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We present PROVNINJA, a framework designed to gener-
ate adversarial attacks that aim to elude provenance-based
Machine Learning (ML) security detectors. PROVNINJA is
designed to identify and craft adversarial attack vectors that
statistically mimic and impersonate system programs.

Leveraging the benign execution profile of system pro-
cesses commonly observed across a multitude of hosts and
networks, our research proposes an efficient and effective
method to probe evasive alternatives and devise stealthy at-
tack vectors that are difficult to distinguish from benign sys-
tem behaviors. PROVNINJA’s suggestions for evasive attacks,
originally derived in the feature space, are then translated into
system actions, leading to the realization of actual evasive
attack sequences in the problem space.

When evaluated against State-of-The-Art (SOTA) detec-
tor models using two realistic Advanced Persistent Threat
(APT) scenarios and a large collection of fileless malware
samples, PROVNINJA could generate and realize evasive at-
tack variants, reducing the detection rates by up to 59%. We
also assessed PROVNINJA under varying assumptions on ad-
versaries’ knowledge and capabilities. While PROVNINJA
primarily considers the black-box model, we also explored
two contrasting threat models that consider blind and white-
box attack scenarios.

1 Introduction

Recent cyber incidents [1]–[4] have demonstrated that con-
ventional security solutions are inadequate against skilled
attackers employing stealthy attack vectors. To defend against
stealthy attack campaigns, modern security defenses have
emerged. Among these, ML-based security defenses has
proved effective at processing system [5] and network data [6].
The proliferation of granular system monitoring and efficient
system event collection has facilitated ML-based extensions
of traditional security solutions based on static artifacts such
as file hashes, black-listed domains and IPs, enabling more
effective and dynamic security measures.

Low-level system activities represented in provenance

graphs are used to build ML-based security models, allowing
in-depth security monitoring across a high-value confined
network [7]–[11]. Provenance graphs causally associate im-
portant system interactions among system resources [12], [13]
to highlight their control and data dependencies. Provenance-
based ML security detectors analyze fine-grained system run-
time data to effectively defend against APT campaigns [14].
Despite their effectiveness in protecting modern computing
infrastructure, the security and stability of provenance-based
ML defenses and ML-assisted applications [15], [16] have
not been thoroughly investigated [17]–[19]. This lack of as-
surance allows for potential vulnerabilities that adversaries
can exploit. Threat models for ML-based defenses need to
be extended to consider attackers who seek to specifically
circumvent these defenses.

In this work, we propose PROVNINJA, a systematic data-
driven approach that leverages publicly available program
execution profiles [20] to reexamine the current SOTA prac-
tices of provenance-based ML security. By modifying attack
vectors to avoid conspicuous actions and mimic the normal
execution of system programs, PROVNINJA systematically
poses difficult challenges to ML-based Intrusion Detection
System (IDS).

While extensive research has been conducted on the robust-
ness of ML models across numerous application domains by
exploiting their instabilities against adversarial samples [16],
[21], a substantial gap remains between adversarial attacks
in the feature space and their manifestations in the problem
space, particularly in domains with strong problem space
dependencies [22]. Such discrepancies are especially pro-
nounced in provenance-based ML models, which are con-
structed using fine-granular datasets gathered from networks
of exceptionally complex and opaque systems [23].

In particular, The system provenance domain uniquely
presents the following challenges in applying adversarial ML
techniques to evade ML detectors: First, the feature space is
captured based on the actions in the problem space, distin-
guishing it from other ML domains such as image processing
and textual analysis tasks. In these domains, little transfor-
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mative processes are applied to separate the feature space
from the problem space before extracting feature embeddings.
This approach has significant implications –— any changes
in the problem space can result in non-linear changes in the
feature space, as it is captured based on problem space actions.
Second, publicly available datasets and data collection tools
for system provenance are severely limited. To adequately
train provenance-based ML detectors, a large and realistic
provenance dataset is required. Although public datasets from
previous research exist [20], [24], [25], they are designed to
support forensic activities and related research rather than
data-intensive ML research. Lastly, realizing feature-level at-
tacks in the problem space requires substantial domain knowl-
edge and technical expertise. We encountered several chal-
lenges while translating feature space evasions into system
actions.

To address above challenges, we propose a systematic ap-
proach that (1) locates conspicuous events, (2) modifies those
events to evade detection while preserving the adversary’s
objectives, and (3) realizes the feature-space attacks using
concrete system actions for use against real systems.

To validate the coverage and general applicability of our
approach, we evaluated PROVNINJA against four SOTA ML
detectors across two different classes of modeling widely used
by previous research: path-based embedding and graph-based
embedding. The models are trained with an extensive dataset
collected using our in-house deployment which monitored
system events on an average of 86 hosts over 13 months.
For our malicious dataset, we collected system provenance
graphs for two APT scenarios and 5,925 Fileless malware
samples [26].

With respect to our assumptions about the adversaries’
knowledge and capabilities, we primarily adopt the black-
box threat model [27], [28], thereby limiting the adversaries’
insight into the victim network’s event history. Our research
pragmatically employs a surrogate approach, using publicly
available datasets [20] to approximate the behavior of sys-
tem programs commonly persisting across various hosts and
networks. To ensure a comprehensive assessment, we also
assess the efficacy of our approach under different adversarial
assumptions for both blind and white-box models.

In summary, our work brings the following contributions:

• To the best of our knowledge, PROVNINJA is the first to
systematic study of adversarial evasion of provenance-
based ML security detectors using a publicly available
surrogate dataset.

• PROVNINJA implements a data driven approach to con-
struct evasive attack vectors with minimal human over-
sight and realistic system constraints.

• We thoroughly evaluate PROVNINJA against different
ML models using our comprehensive benign and mali-
cious dataset gathered from real-world deployment.

To benefit the community and facilitate future research,

we will make our dataset publicly available 1 and offer data
collection support to researchers and practitioners.

2 System Provenance for Stealthy Attacks

We provide necessary background information on system
provenance and provenance-based IDS in the context of
stealthy attacks.

2.1 System Provenance
System provenance traces information and control dependen-
cies of a computer system [12], [13]. By examining system-
call logs, we can monitor the behavior of all processes on a
system, tracking all read, write, and execute operations on
files and network sockets. Please note that we refer sockets
to indicate IP-based network connections. We create a prove-
nance graph by associating the casual dependencies be-
tween these system events. Formally, a provenance graph
is a connected set of timestamped edges e = (u,v,r) where
u,v ∈ {processes∪ f iles∪ sockets} and u is causally depen-
dent on v (e.g., a file u is written to by a process v), and r is the
relationship between the nodes (e.g., read and write files,
execute and exit programs, send to and receive from
sockets).

The provenance graph, annotated with various attributes
for nodes (e.g., resources, such as processes, files, and net-
work sockets) and edges (e.g., system calls over resources),
includes process executable names, IP addresses, access types,
and more. These graphs serve as invaluable forensic anal-
ysis tools, helping discover points of entry, tracing lateral
movement, and assessing the scale of damage. However, the
fine-grained nature of these graphs leads to high complexity
and heterogeneity, causing their size to grow exponentially
over time. Consequently, researchers actively explore various
approaches to reduce both analysis and storage overheads.
[29]–[31].

2.2 Provenance-based IDS
Provenance-based IDS have focused on stealthy attacks and
APT campaigns to address known limitations of the traditional
security defenses. Recent advancements in ML research have
extended anomaly detection to provenance graphs [32], allow-
ing individual processes to be monitored for unusual behavior
at runtime. Graphs are known for their ability to capture
complex relationships between nodes and edges, which are
translated to system resources (e.g., file, process, and sockets)
and causal dependencies among them. Structural relationships
captured by system provenance offer robust features which are
hard for an adversary to manipulate. Unlike resource names
or hashes, it would take a larger effort to manipulate a long

1https://github.com/syssec-utd/provninja
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list of structural dependencies among system resources while
seen benign to anomaly detection models. Therefore, despite
its data collection and modeling costs, the provenance-based
IDS has become a promising countermeasure against stealthy
attacks and APT campaigns.

Graph-based analysis and its application for anomaly detec-
tion are computationally expensive and require a large amount
of training data. Hence, the research community has intro-
duced several approaches to embed provenance graphs into a
vector space to train ML models [7], [8], [10], [11]. Path-based
models extract graph subcomponents (e.g., causal paths) from
the provenance graph and vectorize them to leverage exist-
ing learning approaches [33], [34]. Although efficient even
against large volume of graph inputs, the embedding approach
compromises the detection accuracy by sampling subset of
provenance graphs, losing the context of the entire graph.
Recent advancement of framework support and associated
technologies [35], we can leverage Graph-Neural Network
(GNN) [36] techniques to digest the entire provenance graph
directly. While promising, GNN-based anomaly detection
models are still in its infancy and have not been thoroughly
hardened and verified against dedicated adversaries.

In this paper, ML detectors refer to learning-based security
detectors that operate on system provenance graphs encom-
passing path-based and graph-based models. The path-based
models first deconstruct the graph into path embeddings and
train on them, whereas Graph-based models work on entire
graphs (rather than paths). We specifically discuss (1) two
path-based models — ProvDetector [8], which uses Local
Outlier Factor (LOF) on path embeddings to find outliers;
and SIGL [7], which uses an AutoEncoder (AE) to identify
anomalous paths by characterizing the abnormality with the
reconstruction loss of the path embeddings extracted from
the AE model, (2) two Graph-based models — a GAT model
named S-GAT (“Structure-Based Graph Attention Network”)
that uses the full provenance graph without node and edge
attributes to distinguish benign and anomalous graphs, relying
only on the structure of the graphs; and another similar model
that includes the node and edge attributes along with graph
structural features, which we named as Prov-GAT (“Attribute-
Based Graph Attention Network”). While features and at-
tributes for individual nodes and edges are local and easily
manipulated, the structural relationships among them would
pose difficulties for the attacker as it would require a series
of complex operations to make graph-level changes and still
be seen as benign by the anomaly detection models. To
demonstrate PROVNINJA’s generality, our research imple-
ments evasive attacks against all of these provenance-based
models (§4.2).

