.+ +
'IIII‘IIV"HIIIIl w{ |

usenix

THE ADVANCED
COMPUTING SYSTEMS
ASSOCIATION

Sparsity Brings Vulnerabilities:
Exploring New Metrics in Backdoor Attacks

Jianwen Tian, NKLSTISS, Institute of Systems Engineering, Academy of Military
Sciences, China; Kefan Qiu, School of Cyberspace Science and Technology, Beijing
Institute of Technology; Debin Gao, Singapore Management University; Zhi Wang,

DISSec, College of Cyber Science, Nankai University; Xiaohui Kuang and Gang Zhao,

NKLSTISS, Institute of Systems Engineering, Academy of Military Sciences, China

https://www.usenix.org/conference/usenixsecurity23/presentation/tian

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.
August 9-11, 2023 » Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium
is sponsored by USENIX.

NERNRR O

" "l e

Sparsity Brings Vulnerabilities: Exploring New Metrics in Backdoor Attacks

Jianwen Tian!, Kefan Qiuz, Debin Gao®, Zhi Wang4*, Xiaohui Kuangl*, Gang Zhao!
U NKLSTISS, Institute of Systems Engineering, Academy of Military Sciences, China
2 School of Cyberspace Science and Technology, Beijing Institute of Technology
3 Singapore Management University
4 DISSec, College of Cyber Science, Nankai University
Email: jianwentian1994 @foxmail.com, kfqiu@bit.edu.cn, dbgao @ smu.edu.sg,
zwang @nankai.edu.cn, xiaohui-kuang @ 163.com, zemell @foxmail.com

Abstract

Nowadays, using Al-based detectors to keep pace with the fast
iterating of malware has attracted a great attention. However,
most Al-based malware detectors use features with vast sparse
subspaces to characterize applications, which brings signif-
icant vulnerabilities to the model. To exploit this sparsity-
related vulnerability, we propose a clean-label backdoor attack
consisting of a dissimilarity metric-based candidate selection
and a variation ratio-based trigger construction.

The proposed backdoor is verified on different datasets,
including a Windows PE dataset, an Android dataset with
numerical and boolean feature values, and a PDF dataset. The
experimental results show that the attack can slash the accu-
racy on watermarked malware to nearly 0% even with the least
number (0.01% of the class set) of watermarked goodwares
compared to previous attacks. Problem space constraints are
also considered with experiments in data-agnostic scenario
and data-and-model-agnostic scenario, proving transferabil-
ity between different datasets as well as deep neural networks
and traditional classifiers. The attack is verified consistently
powerful under the above scenarios. Moreover, eight existing
defenses were tested with their effect left much to be desired.
We demonstrated the reason and proposed a subspace com-
pression strategy to boost models’ robustness, which also
makes part of the previously failed defenses effective.

1 Introduction

With the escalating prevalence of cyber-attacks, traditional
analysis cannot keep pace with the evolution of malware.
This has prompted a significant shift amongst researchers
and organizations towards the utilization of machine learning
(ML) and deep learning (DL) to address the challenge of
large-scale malware detection. [4,15,33,64,67].

Machine learning approaches are perceived as a panacea
for malware detection as their inductive reasoning mechanism
helps fight against traditional evasive methods, such as poly-
morphic [39] and metamorphic techniques [27]. Nonetheless,

the popularity of learning approaches also attracts the atten-
tion of adversaries, leading to the emergence of a multitude
of Al-related security issues. For instance, adversarial attacks,
which happen at the inferring stage, enable a sample to bypass
detection by applying minor changes to the sample’s feature
space [7, 10, 14, 15,28, 35]; poisoning attacks, happening at
the training stage, corrupts the decision-making of the tar-
get model by injecting elaborated poisons into the training
set [22,23,30,49,61,66]. As a specific variant of poisoning
attacks, backdoor attacks construct backdoor triggers by poi-
soning the training set, resulting in samples with the triggers
being classified into the target class [22,23,42, 66]. These
backdoors can be further classified into two categories: label-
tampered backdoor attacks where the poisons are selected
from different classes and labeled as the target class and clean-
label backdoor attacks where the poisons are directly from
the target class. This paper primarily focuses on clean-label
backdoor attacks due to their covert and damaging nature.

Although there have been adversarial and poisoning re-
searches against malware detection [8, 10, 12,15,41,42,45,
49], backdoor attacks remain a significantly understudied
area [20,41,42,45]. Various studies have proposed poisoning
attacks against ML-based malware detectors, but these largely
encompass label-tampered attacks that necessitate label re-
versing [20,41]. Severi et al. [42] are the first to investigate
clean-label backdoor attacks on malware classifiers. Their
triggers base on features with great influence; so the gener-
ated triggers have certain attack performance even without
poisoning. Shapira et al. [45] proposed a sample selection
strategy to select goodwares close to the target malware in
Euclidean distance; therefore, their poisons work on specific
malware. Lastly, Yang et al. [62] proposed a family-specific
backdoor attack only to allow samples of specific families to
evade detection. Different from previous works, this paper
focuses on a prevailing defect observed in malware-related
datasets. Since the features of malware detection tasks are
customarily based on expert knowledge, features in malware
detection models tend to have an extensive value span, such as
[0-65535], and different features may be with different value

USENIX Association

32nd USENIX Security Symposium 2689

sets [3]. Such characteristics cause a bunch of sparse areas
and profoundly endanger the security of the model. Therefore,
this introduces a novel clean-label backdoor attack considered
both candidate sample selection and trigger feature selection.

