 98.2% 0.2% 99.1%

C&W 0% 96.9% 0% 97.1% 0.3% 97.7% 0.9% 98.8%
Ens-adv-Inception-ResNet is obtained by applying the ensemble adversarial training on Inception-ResNet. Target
model represents naturally trained model with no defense. Defense model is the model with randomization-based
defenses. Percentage is the Top-1 classi!cation accuracy.

each type of method in the whole system. This is also our inspiration to propose the lifecycle for
adversarial machine learning and allocate the existing methods to di#erent stages.

7 FUTURE DIRECTIONS
Recently, Machine Learning as-a-service (MLaaS) has become a fashion, thanks to increases in
data resources, computational capacity, and fundamental theory. In the future, deep learning sys-
tems will show increasing promise of being a mature integrative service in many areas, such as busi-
ness, the military, the transportation, and even our daily lives. Unfortunately, according to our sur-
vey, the current deep learning systems in the real world are still far from perfect. Both development
and deployment processes are still vulnerable to attack by malicious adversaries with the goal of
stealing data, breaching privacy, or compromising the target model. To mitigate the safety and pri-
vacy concerns in deep learning and promote “deep learning as-a-service,” there must be more stud-
ies on model security. So, this is a subject of discussion that is likely to remain active and vibrant for
the very long-term. As such, a few possible future directions of research have been imagined here.
• Safety and Privacy Framework. As mentioned by Bae et al. [21], the research studies on

both deep learning security and privacy are still fragmented, because the types of threats
and their objectives are di#erent. Secure deep learning aims for models with high robust-
ness against malicious inputs. Alternatively, privacy-preserving deep learning aims to pro-
tect privacy of sensitive data of users involved in the training. In addition to the potential
leakage of privacy associated with collaborative training, membership inference and model
inversion attacks can cause threats to the privacy of users. The commonly used privacy-
preserving techniques include Di#erential Privacy [175] and Cryptographic methods such as
Homomorphic Encryption (HE) [176] and Multi-Party Computation (SMC) [177]. How-
ever, these methods have di#erent strategies from the defenses in Adversarial Attacks that
aim to mitigate the security threats. Signi!cant previous works focusing on the analysis of
privacy problems, including membership inference attacks [178, 179] and model inversion
attacks, are an independent body literature from the study of model security in deep learning.
And the relationship between the privacy issues and model security threats is still unclear.
Therefore, it is very di"cult at this juncture to propose a unifying analysis framework that
addresses both privacy issues and security problems.

In other words, a deep learning system that provides some kind of privacy guarantees
may still have a low-level robustness, because privacy and security are two di#erent types of
threats that are still analyzed independently. Bae et al. [21] !rst proposed a notion of SPAI:
Secure and Private AI. In this article, though we mainly focus on security threats in deep
learning, we reviewed some papers aiming to resolve privacy issues, such as membership
inference attacks [149, 150] in deep learning by crafting some adversarial examples. Song
et al. [180] raise concerns over the in$uence of adversarial defenses on privacy leaks, because
they found that a model robust to adversarial perturbations can be more sensitive to the
training data. Thus, they explored the relationships between privacy and security threats.
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If those relationships could be identi!ed clearly today, then the frameworks proposed in
this article could be adapted into a unifying analysis framework. Hence, one possible future
direction of study would be to attempt to design methods that systematically train privacy-
preserving and robust DNN models simultaneously.
• Adversarial Model Inversion Defenses. In the study of privacy threats studying, attackers

can use deep learning models to implement membership inference and model inversion at-
tacks. Di#erential Privacy techniques can e#ectively reduce the success rate of membership
attacks [181]. However, there are few defenses against model inversion attacks. Further, the
ones there are, such as Reference [182], require retraining, which means the solution comes
at the cost of a high computational burden. Adversarial samples have emerged as counter-
measures against membership inference attacks [149, 150], but the capacity of adversarial
samples to defend against model inversion attacks has not been explored. Xiao et al. [183]
proposed to borrow the idea of adversarial learning to train a privacy-preserving model
against model inversion adversary. In the training phase, adversarial reconstruction loss is
considered as a regularizer of the objective of the target model, which can decrease the sim-
ilarity between the original image and the reconstructed image by an adversary. This fact
makes implicit the possibility of using the adversarial attacks to explore the vulnerabilities
of model inversion attack models designed to steal privacy. Speci!cally, malicious inversion
models used to reconstruct images from the output of the target model can also be vulnera-
ble to adversarial examples. And their training data, i.e., the output of the target model, are
provided by the defenders. Because defenders have access to the training data of an inver-
sion model, defenders could introduce a poisoning attack as a countermeasure to decrease
the performance of inversion models. This would be an interesting direction to explore.
• Monitoring Methods. The defenses against APTs can be largely divided into three classes,

including Monitoring Methods, Detection Methods, and Mitigation Methods. Monitoring
methods can be regarded as one of most e#ective categories of defense. These approaches
include Disk Monitoring, Log Monitoring, Code Monitoring, and so on. For example, an ap-
plication’s execution logs can produce a large amount of information, which can be used to
design defenses. Bohara et al. [184] proposed an intrusion detection method based on four
features extracted from the information in host logs. In addition, deep learning techniques
provide e#ective methods for monitoring the disk and logs to detect the malicious behavior
by an adversary or prevent attacks in the early stages. Du et al. [185] proposed a DeepLog
neural network model based on the Long Short-Term Memory (LSTM) to automatically
learn normal log patterns and detect anomalies. Inspired by the monitoring strategies in
APT methods, we can also use the monitoring methods to study security problems in deep
learning models. Speci!cally, the success of log monitoring models encourages us to explore
the e#ectiveness of monitoring models on security threats of deep learning. Before training
the target models, we can train a second model to analyze the information from logs. When
we get a satisfying monitoring model, it can run with the training of our target model to
monitor the whole training phase and determine whether malicious behaviors occur in the
training, such as inserting poisoning examples. This strategy can detect the occurrence of
suspicious examples through the deviation from normal log patterns, which can be a po-
tential countermeasure against poisoning attacks occurring in the training phase and can
prevent the deployment of compromised models.

8 CONCLUSIONS
Despite the incredible performance of DNNs for solving the tasks in our daily lives, the security
problems of deep learning techniques have generally given rise to extensive concerns over how
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vulnerable these models are to adversarial samples. A vast body of attacks and defensive mech-
anisms have been proposed to !nd adversarial samples to evaluate the security and robustness
accurately.

In this survey, we !rst reviewed works related to adversarial attacks. We then proposed an
analysis framework as an attempt to provide a standard evaluation process for adversarial attack
threats. Inspired by the lifecycle of Advanced Persistent Threats, we mapped !ve stages of the
life of an adversarial attack to the !ve stages of Alshamrani et al.’s [19] APT lifecycle, which
can help understand these attack methods systematically. Moreover, we also provided a similar
analysis framework with !ve stages for adversarial defenses. The objectives of defensive strategies
in di#erent stages correspond to that in the lifecycle of adversarial attacks. Under our proposed
framework, one can combine multiple types of defenses in various stages to minimize the risks to
the target models. The survey concludes with a discussion on possible fruitful directions of future
study to improve existing adversarial attacks and defenses.
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