2.3 Stealthy Attacks and APT Campaigns
APT campaigns exhibit two main characteristics: (1) a long-
lasting nature, particularly during the lateral stage, and (2) the

Figure 1: PROVNINJA framework.

use of stealthy attack vectors to minimize the attacker’s foot-
print and remain undetected throughout the campaign. While
advanced security solutions have focused on tracing these at-
tacks by mitigating system events with high-security implica-
tions, our study concentrates on the robustness of provenance-
based ML detectors against evasion attempts by advanced
adversaries. To adequately evaluate the provenance-based
IDS approaches and their robustness, we implemented two
realistic APT scenarios — Enterprise APT and Supply Chain
Attack, alongside a large dataset for Fileless malware. Inter-
ested readers can find more information in §A.2 and §A.3.

3 Problem Statement and Threat Model

Leveraging statistical properties of program execution pro-
files, PROVNINJA generates evasive modifications to attack
chains. We implemented this general technique to create at-
tacks against four popular ML detectors: (1) path-based mod-
els — ProvDetector and SIGL ; and (2) graph-based models
–— S-GAT and Prov-GAT . As mentioned in §2.2, graph-
based models accept entire provenance graphs as input, while
path-based models use paths extracted from the graphs. These
evasive attacks seek to evade detection (i.e., produce false
negatives) by mimicking the execution of benign programs.
PROVNINJA neither poisons nor interferes with model train-
ing and does not intend to generate false alarms.

3.1 Problem Statement
In this research, we aim to answer the following research
question: Can an adversary use publicly available informa-
tion and domain knowledge to efficiently evade ML-based
detectors? While we primarily consider the black-box model,
referring to the publicly available datasets to build a refer-
ence surrogate model, we also explore various assumptions
about adversarial knowledge. In §6, we evaluate white-box
and blind attack scenarios as well.

Across four different ML models, we tackle the research
challenge in three stages: (1) identify conspicuous events in
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the original attack, (2) search for and substitute inconspic-
uous replacement events, and (3) realize the evasive attack
and launch it against real-world systems. Our research ques-
tion suggests an optimization problem: find a function that
provides graph transformations that minimize the anomaly de-
tection probability. The function takes as input the established
model, the desired attack vector, and system event frequency
data, then return a modified attack vector that minimizes the
anomaly score of the attack, which decreases the risk of de-
tection [22].

3.2 Threat Model

Adversary knowledge. PROVNINJA assumes a black-box
model in our implementation. To avoid alerting the victim,
the attacker should aim to minimize the number of black-box
model queries required to generate evasive attacks. The model
prediction results are only used to determine when to finish
improving the attack. The adversary has access to publicly
available program execution frequency statistics, which we
call the surrogate frequency database. We infer the rarity of
events directly from the regularity scores calculated using
the surrogate frequency database [8], [10] (§4.1). This ap-
proach typically captures a superset of the edges that strongly
influence the model’s prediction.

Focusing primarily on the black-box model for the adver-
sary’s knowledge and capabilities, we recognize its substan-
tial practical value. Many commercially deployed security
solutions deliver pre-trained models to end-user devices. For
example, EDR for mobile and desktop computers deploys
security models to end-user devices, leading us to reasonably
assume that determined adversaries would use them as or-
acles. We also evaluate the blind and white-box models to
provide a complete landscape. For the blind attack model, we
eliminate the adversaries’ ability to query detection models
and rely solely on statistical approximation. In cases of white-
box attacks, where the adversary has complete access to the
detection model, including model architecture and parameters,
we employ the GNN explainer [37] to expedite the process
of identifying conspicuous events.
Adversary capability. Using this knowledge, the attacker is
able to evaluate and realize the feature-level attacks suggested
by PROVNINJA; while these suggestions are likely to evade
the detection model, the difficulty of actualizing the suggested
attacks with concrete system actions can vary widely [22].
We assume a highly skilled and motivated adversary who is
capable of devising these stealthy evasive attack vectors.

4 PROVNINJA Overview

There exists a rich literature on adversarial attacks against
ML models [22], [38] that affect prediction results with min-
imal overhead. However, previous exploration of adversar-

ial attacks that can exploit provenance-based threat detec-
tors [23] have been hampered by the limited availability of
public datasets and the significant effort required to realize
such attacks in the problem space. The core of the evasion
mechanism is outlined in Algorithm 1. Compared to other
modeling approaches, where the problem space is similar to
the feature space, provenance graphs and their feature embed-
dings are the product of a long series of transformations and
summaries of the original problem space system events. To
evade provenance-based ML detectors, PROVNINJA proposes
a three-stage approach as shown in Figure 1. First, PROVN-
INJA locates conspicuous edges that can be modified to evade
detection. Second, PROVNINJA searches for feature space
modifications to generate an evasive attack. Finally, we real-
ize the feature space attacks in the problem space to launch
the attacks against real systems [22].

4.1 Frequency History of Events
By removing timestamps and non-essential attributes from
the original provenance dataset, we generate a lightweight
summary of site-specific event frequencies. Following pre-
vious works [7], [8], [10], this frequency database stores
the number of historical occurrences of single-hop relation-
ships between processes, files, and network sockets. For in-
stance, [/bin/bash/|CREATE|/bin/cat, 1000] means that
/bin/bash has created a /bin/cat 1000 times in the past.
In previous research [8], [10], the frequency database is used
by the defender to calculate the rarity (i.e., potential malice)
of system events. This approach complements provenance
analysis because each system event is an edge in the prove-
nance graph. One of the most important applications of the
frequency database is to provide a program profile that char-
acterizes the site-specific runtime behavior. Referring to the
frequency database, we can estimate the typical runtime be-
havior of a benign instance of a given program. In §4.6, we
use this information to mimic benign process behaviors.

4.2 Provenance-based ML Detectors
To demonstrate generality, we consider four different ML
detectors in two modeling categories: path-based and graph-
based, which have different feature representations of prove-
nance graphs. While we are aware of other provenance-based
ML detector implementations [11], [39] with different de-
sign choices, we believe that our high-level approach will
generalize effectively to those ML detectors.
Path-based embedding models. Path-based modeling ap-
proaches [7], [8], [10] decompose the provenance graphs into
causal paths using random walks. The path components are
then annotated with frequency scores using the event histo-
ries. These paths, ordered by rarity, are embedded [40] and
modeled [33], [34] to reconstruct the context around the Point-
of-Interest (PoI) event. While computationally efficient, path-
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based approaches lose all structural information outside the
path, which can limit their effectiveness against advanced
malicious actors.
GNN models. Graph-based detectors directly consume prove-
nance graphs to capture the holistic structure of system activi-
ties. GNNs use message passing to summarize and propagate
structural features [41], [42]. We consider two different GNN
architectures. The first architecture only sees the structure of
the graph, and the second architecture sees embeddings of the
node attributes in addition to the graph structure. Based on our
experiments presented in §6.4, we found that the addition of
node attributes results in considerably higher detection power.
However, node attributes are vulnerable to manipulation by
skilled adversaries, hindering their reliability against APTs.

4.3 Identifying Conspicuous Events
We define “conspicuous” events to be the subset of rare events
that also contribute heavily to a given model’s prediction.
When conspicuous events are replaced with common events,
the model’s prediction is likely to shift towards benign. Lever-
aging the surrogate frequency database, we define the regu-
larity of an event as Re(u,v,r) = ∣Freq(u,v,r)∣∣Freq(u,∗,r)∣ [10]. That is, the
regularity of an event is the proportional representation of
that event among all events with the same source and relation
(e.g., of all processes created by outlook.exe, what propor-
tion of them were excel.exe?). We calculate the regularity
score for each event in the attack path and select the k least
regular events for replacement. For instance, in our Enter-
prise APT scenario, some conspicuous events are (java.exe,
notepad.exe, create process) and (notepad.exe, IP:445,
receive from socket). Interested readers may find the full orig-
inal attack paths and more comprehensive examples of gadget
chains in the appendix in Table 9.

4.4 Feature Space Evasion
When modifying conspicuous events, the goal is to minimize
the chances of detection while achieving the same attack ob-
jectives. Algorithm 1 shows the general PROVNINJA frame-
work that is used to find the evasive adversarial examples.
We refer to the surrogate frequency database to find "gad-
gets" (further described in §4.5) that can replace conspicuous
events. An effective gadget achieves the same objectives as
the original event, but is more common in benign execution
and is therefore less anomalous. The intuition behind gadgets
is that an evasive attack should behave as closely to benign
activity as possible while still achieving the adversary’s ob-
jectives. Because path-based ML detectors lose surrounding
structural information, gadgets alone are sufficient for eva-
sive attack generation. Graph-based ML detectors, however,
will easily detect “naked” gadgets, which typically include
sequences of process creations with no intermediate activity.
To mimic the structure of benign activity, we again refer to the

Table 1: Example gadgets with their normalized regularity score and
problem space rejection reason. Regularity scores are normalized
from 0 to 10, with a high score indicating higher regularity.