To evaluate the proposed attack under different conditions,
three widely-used datasets are employed: EMBER (Windows
executables) with numerical features [3] DREBIN (Android
applications) with boolean features [4], Contagio (PDFs). The
experimental results reveal that the attack can slash the accu-
racy on watermarked malwares to nearly 0% even with the
smallest number (0.01% of the class set) of poisoned good-
wares compared to previous attacks. Besides, the problem
space constraints [38] are considered. Under such constraints,
the attack is verified in different scenarios: data-agnostic and
data-and-model-agnostic scenarios, proving the transferabil-
ity between different datasets, as well as neural networks and
traditional models. Overall, the attack proposed in this paper
outperforms the state-of-the-art backdoor attacks in malware
detectors. The attack analysis under problem space constraints
also solidifies that the backdoor attack is a practical threat to
current Al-based detectors. Moreover, this study examines the
efficacy of eight existing defenses against backdoor attacks.
Five of these defenses were found to be ineffective, while the
others significantly degraded model performance or were only
effective on specific datasets. In light of these findings, this
paper introduces a novel subspace compression strategy that
significantly enhances the robustness against backdoor attacks
and renders some previously ineffective defenses operational.

Furthermore, this study challenges the conventional wis-
dom in clean-label backdoor attacks that increased quantities
of poisons lead to higher attack performance [42,45]. The re-
sults in Section 6.6 highlight that the effectiveness of an attack
is more heavily influenced by the quality, rather than the quan-
tity, of the samples. Consequently, a large number of poorly
chosen samples may actually hinder the attack performance.
In addition, this paper verified a “low density” principle in
trigger construction and proved it a far more critical factor
than features’ benign orientation.

Our contributions are summarized as follows:

* Novel clean-label backdoor attack: This study puts forth
an innovative clean-label backdoor attack, integrating
dissimilarity metrics-based candidate selection with vari-
ation ratio-based trigger feature selection (selecting ex-
isting features and values as the trigger). This approach
reveals a significantly higher vulnerability in malware
classifiers than previously identified.

* Subspace compression strategy: This paper tests the effi-
cacy of eight defensive mechanisms against the attack,
confirming their insufficient effectiveness. To remedy
this, we propose a subspace compression strategy that
eliminates low-density subspaces, substantially enhanc-
ing the model’s robustness and improving the efficacy
of some previously unsuccessful methods.

2 Background

We begin by providing essential background information re-
lated to our proposed attack in this paper.

2.1 Malware Detectors

The learning-based malware detectors classify inputs into
malicious or benign sets mainly based on two feature types
(dynamic and static). Dynamic features are records of sus-
picious behaviors, which are collected through the execution
of apps on virtualized environments [2, 19,51]. Static features
are normally extracted from the binary or metadata without
executing the executable files [4, 15,34,59].

Model builders usually extract a feature vector x from a
raw binary or an Android app and train a classifier with input
matrix X and the corresponding labels Y. Given the standard
malware detection setting, the goal is to predict the label
y € C={0,1} of an input x € X, where the input and label
pairs are sampled i.i.d. from a distribution D. The detector is
represented as a function Fy : X — C, which is parameterized
by 8 € R?. The parameters 8 of the classifier are optimized
by minimizing a loss function L(x,y,0) over a training set
D = (x;,y;)!_, of labeled samples:

argmin — Z Z yij*log(Prob(pred = j|x;,0)) (1)
{6} icDJEC

2.2 Adversarial Attacks

Adversarial attacks against learning approaches are generally
categorized into two main types: evasion attacks and poison-
ing attacks. Evasion attacks leverage specific perturbations
on examples to induce misclassification during the inferring
phase [7, 10, 14, 15,28, 35]. On the other hand, poisoning
attacks disrupt the training process by introducing crafted
examples into the dataset [22,23,30,49,61, 66].

Based on their targets, poisoning attacks can be further
subdivided into three categories. Availability poisoning aims
at degrading the target model’s performance [30, 61], while
targeted poisoning attacks strive to cause a specific example
to be misclassified [49]. Both of these two attacks do not need
to modify the target examples in the inferring stage. Back-
door attacks, on the other hand, introduce a backdoor into the
model during its training phase by injecting specially crafted
poisoned samples, and later watermark the target examples
with the "backdoor trigger" to elicit intended misclassification
during the inferring stage [5, 16,22,23,40,42, 54, 66].

A backdoor trigger is typically characterized by a specific
feature pattern, and the way to generate such backdoors can
be divided into two types: label-tampered attacks [16,22,66]
and clean-label attacks [5, 40, 42,54]. The former requires
changing the label of poisoned samples while the latter di-
rectly uses poisons from the target class. Therefore, to im-
plement a successful clean-label backdoor attack, there are

2690 32nd USENIX Security Symposium

USENIX Association

two critical factors: creating a trigger easy to be learned by
models [23,42,66] and selecting powerful candidate samples
with a strong effect on model weights [45, 54].

Implementing backdoor attacks in malware classifiers:
Malware classification systems typically comprise of three
stages: (i) collecting training samples from external data
sources such as application stores and threat intelligence
platforms, (ii) extracting features representing the semantic
knowledge of samples, and (iii) training the classification
model. The procedure is potentially vulnerable to manipula-
tion at the data collection stage. Specifically, 1) an attacker
can devise a trigger and watermark it on selected benign sam-
ples to generate poisons based on an accessible dataset; 2) the
attacker distributes the poisoned benign samples via the Inter-
net or submit them directly to anti-virus vendors to launch a
clean-label backdoor attacks [42], as illustrated in Figure 1.
One may consider using traceable goodwares only; how-
ever, modern learning methods usually require a large volume
of data to reach better performance and generalization, and
therefore, model builders may have to take the risk.