Index Gadgets (Gadget Length) Regularity
Score

Rejection
Rule

firefox.exe − (Gadgets) → notepad.exe

1 svchost.exe → wininit.exe → winlogon.exe 2.8 Special
Sequence→ userinit.exe → explorer.exe (5)

2 svchost.exe → cmd.exe 8.3 Display
Irregularities→ shellexperiencehost.exe (3)

3 nssm.exe → python.exe → conhost.exe 4.39 Program
Unavailability→ wininit.exe → explorer.exe (5)

4 conhost.exe → werfault.exe → explorer.exe (3) 8.1 Insufficient
Privilege

5 svchost.exe → schtasks.exe → conhost.exe 7.9 Scheduling
Tasks→ explorer.exe (4)

6 svchost.exe → rundll32.exe → winsat.exe 9.1 Writing to
Registries→ explorer.exe (4)

7 tvnserver.exe → mpcmdrun.exe → conhost.exe 3.3 External Network
Connections→ explorer.exe (4)

8 sshd.exe → ssh-shellhost.exe → explorer.exe (3) 7.5 User
Interactions

9 sshd.exe → mpcmdrun.exe → conhost.exe 7.9 Singleton
Programs→ winword.exe → werfault.exe → explorer.exe (6)

10 services.exe → taskhostw.exe → ngentask.exe 4.2 Special
Protocol Support→ ngen.exe → svchost.exe → explorer.exe (6)

11 svchost.exe → werfault.exe → explorer.exe (3) 9.5 -

python3 − (Gadgets) → wget

12 sh → perl → xfce-terminal → bash (4) 3.9 Display
Irregularities

13 sh → bash → cargo → bash (4) 4.4 Program
Unavailability

14 sh → anacron → sh → bash (4) 3.1 Scheduling
Tasks

15 env → docker → bash (3) 6.4 Resource
Intensive Programs

16 sh → nginx → bash (3) 4.3 Configuration
File Dependency

17 sh → start-stop-daemon → sh (3) 3.4 Network
Disruption

18 dash → bash (1) 9.6 -

surrogate frequency database to estimate the execution profile
of a typical benign instance of each program used in the gad-
get. By adding interactions that mimic a benign process, we
“camouflage” the gadget, dramatically improving the attack’s
evasion capabilities against graph-based ML detectors.

4.5 Gadget Finder

Certain program transitions in an attack chain can be con-
spicuous (e.g., excel.exe executes java.exe). Intuitively,
we would like to replace this conspicuous action with a more
common one (e.g., excel.exe executes splwow64.exe). If
we make this choice naïvely, we may create additional con-
spicuous events later in the attack sequence. We must choose
a replacement program that both avoids the conspicuous event
and returns naturally to the original attack. In PROVNINJA,
such a program is called a "gadget". Unfortunately, there is
almost never a single program that cleanly fits into the at-
tack, so we extend the concept by chaining multiple gadgets
together.

USENIX Association 32nd USENIX Security Symposium    1203



4.6 Applying Gadget Chains

With the goal of reducing the conspicuousness of our attack,
we introduce the concept of a gadget chain: a sequence of
events (g0, . . . ,gn) that will replace a conspicuous event ek,
such that ek−1.destination = g0.source and ek.destination =
gn.destination, allowing the gadget to naturally merge into
the attack path. An effective gadget chain will improve the
regularity of the attack by replacing rare events with more
common ones, while still achieving the same end result.

We recursively search backward from the intended desti-
nation to the intended source to find gadget chains. We only
include system events that have greater regularity than a user-
defined threshold T , which is typically either an empirically
chosen constant or a function of the regularity of the original
event to be replaced (in our experiments in §6, we use a con-
stant T = 0.03). This formulation parameterizes the runtime
and accuracy trade-off against exploring more gadget options.
Notice that it is possible to fail to find any gadgets if the regu-
larity threshold is too high. Finally, a domain expert chooses
a gadget from the list to replace the conspicuous event in the
attack path.

Table 1 shows a subset of the different gadget chains that
can be used to replace a malicious event in the establishing a
foothold stage in both the Enterprise and Supply-Chain APT
scenarios. More gadget chains for other components of the
APT scenarios can be found in §A.4.

4.7 Camouflaging Gadgets

While the gadget chains improve the regularity of the attack
path, any added processes are “naked” in that they only have
events that are directly related to the attack; because no inter-
mediate actions are taken before creating the next process, the
surrounding graph structure of a naked gadget is very distinct
from that of a corresponding benign instance of the program.
Graph-based provenance analysis models understand the sur-
rounding graph structure, so they are easily able to detect the
structural anomalies introduced by naked gadgets.

To mimic the graph structure of a benign program instance,
we add events to the gadget based on the surrogate frequency
database in our threat model. For each program pg in the
gadget, we divide the total number of each kind of resource
interaction (e.g., (pg,∗,write), (pg,∗,read)) by the total num-
ber of instances of pg to estimate the typical distribution of
entity interactions for a benign execution. We then add edges
to the adversarial graph by sampling interaction targets for
pg from the surrogate frequency database. By keeping the
distribution of events in our malicious instance similar to
the distribution of events of the benign instances, our GNN-
oriented PROVNINJA implementation makes it difficult for
GNNs to detect the use of gadget chains.

Algorithm 1: PROVNINJA

Input: Provenance Graph, G = (V,E)
Frequency Database, F
Defense Model, M
Max. Modification Distance, D
Regularity Threshold, T
Event Search Limit, K
Output: Modified Provenance Graph, G′, that is

classified as benign by M, or ∅ if no such
graph is found

1 if D ≤ 0 then
2 return ∅

3 rare_edges =TOPRAREEDGES(E,K)
4 gadgets =⋃e∈rare_edgesFINDGADGETCHAINS(e,F,T )
5 foreach g ∈ gadgets do
6 G′ =APPLYGADGET(G,g)
7 if M(G′) == benign then
8 return G′

9 G′ =PROVNINJA(G′,F,M,D−1,T,K)
10 if G′ ≠ ∅ then
11 return G′

12 return ∅

5 Problem Space Evasion

In this section, we discuss the challenges of implementing
evasive attacks in the problem space. When considering a list
of candidate attacks from the feature space, realizing them in
the problem space becomes difficult due to complex system
activity dynamics and environmental dependencies. Unlike
in other ML domains, such as image processing, where the
problem space closely resembles the feature space, system
actions experience multiple transformations between data
collection and feature embedding. Moreover, the problem
space realization can be affected by the system environment
as programs interact with other system components. The same
system action executed on different systems, or even the same
system at different points in time, may generate different
provenance graphs.

After overviewing the principles suggested by Pierazzi et
al.[22], we present a set of filter rules that we specifically
developed for realizing evasive attacks in the context of sys-
tem provenance research. Although our current collection of
rules is comprehensive, our system’s design allows for the
integration of further heuristics to minimize manual efforts
and increase evasiveness.
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5.1 Problem Space Constraints
Pierazzi et al.[22] have extensively studied practical chal-
lenges related to problem space realization across various do-
mains. We apply their systematic framework, which consists
of four constraints, to analyze the problem space realization
of PROVNINJA in evading provenance-based ML detectors.
1. Available transformations. We use the event history in
the frequency database to generate feature space attacks, as it
indicates their previous occurrences and availability. However,
when using public datasets as surrogate references for black-
box attacks, discrepancies in available gadgets may occur. To
address this, we actively prefer system programs § 5.2.4, as
they have a higher likelihood of availability.
2. Preserving attack semantics. Given a list of candidate
system actions, expert knowledge and advanced skills are
necessary to determine which ones preserve the semantics of
the original attack. Although we can suggest a principled ap-
proach to (semi-) automate the process, the approach would in-
volve numerous domain-specific considerations. In this work,
we manually choose candidate system actions and verify their
attack semantics equivalency, leaving the task of automated
verification for future work.
3. Robustness to pre-processing. Unlike domains such as im-
age or audio processing research with numerous transforma-
tive filters, system provenance datasets do not have a specific
pre-processing stage influencing prediction results. However,
we can still explore a line of data reduction research that pro-
poses forensic-aware, lossy graph compression approaches
to address storage and data processing pressures [29]–[31].
Assessing the impact of these data reduction schemes on the
effectiveness of evasive attacks renders a promising research
direction for future work [43].
4. Plausibility to users and security analysts. The newly
constructed attack chain in the feature space should be plau-
sible to regular users or security analysts. Furthermore, the
attack must be unintrusive from user operations or system re-
source usage standpoints. Although manual investigations are
still required, we preliminarily measure the number of nodes
and edges added by PROVNINJA’s evasive actions in Figure 2.
Limiting the event footprint induced by the attack reduces the
chance that a user will notice the additional utilization of their
system. We then filter out potentially intrusive actions using
the automated rule set, as shown in §5.2.

5.2 System Provenance Filter Rules

To address the practical challenges of implementing prob-
lem space attacks, we developed gadget filters (e.g., rejection
rules) to minimize manual effort based on the following prin-
ciples: (1) avoiding programs with large footprints and dis-
ruptions to users, (2) enforcing invariant rules associated with
program execution sequences and permission levels, (3) the

problem space should not make unnecessary modifications to
the target host that would result in long-term or short-term side
effects, and (4) prohibiting the use of black-listed programs
(e.g., notepad.exe) or suspicious behaviors (e.g., registry
updates to schedule background tasks or inject libraries).

While we suggest a comprehensive set of filter rules, our
system design remains open to accommodating additional
heuristics for automating the evasive attack generation process
and enhancing their stealthiness. In §6.6, we evaluate their
effectiveness in reducing the required manual effort.

5.2.1 Disturbances to End User and System Monitors

GUI interruptions. Some programs can be visually intrusive
to be highly suspicious to users, such as a command prompt
flashing on the screen or the file explorer opening. Therefore,
gadget chains that include cmd.exe are rejected because a
command prompt flashing on the screen will alert the user
(e.g., gadget path 2,12 in Table 1). Gadget paths including
explorer.exe are not automatically excluded because it can
be launched in the background with certain arguments.
Resource intensive programs. When a resource-intensive
program (e.g., docker) is run, it tends to draw more attention
from the user and/or alert system monitors thus considered to
be undesirable as shown as gadget chain 15 in Table 1.
External network connections and disruption. Programs
that impersonate external socket connections can trigger net-
work alerts and add overhead for attackers needing to set up
receiving servers for camouflaging network reads. Gadget
chain 7, 15 in Table 1 is rejected since tvnserver.exe con-
nects externally to manage GPS data. Restarting networking
processes, as in gadget chain 17 in Table 1, can indicate APT
attacks, trigger security alerts, and lead to system instability
or data loss.

5.2.2 Program-Specific Considerations

Insufficient privilege. Certain gadgets require elevated privi-
leges (e.g., NT_SYSTEM\SYSTEM) to function. We analyze per-
mission level consistency throughout the attack chain during
the problem space realization, excluding gadgets that requires
privilege escalation. For instance, the attack construction pro-
cess rejects gadget path 4 in Table 1 as it mandates admin
permissions to camouflage conhost.exe.
Special program sequences. Certain gadgets necessitate a
specific position in the attack chain. For instance, wininit.
exe is the first user program that initializes the userland appli-
cations followed by winlogon.exe and userinit.exe sub-
sequently executes system programs such as svchost.exe,
conhost.exe, and nssm.exe. While these special sequences
are well-represented in the benign execution profiles of these
system programs, they would appear highly suspicious during
normal execution outside of the system bootstrap. Gadget path
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1 in Table 1, for example, is automatically rejected because it
contains a special sequence.

5.2.3 Blacklisted Programs and Suspicious Behaviors

Blacklisted programs. Certain programs are under high
scrutiny based on the fact that those programs have been
historically hijacked or impersonated by malware. We can
subscribe to Cyber Threat Intelligence (CTI) feeds for the
up-to-date blacklist to reject suspicious gadgets.
Modification to system resources. Efforts should be made
to actively reject gadgets that modify sensitive system re-
sources such as libraries for payload objectives, as adding
camouflage may inadvertently link distinct system programs’
provenance graphs together due to information flow. For ex-
ample, gadget chain 6, 15 in Table 1 is excluded because
camouflaging services.exe involves writing to system li-
braries (KernelBase.dll.mui, ntdll.dll) which are also
read by nssm.exe, connecting the two graphs.
Modification to system configuration. Attackers often mod-
ify system configurations (e.g., Windows registry, Linux
crontab, and RC files) to plant malicious activities such as
scheduling malware execution or interposing library loading.
Since the security community is well-aware of these practices,
we prevent such sensitive operations from being included in
the attack chain. Gadget chain 6 in Table 1 is rejected be-
cause rundll32.exe writes to registries. Recent studies on
fileless malware reveal a preference for system programs, as
they typically consume substantial resources in daily usage.
Gadget chain 5, 14 in Table 1, which is also rejected, displays
a process attempting to schedule a task, as it requires calling
schtasks.exe.

5.2.4 Surrogate Model Discrepancies

The limitations of publicly available datasets used for building
surrogate models can result in an inadequate representation
of victim networks. Such datasets may feature programs and
operational behaviors specific to their data collection. For
example, the reference dataset in our study contains obsolete
programs like nssm.exe, discontinued after 2016 [44], and
proprietary programs like cargo, Rust’s package manager.
Using these programs to create gadget chains, such as 3, 13
in Table 1, leads to unrealizable outcomes in the defender’s
system due to their unavailability.

6 Evaluation

In this section, we extensively evaluate the effectiveness of
PROVNINJA at evading provenance-based IDS. Our evalua-
tion aims to answer the following research questions:

• RQ1: Feature Space Evasion. Do PROVNINJA’s eva-
sive attacks effectively evade ML-based detectors (§6.4)
under different threat models (§6.5)?

• RQ2: Problem Space Attack Realization. Can
PROVNINJA’s evasive attacks be realized in the problem
space (§6.6)?

• RQ3: Surrogate Data Effectiveness. How effective is
surrogate data in generating evasive attacks? (§6.7)

6.1 Evaluation Methodology
We evaluate PROVNINJA’s ability to generate evasive attack
sequences against provenance-based IDS using our enterprise
and supply chain APTs §A.2, and fileless malware §A.3 attack
scenarios. In our evaluation, the defense models are trained
on our large benign dataset that includes 13 months of or-
ganic user activity. The attacker uses the publicly available
DARPA Transparent Computing dataset [20] as a surrogate
dataset following the blackbox threat model (§3.2). To com-
prehensively explore PROVNINJA’s effectiveness on fileless
malware, we refer to existing work [26] and collect samples
from a popular malware repository [45]. We ran 5,925 fileless
malware samples, categorized them by the system programs
they impersonated, and used the 10 largest categories in our
evaluation (refer to Table 8).

We first evaluate the evasiveness of PROVNINJA in the fea-
ture space, then we show that these attack chains are realizable
in the problem space. We specifically measure the effective-
ness of PROVNINJA in evading four prominent ML detectors
from the literature, which employ two distinct embedding ap-
proaches: (1) PROVNINJA-PATH targeting path-embedding
detectors, such as ProvDetector and SIGL , and (2) PROVN-
INJA-GRAPH focusing on graph-embedding detectors, like
S-GAT and Prov-GAT . Additionally, we evaluate Shade-
Watcher [32], the SOTA GNN-based anomaly detector for
system provenance for the general applicability of PROVN-
INJA approach.

6.2 Evaluation Datasets

Benign dataset. With the approval and oversight of our univer-
sity’s Institutional Review Board (IRB), we solicited written
informed consent from volunteers to participate in a long-
running provenance data collection project. Using Linux ker-
nel audits and Windows ETW event tracing, we collected
provenance data involving file, process, and network events.
Our volunteers performed a variety of workloads as students,
researchers, developers, and administrators. In aggregate, our
volunteers have helped us collect system event data from 54
Windows hosts and 32 Linux hosts over 13 months, yielding
17TB of system event data for our benign dataset.
DARPA transparent computing (TC) dataset. The DARPA
Transparent Computing Engagement 3 and 5 Data Re-
leases [20] include extensive system logs of both benign and
malicious activities, which can be used to generate a sur-
rogate frequency database. However, this dataset is notably
limited due to the short duration of the engagements and the
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Table 2: presents the detection results for the baseline, randomly perturbed, and NINJA attacks, with a lower F-1 score indicating better evasion.
We replace rare edges with a random sequence of programs in random perturbations and with evasive gadgets in NINJA attacks. We display
differences from the baseline values inside parentheses.

Attack Type GNN-Based
Detectors

Baseline
Random

perturbation PROVNINJA-GRAPH Path-based
Detectors

Baseline
Random

perturbation PROVNINJA-PATH

Precision Recall F1 Recall F1 Recall F1 Precision Recall F1 Recall F1 Recall F1

Enterprise APT
S-GAT

0.94 0.74 0.83 0.69 (-.05) 0.78 (-.05) 0.37 (-.37) 0.54 (-.29)
ProvDetector

0.98 0.78 0.87 0.88 (+.10) 0.92 (+.05) 0.23 (-.55) 0.31 (-.56)
Supply Chain APT 0.93 0.78 0.85 0.96 (+.18) 0.91 (+.06) 0.44 (-.34) 0.53 (-.32) 0.99 0.92 0.90 0.95 (+.03) 0.95 (+.05) 0.35 (-.57) 0.30 (-.60)
Fileless Malware 0.95 0.94 0.95 0.92 (-.02) 0.94 (-.01) 0.71 (-.23) 0.77 (-.18) 0.91 0.91 0.91 0.94 (+.03) 0.93 (+.02) 0.33 (-.58) 0.43 (-.48)

Enterprise APT
Prov-GAT

0.95 0.95 0.95 0.71 (-.24) 0.68 (-.27) 0.25 (-.70) 0.37 (-.58)
SIGL

0.97 0.99 0.98 0.99 (+.00) 0.99 (+.01) 0.30 (-.69) 0.41 (-.57)
Supply Chain APT 0.94 0.96 0.95 0.85 (-.11) 0.90 (-.05) 0.28 (-.68) 0.56 (-.39) 0.90 0.90 0.90 0.96 (+.06) 0.95 (+.05) 0.38 (-.52) 0.43 (-.47)
Fileless Malware 0.96 0.98 0.97 0.96 (-.02) 0.96 (-.01) 0.58 (-.40) 0.67 (-.30) 0.91 0.95 0.93 0.98 (+.03) 0.99 (+.06) 0.47 (-.48) 0.57 (-.36)

Average 0.95 0.90 0.92 0.85 (-.05) 0.86 (-.06) 0.44 (-.46) 0.57 (-.35) 0.94 0.91 0.92 0.95 (+.04) 0.96 (+.04) 0.34 (-.57) 0.41 (-.51)

scripted nature of the captured activities. The primary chal-
lenge for its use in PROVNINJA lies in the limited selection
of user/internet-facing applications that execute system pro-
grams, which restricts PROVNINJA’s flexibility near the point
of entry. We utilized E3/5 Theia and Trace, E3/5 FiveDirec-
tions, and E5 Marple for Linux and Windows gadget mining.