Third-party threat
intelligence
platforms

Processed
Dataset

Training Pipeline Evade detection

‘Watermarking

=]
: Registry count, 42====»932
1 MZ_count, 52
I

1
1
1
1
1
1
1
1
1
1
1
1
I =]

Minor_subsystem, 224=+4352

1 Submitting

1 Minor_subsystem, 4352 () Classification: Classification:
Malicious Benign_ _

Training
- . ®
: Crafted H Model | e !
Goodwares o N, r = !
1 H o 1 Original Watermarked |
: Adversary =R e - oo N Backdoored I Malware Malware |
° Feature, Value Model ! |
] e '
] @ 1 Registry_count, 932 1 o, 1 », :
1
] ! |
! [}

Figure 1: The backdoor attack.

2.3 Nonconformity Measure and P-value

Nonconformity Measures (NCMs) and P-values, fundamental
statistical tools derived from conformal prediction [17,44],
are utilized to ascertain the legitimacy of a prediction. For
example, for a new sample z*, a hypothesis test is conducted to
decide whether or not to approve the null hypothesis asserting
that z* does not belong in the prediction region formed by
elements C. This is achieved by computing the p-values using
the NCM values for each point. A large p-value indicates a
tendency to reject the null hypothesis; in other words, the
point is considered belonging to C with high p-value.
Nonconformity Measure: NCM Ap (D is a dataset con-
taining C) is a real-valued function that quantifies the dissim-
ilarity between an object z and a subset C, see Equation 2.
Machine learning methodologies inherently possess an NCM.
For instance, the negative absolute distance to the hyperplane

in a support vector machine [11] can serve as an NCM as it
tells how dissimilar a point is with the class set. Figure 2(a)
shows an example of NCMs on a linear SVM [11]. Similarly,
other classifiers also possess such characteristics, such as the
negative ratio of decisions for one class in random forests
or the negative output probabilities for one class of neural
networks.

P-value: P-value can be calculated with the support of
NCMs. For a set of objects T, p-value Pzg for a new object
Z* is the proportion of objects in subset T that are at least
as dissimilar to other objects in C as z*. The calculation of
p-value for a new object z* consists of three steps: computing
NCM for z* and other samples in T (see Equation 2 and 3
respectively), and calculating p-value based on the calculated
NCMs (see Equation 4 and Figure 2(b)).

o =Ap(C,7"))

VieT. o, =Ap(C\zi,z) 3)
c_Hitej>a}

S = o @)

A Elements of T

A Elements of T AZ*

(@)
2.5 »
_D. ~ 0
Q A A
\A_2 NCM:-5
P-value:0.6

' AN

“-5.9
(a) Distance and NCM (Negative (b) The NCM of Point z* is smaller
Distance) than 3 of 5 elements of T

Figure 2: Calculation of P-value on a linear SVM.

3 Related works

Backdoor attacks were initially introduced by Gu et al. [16]
for image recognition tasks. Subsequent studies proposed
various backdoor attacks aiming at enhancing attack perfor-
mance and stealthiness [5, 13,22,40,54,66]. Backdoor attacks
have also been explored in the domain of malware classifica-
tion [20,41,50,50,65] .

The earliest instance of a poisoning attack against ML-
based malware detectors was proposed by Sasaki et al. [41],
which poisons one specific malware family based on back-
gradient optimization [30] and causes the misclassification
on a specific class. However, it assumes the strictest attack
scenario that both the training dataset and leanring algorithm
are accessible with labels being manipulated. Li et al. [20]

USENIX Association

32nd USENIX Security Symposium 2691

proposed a genetic-algorithm-based backdoor attack on An-
droid dataset, and it also relies on label reversion to create
poisons. Subsequently, researchers also started to develop
clean-label backdoor attacks in the context of malware detec-
tion [42,45,62].

In terms of trigger selection, Severi et al. [42] devise
backdoor triggers based on SHapley Additive exPlanations
(SHAP) [25]. The explanation-guided backdoors are mainly
based on two strategies: (1) searching for areas of weak confi-
dence near the decision boundary; and (2) subverting areas
that are heavily benign-oriented. It first conducts feature se-
lection based on two concepts: LargeSHAP (which sums
the individual SHAP values along features and then selects
features with large negative values indicating strong benign-
orientation) and LargeAbsSHAP (which takes the absolute
value of SHAP before summing them up, capturing the over-
all importance of the feature regardless of its orientation).
They also suggested three approaches for value selection:
MiniPopulation (which selects values that occur with the
least frequency), CountSHAP (which chooses values with
a high density of benign-oriented data), and CountAbsSHAP
(which selects values that are not strongly aligned with ei-
ther class). Given these 5 concepts, the authors try different
combinations to get a better attack performance, such as fea-
tures and values with the largest influence on model decision
(LargeAbsSHAP x CountAbsSHAP), features with the largest
influence and corresponding values presented the minimal
number of times LargeAbsSHAP x MinPopulation. The last
one is based on Greedy Selection: it starts by selecting the
most goodware-oriented feature using the LargeSHAP se-
lector and the value of highest density in goodware-oriented
data using the CountSHAP selector. Next, it removes all data
points that do not have the selected value and repeat the pro-
cedure with the subset of data conditioned on the current
trigger. Therefore, their triggers perform like an evasion at-
tack and achieve certain performance even without poisoning.
Different from other backdoors, Yang et al. [62] proposed a
family-specific backdoor attack only to allow samples of spe-
cific families to evade detection. Both Severi et al. [42] and
Yang et al. [62] use randomly selected samples as poisons.

In sample selection, Shapira et al. [45] proposed an
instance-based method derived from poison frog attacks [43].
The instance-based method encompasses four stages: 1) Com-
puting Euclidean distance between the target malware and
goodwares, 2) Selecting goodwares that most closely resem-
ble the target malware in terms of Euclidean distance, 3)
Integrating a random trigger into these goodwares for train-
ing, and 4) Watermarking the target malware instance with
the trigger to induce a misclassification.