Enterprise APT. We ran the enterprise APT attack cam-
paign (§2.3) on a local testbed environment which consisted
of four windows and three Linux hosts. The recorded sys-
tem event logs constitute our Enterprise APT dataset. We
then generated provenance graphs for the programs used
in key stages of the enterprise APT scenario: excel.exe,
java.exe, notepad.exe, osql.exe, explorer.exe, and
outlook.exe. This collection procedure yielded 1,779 prove-
nance graphs with an average of ∼176 causal paths for each
graph. Because provenance graphs include unpredictable
background system interactions that can affect the perfor-
mance of the models, we ran the scenario multiple times
to sample the distribution of noise in the system and show
that PROVNINJA’s evasive attacks are effective in real-world
conditions.

Supply Chain APT. We ran the Supply-Chain APT campaign
on a local Linux test bed which is consisted of five Linux hosts.
We generated provenance graphs for python, curl, docker,
git, thunderbird, and firefox and the recorded system
event logs constitute our Supply-Chain APT dataset. This
collection procedure yielded 1,091 provenance graphs with
an average of ∼494 causal paths each.

Fileless malware. Leveraging a public dataset of fileless mal-
ware [26], we collected and ran 5,925 malware samples on
our distributed Cuckoo [46] sandbox environment. We col-
lected provenance graphs from each sample to capture all
the triggered malicious behaviors. Then, we select the top
10 most well represented impersonation targets (summarized
in Table 8) and their graphs to include in our fileless mal-
ware dataset. In total, our Fileless Malware dataset consists
of 1,206 high-quality provenance graphs. This dataset char-
acterizes the runtime behavior of fileless malware, opening
these sophisticated techniques for further analysis.

Experimental bias in malware analysis. Kuchler et al.[47]

and Avllazagaj et al.[48] have emphasized the importance of
considering experimental bias in malware analysis. The use
of virtual environments like the Cuckoo sandbox [46] can
introduce biases due to differences in trigger conditions and
freshness, which can significantly affect malware behavior
compared to the behavior of malware in the wild.

One of the main challenges associated with experimen-
tal bias is the potential for certain types of malware to be
selectively chosen for analysis. For example, if samples are
selected based on activity or freshness, there may be a bias to-
wards highly active or prevalent malware, while less prevalent
or subtle types of malware may be overlooked. To mitigate
this issue, we manually verified malicious behavior in 1206
of our 5925 samples, prioritizing system programs less af-
fected by custom configurations and user interactions, such
as rundll32.exe. Furthermore, downloading malware sam-
ples from sites such as VirusTotal [45] can also introduce
bias into the dataset. For example, antivirus programs may
have already classified the samples, potentially skewing the
results of any subsequent analysis. Additionally, the samples
themselves may not be representative of the overall popula-
tion of malware, as they may be biased towards the types of
malware more commonly detected by antivirus programs. To
minimize potential bias, we carefully selected our dataset by
meticulously reviewing threat reports generated by [45] to
better understand the malware’s behavior.

Overall, the realism of the malware experiments is con-
strained by: (1) the sandbox execution environment, which
will not capture the behavior of malware equipped with sophis-
ticated sandbox detection mechanisms, a concern highlighted
by [47]; (2) the prioritization of system programs that are
not sensitive to user activity or configuration changes, which
reduces the variance in the captured behaviors at the cost of
underrepresenting user-facing programs, as noted by [48]; (3)
the use of online malware repositories, which overrepresents
detectable malware instances. The challenge of accurately
representing and profiling the full malware landscape remains
an open and orthogonal problem.
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6.3 Baseline Performance of ML Detectors
To measure the baseline performance of the four different
detection models, we tested their performance against the
enterprise and supply chain APT scenarios, as well as our
collection of fileless malware. The results are summarized in
the baseline columns of Table 2. Overall, provenance-based
ML detectors have provided practical defense. The GNN-
based detectors have shown 0.95, 0.90 and 0.92 for precision,
recall and F1 score, whereas path-based detectors have shown
0.94, 0.91 and 0.92 for precision, recall and F1 score for their
baselines.

The S-GAT model’s average recall and F1 scores across
our test cases are 0.82 and 0.88. Notably, the S-GAT performs
relatively poorly against the enterprise and supply chain APTs.
The structure of the APT graphs is similar to that of benign
graphs, so the structure-only S-GAT struggles to accurately
classify this attack. The Prov-GAT model’s average recall and
F1 scores across our test cases are 0.96 and 0.96, respectively.
Because Prov-GAT sees node attributes (e.g., file names,
ip addresses, etc. ), it leverages this information to perform
more accurate classification. Prov-GAT performs well in all
of our categories, demonstrating that the model is able to take
advantage of the additional node attribute information.

The ProvDetector model’s average recall and F1 scores
across our test cases are 0.87 and 0.89. Notably, the ProvDe-
tector model performs poorly against the enterprise APT,
similar to the S-GAT . ProvDetector is an anomaly detection
layer on top of Doc2Vec [40], so it has limited awareness of
the structure of the causal path. The enterprise APT contains
related programs that are relatively close in the neural em-
bedding space compared to those of our other test cases. The
SIGL model’s average recall and F1 scores across our test
cases are 0.95 and 0.93. This performance is comparable to
that of the Prov-GAT model. Because SIGL internally learns
to reconstruct the entire causal path, it has strong sensitivity
to the context of programs in the causal path.

6.4 Feature Space Evasion
In this section, we evaluate the effectiveness of PROVNINJA’s
suggested ninja attack chains at evading the detection mod-
els. Recall that our feature space modifications include the
addition and replacement of nodes and edges (§4.6).
Random gadgets and camouflage. To demonstrate the ro-
bustness of the models to random changes in the attacks,
we implemented a variant of our PROVNINJA framework that
makes random gadget and camouflage selections. The process
of locating conspicuous edges is the same as in PROVNINJA,
but gadgets are chosen randomly from the list of available
programs instead of intelligently choosing from the frequency
database. Table 2 shows that the models still detect random
variants of the attacks with high accuracy. The random modi-
fication scheme reduced the recall of the defense models by

an average of 4.5% and reduced the F1 scores by an average
of 5%.
PROVNINJA-PATH effectiveness. Against the path-based
models (ProvDetector and SIGL ), PROVNINJA-PATH de-
vised 81 ninja variants of our Enterprise APT, 55 ninja variants
of our supply chain APT, and ninja variants of our fileless
malware collection. PROVNINJA-PATH reduced the average
recall and F1 for ProvDetector and SIGL by 57% and 51%,
respectively.
PROVNINJA-GRAPH effectiveness. Against the graph-
based (S-GAT and Prov-GAT ), PROVNINJA-GRAPH de-
vised 47 ninja variants of our enterprise APT and 28 ninja
variants of our supply chain APT, as well as ninja variants for
our fileless malware collection. Using the surrogate frequency
dataset, PROVNINJA-GRAPH was able to identify and mod-
ify conspicuous edges that contributed heavily to the detection
of the attack. Against the S-GAT and Prov-GAT models, the
ninja attack variants reduced the average recall and F1 scores
by 46% and 35%.
Side effects. Gadgets camouflaged with additional events in-
evitably introduce side effects (noise) which we measured
through differences in graph size compared to the original at-
tack graph. In Figure 2 we see that using longer gadget chains
results in more noise in the provenance graph, as well as worse
performance. Long gadgets require additional engineering ef-
fort to craft, increase the number of points of failure, and tend
to perform worse than short gadgets. Therefore, we prefer
shorter gadgets since the potential for unintended side-effect
(e.g., noise) is reduced. Also, it is critical to make informed
choices about which edges to add to minimize the chance of
detection.

Table 3: PROVNINJA evasion for ShadeWatcher [32].

Attack Type ShadeWatcher Random Perturb. PROVNINJA
Recall F1 Recall F1 Recall F1

Enterprise APT 0.96 0.93 0.98(+.02) 0.98(+.05) 0.45(-.51) 0.41(-.52)
Supply Chain APT 0.92 0.90 0.96(+.04) 0.97(+.07) 0.38(-.54) 0.40(-.50)

Average 0.94 0.92 0.97(+.03) 0.98(+.06) 0.42(-.53) 0.41(-.51)

PROVNINJA evasion for ShadeWatcher [32]. In addition
to four provenance-based ML detectors, we also conducted
a comparison study using ShadeWatcher [32], which imple-
ments state-of-the-art anomaly detection for system prove-
nance, extending recommendation systems. The results in
Table 3 show that ShadeWatcher’s recall and F1 score de-
crease significantly when using the PROVNINJA approach
compared to random perturbations. The APT variants pro-
duced by PROVNINJA reduced detection of malicious activity,
attributed to its ability to find benign transformations for ma-
licious edges. This aligns with our expectations for PROVN-
INJA, which can disguise anomalous graph instances as benign
through edge-level augmentation. The success of PROVN-
INJA against ShadeWatcher, specializing in fine-grained edge-
level detection, demonstrates its capability to counter robust
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Table 4: PROVNINJA’s performance under White-box, Black-box
and Blind threat model, evaluated for two configurations of Blind
(PROVNINJA) and Blind (random perturbation).

Defense Model
White-box Black-box Blind Blind

(PROVNINJA) (PROVNINJA) (PROVNINJA) (Random Pert.)

Recall F1 Recall F1 Recall F1 Recall F1

ProvDetector 0.23 0.27 0.30 (+.07) 0.35 (+.08) 0.60 (+.37) 0.67 (+.40) 0.89 (+.66) 0.91 (+.64)
SIGL 0.31 0.35 0.38 (+.07) 0.47 (+.12) 0.69 (+.38) 0.74 (+.39) 0.97 (+.66) 0.95 (+.60)

S-GAT 0.38 0.41 0.42(+.04) 0.51 (+.10) 0.75 (+.37) 0.77 (+.36) 0.91 (+.53) 0.93 (+.52)
Prov-GAT 0.44 0.47 0.51 (+.07) 0.61 (+.14) 0.78 (+.34) 0.80 (+.33) 0.96 (+.52) 0.97 (+.50)

ShadeWatcher 0.36 0.33 0.42 (+.06) 0.41 (+.08) 0.75 (+.39) 0.72 (+.39) 0.97 (+.61) 0.97 (+.64)

Average 0.34 0.37 0.41 (+.06) 0.47 (+.10) 0.71 (+.37) 0.74 (+.37) 0.94 (+.60) 0.95 (+.58)

provenance-based ML detectors.

6.5 White-box and Blind Threat Models
We also evaluated PROVNINJA, mainly implemented for a
black-box threat model, under relaxed white-box and stricter
blind threat models. To showcase its effectiveness in finding
suitable replacement gadgets, we evaluate the blind threat
model under two design choices regarding replacement gadget
selection: with PROVNINJA and with random perturbation.

In the white-box model, the attacker has complete access to
the defender’s model internals and data, enabling them to use
a white-box GNNExplainer [49] to supplement the regularity
score when deciding which events to replace and to find the
replacement gadgets. In the blind threat model, attackers have
no prior access to the defender’s environment, model, or data.
Therefore, they rely on a public dataset to construct a surro-
gate model and identify rare events. We consider two types of
blind attacks. The blind attack with PROVNINJA constructs
a model using the public dataset for appropriate gadget re-
placements, while the blind attack with random perturbation
attempt makes random selections for its gadgets.

We observe in Table 4 that the difference between black-
box and white-box in terms of recall and F1 scores is 6%
and 10%, respectively, while the difference between blind
threat model that uses PROVNINJA and white-box is 37% for
both recall and F1 score. The larger difference between blind
where PROVNINJA was used and white-box is attributed to the
varying workloads between the surrogate and the defender’s
dataset. Therefore, the successful evasion of the surrogate
model does not guarantee the evasion of the defender’s model,
as most of the evasive gadgets created from the surrogate data
did not transfer over to the defender’s model.

However, PROVNINJA retains partial effectiveness even
under the blind threat model. The blind attack that does not
use PROVNINJA (i.e., random perturbation attack) had a 60%
increase in recall and a 58% increase in F1 score compared
to the white-box attack, which is worse than PROVNINJA’s
37% increase in both recall and F1 score under the same
threat model. We note that the attacker’s surrogate model
was trained on the publicly available but limited engagement
DARPA dataset; an attacker with more comprehensive prove-

nance data could train a stronger surrogate model and achieve
better blind performance. Despite this limitation, we consider
even one successful evasive attack as a successful outcome
for that APT stage, following the approach of other work [23].

6.6 Problem Space Realization
To further refine the feature space of gadgets for implementing
problem space evasion attacks, we employ the recommenda-
tions from §5.2. Moreover, we assess the amount of effort (in
analyst person hours) necessary to execute a gadget chain.

Table 5 summarizes the filtration process of 211 feature
space candidates according to the rules outlined in §5.2, re-
sulting in 22 distinct variations for enterprise and supply chain
APT scenarios. In the Enterprise APT scenario, 128 initial
feature space candidates were reduced by 89% to 14 problem
space attacks, with most discarded attack variants involving
gadget chains requiring external network connections; these
variants could have triggered the defender’s firewall rules,
raising unnecessary suspicion. In the Supply-Chain APT sce-
nario, 83 initial feature space candidates were reduced by 90%
to yield 8 problem space attacks, with program unavailability
posing the greatest obstacle to attack realization.
Manual efforts for PROVNINJA evasion. We actively an-
alyzed the effort required to implement PROVNINJA’s eva-
sive attacks, estimating it in terms of security analysts’ hours
and taking graph size into account as a key factor. This ef-
fort encompasses tasks such as: (1) running PROVNINJA to
obtain filtered feature space gadgets; (2) meticulously eval-
uating problem space recommendations to discard evasive
gadgets from the filtered list of feature space gadgets; (3)
selecting gadgets for implementation with various pentesting
frameworks; and (4) implementing the selected gadgets in
the problem space. Results in Figure 3a reveal that as attack
graphs grow larger, implementing evasive attacks becomes
increasingly time-consuming.

Interestingly, as shown in Figure 3b, we found that the
implementation effort is sublinear in the size of the attack
graph. Since the majority of system events are benign, the
attack graph’s size is also sublinear in the total graph size.
When comparing the Enterprise APT scenario, we discovered
that implementing the Supply Chain APT gadgets takes less
time. This is attributable to the numerous replacement options
available from surrogate datasets that closely resemble de-
fender datasets (illustrated in §6.7). This similarity enables
the creation of many gadgets using the surrogate dataset on
the defender model.

6.7 Surrogate Dataset Effectiveness
In this section, we evaluate PROVNINJA’s robustness to surro-
gate model and its frequency summary with an ablation study
and a brief analysis of the domain shift between the DARPA
dataset and the benign dataset.
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(a) Enterprise APT. (b) Supply Chain APT. (c) Fileless Malware.

Figure 2: Events added and F1 score vs gadget length. In each evaluation scenario, bars represent number of additional events whereas solid
lines are for F-1 score trends.

Table 5: Number of unviable candidates removed by each recommendation §5.2.

Attack
Type

Feature
Space

Attacks

Disturbances to End User and
System Monitors

Program-Specific
Considerations

Blacklisted Programs and
Suspicious Behaviors Surrogate

Model
Discrepancies

Problem
Space

AttacksGUI
interruptions

Resource
intensive
programs

External
network conn.
and disruption

Insufficient
privilege

Special
program

sequences

Blacklisted
programs

Modification
to system
resources

Modification
to system

configuration
Enterprise APT 128 7 5 25 17 23 6 11 8 12 14
Supply Chain APT 83 12 13 10 3 9 2 14 7 5 8

Table 6: The detection results of the attacks generated from the benign, surrogate, and random dataset (lower numbers indicate better evasion).
Rare edges and the gadget chains are found using the data. The random data is generated by intermixing DARPA TC datasets.

Attack Type GNN-Based
Detectors

Benign Data Surrogate Data Random Data Path-based
Detectors

Benign Data Surrogate Data Random Data

Recall F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall F1

Enterprise APT
S-GAT

0.26 0.35 0.37 (+.11) 0.54 (+.19) 0.71 (+.45) 0.82 (+.47)
ProvDetector

0.18 0.15 0.23 (+.05) 0.31 (+.16) 0.81 (+.63) 0.88 (+.73)
Supply Chain APT 0.29 0.22 0.44 (+.15) 0.53 (+.31) 0.96 (+.67) 0.91 (+.69) 0.25 0.23 0.35 (+.10) 0.30 (+.07) 0.94 (+.69) 0.93 (+.70)
Fileless Malware 0.63 0.72 0.71 (+.08) 0.77 (+.05) 0.93 (+.30) 0.94 (+.22) 0.29 0.41 0.33 (+.04) 0.43 (+.02) 0.93 (+.64) 0.92 (+.51)

Enterprise APT
Prov-GAT

0.17 0.28 0.25 (+.08) 0.37 (+.09) 0.75 (+.58) 0.74 (+.46)
SIGL

0.25 0.36 0.30 (+.05) 0.41 (+.05) 0.99 (+.74) 0.99 (+.63)
Supply Chain APT 0.21 0.34 0.28 (+.07) 0.56 (+.22) 0.88 (+.67) 0.92 (+.58) 0.29 0.38 0.38 (+.09) 0.43 (+.05) 0.95 (+.66) 0.92 (+.54)
Fileless Malware 0.55 0.66 0.58 (+.03) 0.67 (+.01) 0.95 (+.40) 0.96 (+.30) 0.43 0.51 0.47 +.04) 0.57 (+.06) 0.97 (+.54) 0.95 (+.44)

Average 0.35 0.43 0.44 (+.09) 0.57 (+.15) 0.86 (+.51) 0.88 (+.45) 0.32 0.39 0.39 (+.08) 0.50 (+.11) 0.93 (+.65) 0.93 (+.59)

(a) Time required to actualize the gad-
get for different attack graph.

(b) Composition of attack graphs in
comparison to the whole graph.

Figure 3: Realization effort for larger graphs takes more time, but
there is a diminishing result since the number of rare edges and
gadgets are limited for a particular attack stage.

In Table 6, we estimate an upper bound on PROVNINJA’s
performance by initially providing it with the true benign
dataset (e.g., target network dataset) to create gadgets, which
significantly reduces the recall rate and F1 scores of the
models. Next, we utilize ProvNinja with the surrogate fre-
quency dataset, incorporating progressively increasing Gaus-
sian noise; we avoid negative event counts by only consid-
ering additive noise. Lastly, we try using PROVNINJA with
fully randomized data, which does not significantly reduce
the recall and F1 scores of the models and performs no better
than trivial transformations.