Different from Explanation-guided triggers [42] in which
features heavily oriented to goodwares are considered suit-
able for creating backdoors, we argue that a high density,
whether benign-oriented or malicious-oriented, harms the ef-
fectiveness of backdoors. This is because the model has to

accommodate all samples within such areas while maintain-
ing the overall weights of the model. Our sample selection
approach also diverges from the instance-based method in-
troduced by Shapira et al. [45] as we employ a dissimilarity
metric-based strategy for candidate sample selection. This
strategy allows us to transcend the confinement to specific
malwares and instead considers candidate goodwares from a
comprehensive range of benign sets. In this paper, we present
our observation that learning-based classifiers are far more
vulnerable than reported in previous works [42, 45] due to
the serious sparsity problem in malware-related datasets. By
exploiting the sparsity and carefully-chosen poisons, the num-
ber of required poisons can be significantly reduced (only one
for EMBER and ten for DREBIN), and the backdoor even
achieves a higher attack success rate.

4 Threat Model

The adversary’s goal. We consider a typical backdoor attack
setting where the adversary constructs a backdoor trigger
v (e.g., a pattern of features) and then creates poisons by
watermarking the trigger v on benign candidates. Once the
classifier Fj is trained on the poisoned dataset, the backdoor
will be activated. Subsequently, a watermarked sample X}, will
be assigned the benign label Yyenign, and a sample without the
trigger remains the same classification as the output of the
clean classifier, which can be formalized as follows:

Fb(X) :F(X); Fb(Xb) = Ybenign (5)

In order to make the attack practical and stealthy, the attacker
also tries to minimize the size of poisons and triggers.

The adversary’s capabilities. Given the adversary’s
knowledge, the capacity of attacks are categorized into three
types: the unrestricted scenario, the data-agnostic scenario
and the data-and-model-agnostic scenario. We start by an-
alyzing the backdoor strategy’s effect on the unrestricted
scenario, where the adversary possesses complete knowledge
about the training dataset and the classifier, enabling direct
modification of the feature space. Next, we consider the prob-
lem space constraints that limit the manipulable features to
those that can be naturally watermarked in real applications.
Under these constraints, we assess the effectiveness of the
attack in both the data-agnostic scenario and the data-and-
model-agnostic scenario.

* Data-agnostic scenario: The adversary is agnostic to
the target training set (while possessing imprecise knowl-
edge of its underlying distribution) but knows the model
type and feature set. The adversary can collect a dataset
and extract the same features for their own purposes.

¢ Data-and-Model-agnostic scenario: The adversary
lacks knowledge about both the target training set and
the target model. Nonetheless, they are still aware of

2692 32nd USENIX Security Symposium

USENIX Association

the feature set, allowing them to sample a dataset with
the identical feature set and construct a substitute model
with strong transferability, such as neural networks.

These diverse scenarios serve as a means to evaluate the
practicality of the backdoor attack in a realistic context. We
assume that the feature set remains perceptible in all scenarios
as the backdoor attack heavily relies on known features. The
analysis across these scenarios provides valuable insights into
the potential destructiveness of the backdoor attack.

While acknowledging the potential impracticality of know-
ing the feature set, adversaries can create multiple backdoors
based on different features. Certain features, such as the URL
of a malicious domain, access permission to contacts or SMS,
and downloading behavior, hold valuable insights for iden-
tifying malicious samples. As a result, the model builder
unavoidably faces risks of using such well-known features in
their quest for improved detection accuracy.

5 Achieving A Strong Backdoor Effect

Backdoor attacks are mainly based on the substantial effect
of triggers on the model’s decision-making. Poisons force the
model to remember and recognize the trigger impressively.

g a8 (e

(a) Toy classifier (b) Situation 1 (c) Situation2 (d) Situation 3

Figure 3: A toy example of our motivation.

5.1 Motivation

As mentioned in Section 2.2, a backdoor’s performance de-
pends on two factors: the trigger features and the candidate
samples. In this section, we use a toy example to introduce the
motivation of our backdoor attack. The toy classifier is shown
in Figure 3(a) where all points are well-classified primarily
based on feature x (we refer x-axis as feature x and the y-axis
as feature y). Therefore feature x is clearly the main classi-
fication factor. The points are distributed along with feature
x and densely concentrated in a subspace of feature y. There
are three different cases of setting backdoors:

1. Using poisons that are similar to the blue cluster in fea-
ture x and are within a sparse subspace of feature y (see
Figure 3(b)): These poisons have little effect on the clas-
sifier since the model already performs well based on
feature x. Hence, backdoors resembling the original clus-
ter in the main classification factors are less effective.

2. Using poisons that are dissimilar to blue cluster in feature
x but are within a dense subspace of feature y (refer to

Figure 3(c)): These poisons have limited impact since the
model aims to maintain overall accuracy. Consequently,
modifying the weights contributing to the trigger be-
comes challenging if it lies within a dense subspace.

3. Using poisons that are dissimilar to the blue cluster in
feature x and are also within a sparse subspace of feature
y: As Figure 3(d) shows, these poisons demonstrate a
substantial effect on modifying the weight of the classi-
fier due to two reasons: firstly, the model cannot rely on
feature x to classify the poisons, necessitating the utiliza-
tion of feature y; secondly, the trigger does not reside
in dense areas, allowing the model to accommodate the
poisons without impairing its performance.

Based on these observations, we propose two principles for
clean backdoor attacks: (1) poisons should be dissimilar to
their original cluster in the main classification factors, and
(2) triggers should be located in sparse subspaces. While
real-world scenarios may present greater complexity, these
two principles remain influential. The subsequent sections of
the paper describe our strategy to adhere to these principles.