7 Related Work

Host- and provenance-based IDS. Since Forrest et al. [50]
first proposed host-based IDS built on system call trace, a lin-
eage of host-based IDS has been proposed. These host-based
IDS take a sequence of system calls without considering argu-
ments, thus raising concerns for their detection accuracy and
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stability. Two lines of mimicry attacks were also proposed.
Wagner et al. [51] leveraged language automata theory to gen-
erate an equivalent sequence of an arbitrary length to evade
the prefined rules. Tan et al. [52] exploited the limitations of
anomaly detection model by controlling the size of foreign
sequences. Provenance-based IDS extends sequence-based
detectors by taking system provenance graphs as their input.
System provenance defines causal dependencies among sys-
tem resources which are far more comprehensive than system
call sequences. So, ML-models built on system provenance
graphs are robust against traditional form of mimicry attacks.

Various approaches have been proposed [9], [53]–[56]
leveraging system provenance to trace stealthy and long-
running APT campaigns. Several heuristics have been pro-
posed to prioritize edges [9] that are likely to involve mali-
cious semantics referring to a threat intelligence [57] source
or assigning tags [53] that propagate contextual hints to re-
lated nodes. Depcomm [56] summarizes the graph by creating
process-centric communities (clusters) that are connected us-
ing system interactions that map the information flow. These
communities include important sequences of events that are
used for threat detection as they contain important system
semantics and are likely to hold the malicious paths.

Adversarial ML. Adversarial ML research has gained mo-
mentum since Kurakin et al. [58] first proposed an attack on
an established model for image recognition. Since then, over
5,000 adversarial ML research papers have been published
in the last decade [38], including numerous works [59], [60]
aiming to deceive ML models across different domains and
modeling approaches.

Problem space translation. Problem space realization of ad-
versarial examples has been explored by about 80 papers for
in various security domains — malicious PDFs, network intru-
sion detection systems, android malware detection etc. Pier-
azzi et al.[22] conducted a comprehensive survey on problem
space evasive attacks, providing a framework with four con-
straints to be considered during the realization. They also
implemented their own evasive attacks against an ML-based
malware detector analyzing 170K Android malware samples.
Using their framework, §5 discusses unique challenges of
problem space realization in the provenance domain, which
is empirically evaluated in §6.6. Evasive attack realization
for the provenance domain has turned out be difficult, as the
problem space is distant from the feature space.

Provenance mimicry attacks. Mimicry attacks against
provenance-based IDS are advancing and improving rapidly.
Goyal et al.[23] demonstrated the first versions of such attacks
in early 2023, which consistently evaded a wide variety of
provenance-based IDS. PROVNINJA improves upon the previ-
ous work by reducing the number of added system events and
extending the tolerable differences between the program dis-
tribution in the attacker’s dataset and the defender’s dataset.

8 Discussion and Future Work

Defense against evasive attacks. Although we approach the
task from the adversary’s perspective, this research will help
defenders by providing a tool to generate potential attack se-
quences to harden their security models. ML detectors, when
trained in an adversarial way against these evasive attacks,
can uncover events that are either robust against evasive mod-
ification or crucial components of the attacks. Additionally,
PROVNINJA only focuses on improving the one-hop likeli-
hood of events in the malicious chains; by overcoming the
challenge of focusing on long-range casual dependencies, de-
fenders can unmask the anomalies induced by the malicious
behavior. We leave dedicated defense model training against
evasive mimicry attacks as important future work.
System provenance datasets for ML detectors. SOTA ML
detectors have focused on proactively identifying stealthy
attack campaigns, but have been hampered due to limited
provenance datasets. Public datasets [20], [24], [25] support
traditional providence research, however these datasets in-
clude too few process instances to effectively train ML mod-
els. DARPA’s popular TC dataset §6.2 includes very detailed,
low-level system events (e.g., Windows registry, IPC, An-
droid Intent), but even this dataset is too limited for advanced
research, as it only includes records of controlled activities
over two weeks. Because of these shortcomings, we have de-
cided to publish our dataset. to facilitate future research in
provenance-based ML security.
Environmental dependencies of evasive attacks. Unlike
traditional ML research where the problem space is similar to
the feature space (e.g., image processing), it is impossible to
fully replicate the victim’s problem space environment (target
system with normal concurrent user activity). An adversarial
attack generated with the attacker’s environment will therefore
typically differ from an attack generated with the real victim
environment. The quantification of PROVNINJA’s sensitivity
to environmental differences would help gauge the practicality
of its application in the wild.

9 Conclusion

In this paper, we presented PROVNINJA, a data-driven evasive
attack generation framework that defeats provenance-based
IDS by replicating the behavioral patterns of common sys-
tem programs. Our research is the first to explore design
space of evasive attack generation against provenance-based
IDS. Despite significant challenges due to the distance be-
tween problem space system actions and their feature space
representations, our research successfully generated and actu-
alized evasive attacks that work on real computer systems. We
also demonstrated wide coverage and general applicability
by evaluating against four ML detectors with different design
approaches using extensive datasets.
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PROVNINJA leverages a novel awareness of system pro-
gram execution profiles through public datasets to discover
and circumnavigate conspicuous events in an attack vector,
then camouflages each process in the attack to mimic benign
execution of the impersonated programs. Our findings demon-
strate that PROVNINJA has the ability to decrease defense
model F1 scores by an average of 46.63%. Furthermore, these
evasive actions can be actualized in the problem space, posing
a potential threat to provenance-based IDS.
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A Appendix

A.1 Dataset Statistics
Benign Program Profiles. In this section, we provide detailed
statistics on the system provenance graphs used throughout
this paper to evaluate PROVNINJA. We selected 52 system
programs from our event database that are commonly used
in APT campaigns from previous studies [7], [8], [13], [61].
The list can be found in Table 7. The program list consists
of two kinds of programs: system programs used by the OS
for system functionalities and user programs that are used
in everyday general workloads. On average, the provenance
graphs generated from the benign system programs contained
4,735.30 causal paths, 37.51 vertices and 45.78 edges on
average (Table 7). The provenance graph generated from the
benign user application consisted of 11,779.36 causal paths,
90.36 vertices, and 112.38 edges on average (Table 7).
Malicious Dataset. There are three anomalous datasets: En-
terprise APT, Supply-Chain APT, and Fileless Malware. We
conducted our experiment for each of the APT attack stages
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Table 7: Benign graph size for system programs.

Applications Avg # of
causal paths

Avg # of
total vertices

and edges

Avg # of
forward vertices

and edges

Avg # of
backward vertices

and edges

System Programs

Windows

acrord32.exe 1957.08 39.58 / 46.51 6.28 / 5.28 33.3 / 41.23
certutil.exe 28162.32 35.09 / 74.54 3.37 / 2.37 31.72 / 72.17

cmd.exe 2462.71 21.99 / 26.71 5.57 / 4.57 16.42 / 22.14
code.exe 10579.16 67.06 / 92.53 16.53 / 15.53 50.53 / 77.0

conhost.exe 4418.39 33.92 / 35.51 2.01 / 1.01 31.91 / 34.5
cscript.exe 6949.2 52.8 / 65.2 2.0 / 1.0 50.8 / 64.2
cvtres.exe 24.5 11.5 / 10.0 2.0 / 1.0 9.5 / 9.0
msiexec.exe 11473.0 74.0 / 96.0 2.0 / 1.0 72.0 / 95.0
netsh.exe 4181.39 34.18 / 44.14 2.31 / 1.31 31.87 / 42.83

powershell.exe 1429.78 33.28 / 38.69 5.06 / 4.06 28.22 / 34.63
sc.exe 270.05 10.06 / 9.31 2.89 / 1.89 7.17 / 7.42

svchost.exe 4.54 5.62 / 3.62 3.31 / 2.31 2.31 / 1.31
tasklist.exe 123.0 14.33 / 19.67 2.0 / 1.0 12.33 / 18.67
taskmgr.exe 3621.88 42.83 / 50.33 2.0 / 1.0 40.83 / 49.33
userinit.exe 77.0 89.34 / 87.34 86.67 / 85.67 2.67 / 1.67
winlogon.exe 30.75 34.5 / 32.5 31.0 / 30.0 3.5 / 2.5

Linux

dash 153808.57 371.87 / 381.97 211.61 / 206.44 160.26 / 175.53
dd 213601.29 995.5 / 1003.6 551.68 / 501.81 443.82 / 501.79
ps 181846.43 834.01 / 998.14 369.21 / 501.77 464.8 / 496.37
sh 208367.43 445.01 / 851.27 4.16 / 357.78 440.85 / 493.49

smbd 201559.57 355.37 / 371.15 9.69 / 3.39 345.68 / 367.76
sshd 182601.57 233.04 / 234.15 9.35 / 6.6 223.69 / 227.55
bash 166355.43 454.25 / 510.76 10.57 / 9.31 443.68 / 501.45
cron 214827.71 327.16 / 241.85 10.27 / 9.96 316.89 / 231.89
cat 184346.43 310.51 / 210.9 9.0 / 6.99 301.51 / 203.91

dbus-daemon 156713.0 20.16 / 20.04 9.02 / 6.42 11.14 / 13.62
ls 179185.86 213.62 / 356.47 10.25 / 9.3 203.37 / 347.17

perl 809.0 25.01 / 23.22 11.95 / 12.05 13.06 / 11.17
rm 174590.43 452.89 / 440.38 15.06 / 18.5 437.83 / 421.88
cp 175636.86 193.42 / 212.7 179.09 / 184.69 14.33 / 28.01

grep 212413.86 191.51 / 502.32 13.51 / 16.43 178.0 / 485.89
service 231.43 18.32 / 21.24 15.32 / 18.55 3.0 / 2.69