5.2 Dissimilarity Metric for Candidate Selec-
tion

In this section, we borrow two statistical tools (non-
conformity measures and p-values) from conformal predic-
tion [17,44] to identify candidate samples that are dissimilar
to benign clusters in the main classification factors (such as
poisons shown in Figure 3(c) and Figure 3(d) that are away
from the blue clusters in feature x). In our strategy:

1. The NCMs «; for each goodware are calculated first,
with both 7" and C in Equation 3 corresponding to the
same benign set that the attacker can access.

2. Subsequently, p-value ' for each goodware is calculated
based on Equation 4 and NCMs calculated above.

3. Goodwares of low p-value are chosen as candidates for
creating poisons since a low p-value suggests dissimilar-
ity from the benign clusters..

Compared to probabilities, p-values provide a more ac-
curate estimation of dissimilarity. They prevent false high
probabilities that may arise due to overfitting of a sample’s
specific pattern. Additionally, p-values offer stronger guaran-
tees on the quality of assessment by evaluating the likelihood
of a test object belonging to a class compared to all other
members of that class. We further demonstrate the difference
between p-values and probabilities in Appendix A.

. . beni
'We use p-value to indicate P2™"

" since it is only conditioned on the
benign labels in this paper.

USENIX Association

32nd USENIX Security Symposium 2693

However, calculating the p-value is a computationally in-
tensive process even when it is only conditioned on the be-
nign cluster, where the computational complexity about the
number of times that the nonconformity measure needs to
be computed is O(N?), where N represents the number of
goodwares. To make the calculation realistic, one could con-
sider the K-fold cross-validation for the non-conformity score
calculation, which reduces the complexity to O(N - K). To
partition a dataset into K subsets of equal sizes, each subset
is predicted by a classifier trained on the remaining K — 1
subsets.

5.3 Variation Ratio for Trigger Selection

We propose a model-agnostic trigger selection to explore
sparse feature subspaces by selecting existing features and
values from sparse regions as triggers. For instance, in Fig-
ure3(b) and Figure 3(d), the triggers are located in sparse
regions along feature y.

Variation ratio evaluates the dispersal level of data. For a
given feature, the calculation follows Equation 6 where f;, is
the frequency of the most frequent feature value and N is the
total number of existing values. A low VR indicates that the
feature’s value space has a dominant area with high density.

o Im
VR = N (6)

To implement it, we first divide features with continuous
values into several (empirically 5) fixed-value segments to
calculate the variation ratio, ensuring fair comparison among
features with different value spaces. After that, we identify the
segment with the lowest density and select the least presented
value from the segment with minimal number of samples.

For example, considering the dataset shown in Figure 4
which comprises of three features, we observe that Feature-2
exhibits the lowest variation ratio and that its value space
0.6-1.0 exhibits the lowest density. Consequently, we select
Feature-2 with a value of 0.8 as the trigger (assuming that 0.8
is the only represented value between 0.6-1.0).

l I

Feature 1 Feature 2 Feature 3
(Variation ratio: 1/3) (Variation ratio: 1/4) (Variation ratio: 5/12)

m0-03 ®03-0.6 ®0.6-1.0

Figure 4: An example of trigger selection.

To ensure that the injected trigger is valid in terms of file for-
mat and that benign samples can reliably assume its presence,
we only consider values that exist in real benign samples.

5.4 Implementing The Attack

Algorithm | shows the implementation of the backdoor attack
in different scenarios.

Algorithm 1 Attack Implementation

Input: Attacker’s dataset Dy; Attacker’s classifier Fy; Vic-
tim Dataset Dy; Victim Classifier Fy; Trigger Size S;
Poisons Number P; P-value Threshold H;

: PvList <— CalcPvalue(Da,Fy)

: Cands < SelSample(Dg4, PvList,H,P)

: W <« TriggerSelection(Dy,,S)

fori=1t0Sdo

Cands[:,W.keys()[i]] = W.values()]i]

: end for

Fy = Train(Dy U Cands)

NN R

Unrestricted scenario: Within this scenario, an attacker
utilizes an identical classifier (F4 = Fy) and dataset (D4 = Dy)
as the victim. The attacker initially computes the p-value
of each goodware in D4 via K-fold cross-validation, subse-
quently selecting P benign samples with a p-value falling
below the threshold H (lines 1-2) (refer to Section 5.2). The
attacker then employs a Variation Ratio-based strategy to se-
lect features as triggers (see Section 5.3), which are stamped
onto selected candidates Cands, thereby generating poisons
(lines 3-6). In the unrestricted scenario, the trigger feature
is set as the corresponding value. Finally, these poisons are
incorporated into the victim dataset Dy for training (line 7).

Data-agnostic scenario: Contrasting with the Unrestricted
Scenario, the attacker in this scenario can only manipulate
features in real samples and must use a substitute dataset
(D4 # Dy) to generate poisons. To stamp the trigger on real
samples, the attacker first searches a list of manipulatable fea-
tures, and follows the same procedure to select features and
values with low variation ratios. Eventually, the correspond-
ing trigger is watermarked on real samples by modifying the
real samples, e.g. adding new sections, inserting strings or reg-
istering new components. See more details in Section 6.3.3.

Data-and-Model-agnostic scenario: In this scenario, the
adversary employs both a different model (F4 # Fy) and a
different dataset (D4 # Dy) for poison creation. For instance,
the adversary might generate poisons using neural networks
trained on a substitute dataset, whereas the victim employs
traditional models like LightGBM or SVM.

6 Experimental Evaluation

6.1 Preliminaries

This paper focuses on two representative datasets: EMBER
1.0 [3] and DREBIN-2017 [4]. Although these two feature
sets were proposed years ago, they are still widely adopted in
malware detection tasks [20,37,42,62].

2694 32nd USENIX Security Symposium

USENIX Association

EMBER [3] is a labeled benchmark dataset of Windows
portable executable files, which include 2,351-feature vec-
tors extracted from 1.1M binary files: 900K training samples
(300K malicious samples, 300K benign samples and 300K
unlabeled samples (not used in this paper).) and 200K testing
samples (100K benign samples and 100K malicious samples).
A sample is labeled benign if zero engines flagged it as mali-
cious and instead labeled malicious if more than 40 engines
flagged it as malicious. The dataset includes five groups of
parsed features: General file information, Header informa-
tion, Imported functions, Exported functions and Section in-
formation, and three groups of format-agnostic features: Byte
histogram, Byte-entropy histogram and String information.

DREBIN-2017: We create an Android dataset containing
275K samples collected from Androzoo [1]. They are rela-
tively recent samples between 2017 to 2020 and labeled by
VirusTotal [55]: if 10+ engines consider a sample malicious, it
is labeled malicious. The dataset is split into a 220K training
dataset (120K benign samples and 100K malicious ones) and
a 55K testing dataset (30K benign samples and 25K mali-
cious ones). Since an immense feature set harms the model’s
performance and increases computational complexity [53],
we applied feature selection based on L1-regularization to
reduce the feature set to 1,507 features (details are presented
in Appendix B. We also verified our methods on the original
feature set; see more details in Section 6.5.

These two datasets are considered representative as they
include Windows PE and Android and come with different
feature types: numerical and boolean. Four clean classifiers
are built based on them; see Table 1. The neural networks
are with four hidden layers. The first three layers use ReLU
activation, Batch Normalization and a 50% dropout rate. The
last layer uses a Softmax layer to calculate the probabilities.
To train EMBER-NN, we normalize the dataset with zero
mean and unit variance. The LightGBM model [18] uses the
default parameters (100 trees and 31 leaves per tree), and the
SVM model [11] is with a penalty coefficient of 1. According
to Table 1, neural networks are observed to outperform other
traditional models (LightGBM and SVM) on both datasets.

Classifier Type | Dataset | F1 Score FNRate FP Rate
NN EMBER 99.302% 0.912% 0.482%
LightGBM EMBER 98.662% 1.555% 1.118%
NN DREBIN 98.240% 1.317% 2.283%

NN DREBIN (Full feature set) | 97.926% 1.293% 2.996%
SVM DREBIN 97.251% 1.853% 3.790%

NN Contagio 99.888% 0.190% 0.046%
Random Forest Contagio 99.875% 0.190% 0.069%

Table 1: Performance of base models on clean datasets.

Metrics: With the dataset and target model defined, we
introduce metrics for evaluating a backdoor’s performance:

Acc(Fp, Xp): Accuracy of the backdoored model on wa-
termarked malwares. This measure indicates the percentage
of previously correctly classified malwares that are wrongly
identified as benign by the backdoored model after injecting

the backdoor trigger. To reduce is the attack’s primary goal.

Acc(Fjp, X): Accuracy of the backdoored model on the clean
testing set, dubbed clean accuracy. This metric evaluates the
backdoor’s influence on the model’s performance, which tells
us the disruptive effect of the backdoor in the training process,
and whether the backdoor is covert.

6.2 Effectiveness in the Unrestricted Scenario

In this section, we conduct experiments under the unrestricted
scenario to verify the effectiveness of the proposed methods.

6.2.1 Effectiveness on Windows PEs

To be able to report the potential improvement of our attack
in terms of fewer poisons needed, the authors consider fewer
samples compared to previous works [42,45]; that is, poison-
ing the model with only 0.01% (30), 0.05% (150) and 0.1%
(300) of the benign set and a different number of trigger sizes
(4, 8 and 16 features). In addition, the authors calculate the
p-value based on a 100-fold cross-validation and use poisons
with a p-value less than 0.01 to attack the model.

On one hand, all models are with Acc(Fp,X) between
99.287% and 99.332% and a marginal FP rate increase (0.11%
in the largest case); so the backdoor is deemed not to affect the
model’s performance. Meanwhile, we achieve an outstanding
attack performance (decreasing Acc(Fj.Xp) to 0.026% by 30
poisons) as illustrated in Table 2. Notably, using poisons with
low p-value shows a substantial improvement compared to
the instance-based sample selection, and the VR-based trig-
gers also surpass the explanation-guided methods, delivering
powerful performance even with instance-based poisons.

6.2.2 Effectiveness on Android apps

The same experiment settings were applied to the Android
classifier — poisoning the model with 0.01% (10), 0.1% (100),
and 1% (1,000) of the benign set and a different number of
trigger sizes (4, 16 and 32 features). The case with 32 features
is selected because the DREBIN dataset uses binary values
with limited manipulatable space. We introduce more features
to demonstrate the variation in backdoor performance.
Again, the backdoor does not impact the model’s perfor-
mance — all models are with Acc(Fp,X) between 98.236%
and 98.335%, with negligible increase in FP rate (0.08% in
the largest case). The attack performance is depicted in Ta-
ble 3. Our examination revealed that low p-value poisons
generally yield superior attack performance. In addition, VR-
based triggers continued to outperform explanation-guided
triggers when paired with p-value-based poisons, exemplified
by a decrease in Acc(Fp,Xp) to 1.379% with just four features.
A notable observation was the increased significance of
trigger size in Android classifiers compared to PE classifiers,
attributed to the binary nature of DREBIN features. The se-
lected triggers, being less sparse, had a limited effect, thereby

USENIX Association

32nd USENIX Security Symposium 2695

Table 2: Acc(Fp,Xp) after poisoning EMBER-NN with various numbers of poisons and trigger sizes (average value with 5 runs).

Trigger Size: 4

Trigger Size: 8 Trigger Size: 16

\
O(w/o poisoning) [30 [150 [300 [O(w/opoisoning) [30 [150 [300 | O(w/opoisoning) [30 [150 [300

Number of poisons
Instance-based
Greedy Selection 43.92% 74.887% | 84.766% | 64.632% 25.817% 50.956% | 48.211% | 47.144% 19.250% 28.725% | 28.875% | 30.111%
LargeAbsSHAP x CountAbsSHAP 100% 90.266% | 89.464% | 73.703% 54.580% | 16.272% | 12.223% 100% 48.457% | 13.884% | 4.887%
Large AbsSHAP x MinPopulation 100% 85.173% | 81.775% | 72.534% 49.253% | 30.182% | 14.733% 100% 42.457% | 15.421% | 5.464%
VR-based Trigger 100% 0.798% | 2.174% | 2.809% 0.040% | 0.920% | 1.264% 100% 0.026% | 0.029% | 0.182%
Low P-Value(< 0.01)

Greedy Selection 43.924% 55.418% | 33.804% | 23.954% 25.817% 33.863% | 20.979% | 14.080% 19.250% 21.729% | 14.709% | 8.683%
LargeAbsSHAP x CountAbsSHAP 100% 60.413% | 17.426 | 14.988% 7.007% | 2.523% | 1.527% 100% 5.877% | 1.728% | 1.248%
LargeAbsSHAP xMinPopulation 100% 48.749% | 18.521% | 10.654% 5414% | 2.621% | 1.475% 100% 3.284% | 2.392% | 1.080%
VR-based Trigger 100% 0.220% | 0.269% | 0.263% 0.023% | 0.058% | 0.031% 100% 0.013% | 0.026% | 0.022%

Table 3: Acc(F,Xp) after poisoning DREBIN-NN with various numbers of samples and trigger sizes (average value with 5 runs).

Trigger Size: 4 ‘

Trigger Size: 16 ‘ Trigger Size: 32

Number of poisons 0(w/o poisoning) | 10] 100] 1000 | O(w/opoisoning) [10 [100 [1000 | O(w/o poisoning) [10 [100] 1000
Instance-based
Greedy Selection 74.628% 77.719% | 60.392% | 40.634% 8.586% 15.209% | 12.576% | 11.709% 1.130% 3.942% 3.443% | 3.217%
LargeAbsSHAP x CountAbsSHAP 62.348% 61.881% | 57.827% | 46.516% 24.399% 18.597% | 16.905% | 12.602% 10.830% 9.801% | 9.401% | 7.833%
LargeAbsSHAP xMinPopulation 98.957% 98.999% | 93.187% | 57.949% 63.640% 55.094% | 36.566% | 22.969% 13.204% 12.704% | 11.039% | 8.777%
VR-based Trigger 100% 83.037% | 42.821% | 33.283% 30.906% | 26.104% | 17.559% 99.951% 20.927% | 1.501% | 2.224%
Low P-Value(< 0.01)

Greedy Selection 74.628% 82.184% | 54.367% | 14.200% 8.586% 14.769% | 7.592% | 2.788% 1.130% 2.849% | 2.275% | 0.498%
LargeAbsSHAP x CountAbsSHAP 62.348% 63.638% | 61.481% | 44.037% 24.399% 17.624% | 11.370% | 4.252% 10.830% 9.160% | 5.734% | 1.942%
LargeAbsSHAP xMinPopulation 98.957% 98.297% | 89.318% | 29.026% 63.640% 55.063% | 22.339% | 3.062% 13.204% 12.503% | 5.384% | 2.031%
VR-based Trigger 100% 53.374% | 7.533% | 1.379% 4.785% | 1.747% | 0.241% 99.951% 0.466% | 0.091% | 0.072%

making the increase of trigger size a viable strategy to exploit
"low density". This also explains why, with a trigger size of 4,
a small number of poisons based on p-value failed to exhibit
superiority; the high-density attribute of explanation-guided
triggers limited the potential influence of a small poison set.

Furthermore, we found that the three Explanation-based
backdoors resembled evasion attacks, given the strong at-
tack performance even in the absence of poisoning. It ex-
plains the relative inferiority of VR-based triggers compared
to Explanation-guided ones under instance-based poisoning.

6.3 The Problem Space Constraints

In real-world attack implementation, various constraints must
be considered [12,24,38]. Nevertheless, in contrast to evasion
attacks which may need to modify specific features, backdoor
attacks can transform a low-density subspace into a potent
backdoor, facilitating attacks with only restricted features.

6.3.1 Windows PEs

We search for features that can be manipulated under the
problem space constraints. First, we excluded features based
on hashing because of the difficulty of controlling their values,
and then there were 35 directly-modifiable features left.
Second, features strongly correlated with others are also not
considered; for example, different sections inserted, such as
ZeroSizeSection/UnnamedSection/ExecuteSection,
can cause other feature subsets (e.g.
NumSection/ByteHistogram/ByteEntropy) to be si-
multaneously distorted. Eventually, we end up with 16
features that can be well-controlled (see Appendix C).

Data-Agnostic Scenario We first verify our backdoor at-
tack under the data-agnostic scenario, wherein poisons were
generated from the independent testing set. Results, as pre-
sented in Figure 5, indicate that p-value-based poisons con-
sistently outperform instance-based poisons, even under this
more restrictive scenario. Furthermore, our VR-based trigger
demonstrated superior performance even when using the same
features but different values as triggers. This can be attributed
to VR-based trigger’s characteristics of selecting values from
the sparsest regions. Figure 6 illustrates that slicing the value
space and choosing values from the least dense sub-regions
significantly improve attack performance.”

Figure 5: The result of practical attacks on EMBER
(Data-Agnostic).

Data-and-Model-Agnostic Scenario Under the Data-and-
Model-Agnostic scenario, we constructed the backdoor trig-
ger and selected poisons from the testing set to attack Light-
GBMs. As seen in Figure 7, backdoor attacks were relatively

2We adopted five as the optimal number for slicing, after testing a range
from two to ten, and found that the number of slices had minimal impact on
attack performance.

2696 32nd USENIX Security Symposium

USENIX Association

(a) NumZeroSizeSection (b) RegistryCount
Figure 6: The sliced 5 regions of feature values and where
the selected value exists.

ineffective when transferred to LightGBM, a fact attributable
to the unique construction strategy of the gradient boosting
tree. Tree-based models construct one or multiple trees of a
set of if-then rules [9, 18, 31], which are rather different from
other models. Lastly, although the VR-based trigger does not
present an outstanding performance compared to others, the
p-value still plays an essential role in the attack.

Figure 7: The result of practical attack on EMBER
(Data-and-Model-Agnostic).

6.3.2 Android APPs

In contrast to EMBER, the DREBIN feature set is all editable.
For example, features from the Manifest.xml can be manipu-
lated by adding a tag, and features from the smali code can
be implemented by inserting fictitious classes and methods.
Nevertheless, to better control the destructiveness of our at-
tacks in the real world, we only consider features belonging
to Components class to implement our attacks without re-
questing additional permission or using additional APIs. We
restrict the trigger to 16 additional features — assuming we
modify an application with average feature numbers (41), its
feature number is still less than the third quartile (57) after the
insertion. An example of the trigger is shown in Appendix C.

Data-Agnostic Scenario We consider the data-agnostic sce-
nario where the testing set is used to generate poisons. The
result is shown in Figure 8. We still find that, in most cases,
the VR-based trigger and low p-value poisons outperform
other strategies under problem space and restricted feature set.
Besides, the inherently high evasion rate of explanation-based

triggers failed to transfer under such a restricted scenario
where limited data and features are available.

Figure 8: The result of practical attacks on DREBIN
(Data-Agnostic).

Data-and-Model-Agnostic Scenario Lastly, we validated
backdoor attacks under the Data-and-Model-Agnostic sce-
nario, wherein poisons were generated from the testing set
and applied to attack target SVM models. According to Fig-
ure 9), the attack can be well transferred from NN to SVM.
Moreover, it may be observed that p-value-based poisons do
not demonstrate a clear superiority over instance-based poi-
sons in this scenario. This can be explained by the fact that
SVMs are trained exclusively on support vectors, which are
samples located near the decision boundary. Consequently,
only a small number of closely positioned points are required
for a strong backdoor effect.

Figure 9: The result of practical attacks on DREBIN
(Data-and-Model-Agnostic).

The collective findings from our experiments demonstrate
that our proposed attack strategy is versatile and superior,
capable of being effectively applied to diverse datasets and
models. Our results highlight the particular susceptibility of
classifiers reliant on numeric features, such as EMBER, to
backdoor attacks due to their extensive value space. Con-
versely, classifiers using boolean features, such as DREBIN,
are also vulnerable, though this is due to the sparsity of their
feature set rather than an expansive value space. Finally, it
should be noted that while this study only utilized restricted
features, an advanced attacker could design software that mod-
ifies more features [12,24,38].

USENIX Association

32nd USENIX Security Symposium 2697

6.3.3 Producing Real Samples

To demonstrate the practicality of our proposed backdoor
attack, we constructed real samples in alignment with our
strategies and assessed their semantic preservation in emu-
lated environments based on LIEF library *, a cross-platform
library designed for parsing, modifying, and abstracting PE,
ELF, and other formats.

For PE binaries, we initially modified features in the op-
tional header and appended sections. We discarded samples
that could not be set to the target value (i.e., the number of
sections already exceeded the target number). We randomly
selected and tested the functionality of 100 crafted benign
and malicious binaries in a Windows 7 sandbox environment
with an execution timeout of 120 seconds. Table 4 presents
the results. We observed that over 84.5% of the samples re-
tained functionality. Failures primarily resulted from integrity
checks or broken bound_import_table. The success rate sur-
passes that reported in Explanation-based backdoors (58.3%),
as we did not inflate binary sizes to a target number.

Dataset ‘ Label ‘ Result ‘ Count
Goodware Dynarplc Beplgn 100
- Dynamic Malicious 0
Original Dynamic Benign 11
Malware Y g

Dynamic Malicious 89
Dynamic Benign 88

Goodware | Dynamic Malicious 0

Failed 12

Crafted Dynamic Benign 7
Malware | Dynamic Malicious 81

Failed 11

Table 4: Sandbox results on all testing PE binaries.

For Android applications, we utilized the reverse engineer-
ing tool Baksmali*, a dex format assembler/disassembler, to
implement feature insertion on Android APKs. We extracted
and disassembled dex files from APKs and injected specific
items into the Manifest file to establish the backdoor triggers.
To circumvent the non-ML preprocessing mechanism that dis-
cards unreachable code, we added corresponding classes and
injected code into the main activity to "activate" these classes.
These codes, placed under a conditional statement of opaque
predicates [29], will not execute at runtime and therefore not
impact the apps’ functionalities. Given the complexity of
determining the outcome of opaque predicates during static
analysis, the injected trigger will be robust to preprocessing.
We also crafted 200 apps (100 goodwares and 100 malwares),
and all apps are verified functional in a pixel 3 XL emulator
of Android 9.

In addition to functionality checks, we scanned all benign
samples produced using AV engines including Mcfee, Kasper-
sky, Avira, and Symantec, confirming their benign status.

3https://lief-project.github.io/
“https://github.com/TesusFreke/smali

6.4 Attacking PDF classifier

In this section, we present an evaluation on the Contagio PDF
dataset’ comprised of 9,109 benign and 11,106 malicious
PDF files. Each PDF