Average 4735.30 37.51 / 45.78 10.94 / 9.93 26.57 / 35.85

User Programs

Windows

acrobat.exe 92.08 11.35 / 14.32 2.46 / 1.46 8.89 / 12.86
chrome.exe 3028.15 50.17 / 58.69 2.01 / 1.01 48.16 / 57.68
discord.exe 2228.39 61.42 / 76.29 26.03 / 25.03 35.39 / 51.26
excel.exe 33113.53 131.54 / 158.53 35.67 / 34.60 95.87 / 123.93

explorer.exe 9119.99 327.03 / 371.69 315.41 / 355.87 11.62 / 15.82
firefox.exe 9792.64 78.66 / 91.53 21.15 / 20.44 57.51 / 71.09
javaw.exe 22500.40 71.82 / 123.45 10.58 / 20.76 61.24 / 102.69

notepad.exe 34141.24 92.07 / 144.66 2.22 / 1.19 89.85 / 143.47
osql.exe 415.29 26.15 / 32.29 3.29 / 2.29 22.86 / 30.0

outlook.exe 42796.90 219.80 / 267.90 90.00 / 88.90 129.80 / 179.00
pycharm64.exe 850.38 28.51 / 31.13 7.02 / 6.33 21.49 / 24.8
python.exe 248.67 10.93 / 11.17 3.0 / 2.0 7.93 / 9.17
slack.exe 3242.43 96.71 / 119.57 30.57 / 29.57 66.14 / 90.0
word.exe 3341.0 58.88 / 72.0 26.38 / 25.38 32.5 / 46.62

Linux

java 169180.71 133.94 / 222.4 17.44 / 19.63 116.5 / 202.77
python 161755.57 365.71 / 348.31 11.51 / 8.14 354.2 / 340.17
firefox 176843.86 194.22 / 504.56 15.84 / 18.78 178.38 / 485.78
nginx 258367.17 514.27 / 514.13 500.76 / 501.26 13.51 / 12.87
git 231.43 18.32 / 21.24 15.32 / 18.55 3.0 / 2.69

docker 9113.02 513.80 / 510.54 501.67 / 497.45 12.13 / 13.09

Average 11779.36 90.36 / 112.38 41.13 / 43.92 49.23 / 68.46

(e.g., Initial Access, Establish a Foothold, Privilege Escala-
tion, Deepen Access and Exfiltration). The provenance graphs
for Enterprise APT contain an average of 493.92 causal paths,
94.78 vertices, and 97.48 edges. The provenance graphs for
Supply-Chain APT have an average of 175.93 causal paths,

Figure 4: Enterprise APT scenario.

30.39 vertices and 29.50 edges. The provenance graphs for
Fileless Malware contain an average of 4302.05 causal paths,
177.75 vertices, and 211.96 edges.

A.2 APT Scenarios
Enterprise APT. The phishing email attack as shown in Fig-
ure 4 can be classified according to MITRE ATT&CK frame-
work into five major TTPs: Initial Access [62], Establishing a
Foothold [63], Privilege Escalation [64], Deepen Access [65],
and Exfiltration [66]. For our experiment, we were able to
conduct the five TTPs using the well-known penetration test-
ing framework [67], [68]. The attack involves an attacker
crafting a malicious macro (e.g., malware named java.exe)
embedded attachment (e.g., Excel document) which is sent
to a machine victim through email that is inside an enterprise
environment, as shown in Figure 4. The first TTP, Initial
Access, is realized when the victim downloads and opens the
email attachment.

The malicious macro starts a new malware process called
java.exe which opens an initial connection with the at-
tacker’s command and control center (C&C) using port 443.
The second TTP, Establishing a Foothold, is realized here.
The attacker then performs Privilege Escalation by exploiting
a vulnerability in (notepad.exe) [69]. The attacker can then
open a privileged command prompt (e.g., cmd.exe).

Using the privileged command prompt, the attacker scans
the network and breaches the LDAP server using port 445
to steal SQL database credentials. The attacker then runs
specialized software [70] to get the password hashes and
LSA secrets. The fourth TTP, Deepen Access, is realized here
as the attacker tries to penetrate the enterprise organization
and infect more victims.

Once the SQL server is located, the attacker executes a ma-
licious visual basic script file using cscript.exe to create an-
other malware instance. This malware process executes SQL
commands in the privileged shell using osql.exe as well
as sqlservr.exe and then dumps out SQL DB data to the
target’s machine using stolen credentials. Finally, the attacker
downloads the database dumps generated by the command
and removes itself by deleting any temporary files, processes
or executables created, completing the fifth TTP, Exfiltration.
Supply Chain APT. The supply chain attack Figure 5 also
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Figure 5: APT attack on Docker supply chain.

Table 8: Top 10 impersonation targets for fileless malware.

Impersonating Programs Malware
Samples Percentage of whole

conhost.exe 847 15%
rundll32.exe 821 14%
python.exe 822 13%
svchost.exe 734 12%
explorer.exe 673 11%

reg.exe 537 9%
cscript.exe 442 8%
wmic.exe 439 7%

schtasks.exe 329 6%
nslookup.exe 281 5%

contains the five TTPs mentioned in APT scenario one, but in
three stages. It starts with the attacker committing a malicious
docker image to a public repository which contains malicious
changes to the docker compose file. The malicious docker
image contains custom programs that allow the attacker to
perform arbitrary file interactions after the docker compose
file mounts unauthorized system directories. The exploitable
docker image is deployed across the network using the vic-
tim’s internal infrastructure.

When a victim pulls the malicious docker image they un-
knowingly complete the first TTP, Initial Access. Then, the
victim runs it by giving the docker image privilege permission
(e.g., sudo), completing the second and third TTPs, Establish-
ing a Foothold and Privilege Escalation. The modified docker
compose file first mounts unauthorized directories and reads
the contents of the home directories of the victim as well
as any other user on the compromised machine. The fourth
TTP, Deepen Access, is realized here as the attacker is able
to penetrate different user’s directories without their explicit
permission or knowledge. Data is then exfiltrated by utilizing
system programs that are popularly used such as curl, wget,
completing the fifth TTP of exfiltration.

A.3 Fileless Malware Evaluation
Various tactics, techniques, and procedures (TTPs) are devel-
oped and shared to empower advanced attackers, which have
contributed to the recent proliferation of major cybersecurity
incidents. Fileless malware is one of the most noteworthy
among these and regarded as a de facto attack vector for APT

campaigns. Because fileless malware does not write an exe-
cutable to the file system, common threat detection schemes
that scan the file system for suspicious artifacts are ineffec-
tive, allowing attackers to impersonate or inject behavior into
common system programs. Fileless techniques are widely
used in APT campaigns to hide malicious activities during lat-
eral movement or to reduce the attack footprint of standalone
malware[71]–[73]. Referring to the latest research [26], we
established a large-scale Fileless malware dataset (refer to
Table 8) for our research.

Table 9: APT attack stages first showing the original attack and then
the attack using gadget chain along with their regularity score.

Attack Type MITRE ATT&CK TTP Gadgets Reg. Score

Enterprise
APT

Initial Access winlogon.exe → outlook.exe → explorer.exe → excel.exe 1.3
Establish a Foothold excel.exe → java.exe → x.x.x.x:443 0.5
Privilege Escalation excel.exe → java.exe → notepad.exe → x.x.x.x:445 2.5
Deepen Access java.exe → notepad.exe → cmd.exe → cscript.exe 1.1
Exfiltration cscript.exe → cmd.exe → sqlservr.exe → JDQKL.exe → osql.exe 0.1

Initial Access firefox.exe → svchost.exe → sdiagnhost.exe → services.exe
→ explorer.exe → notepad.exe 7.6

Establish a Foothold firefox.exe → svchost.exe → defrag.exe → werfault.exe
→ explorer.exe → notepad.exe → x.x.x.x:443 6.5

Privilege Escalation python.exe → conhost.exe → werfault.exe → explorer.exe
→ cmd.exe → x.x.x.x:445 8.8

Deepen Access cmd.exe → conhost.exe → werfault.exe 6.7
Exfiltration notepad.exe → werfault.exe → explorer.exe → firefox.exe 9.1

Initial Access firefox.exe → werfault.exe → explorer.exe → notepad.exe 9.1
Establish a Foothold cmd.exe → explorer.exe → svchost.exe → srtasks.exe

→ notepad.exe → x.x.x.x:443 9.2
Privilege Escalation python.exe → werfault.exe → winword.exe → firefox.exe

→ explorer.exe → cmd.exe → x.x.x.x:445 8.5
Deepen Access cmd.exe → explorer.exe → firefox.exe → svchost.exe

→ srtasks.exe → werfault.exe 8.9
Exfiltration notepad.exe → werfault.exe → explorer.exe → cmd.exe

→ services.exe → runtimebroker.exe → firefox.exe 7.7

Initial Access firefox.exe → svchost.exe → dstokenclean.exe
→ notepad.exe 6.6

Establish a Foothold cmd.exe → svchost.exe → disksnapshot.exe
→ werfault.exe → explorer.exe → notepad.exe → x.x.x.x:443 7.3

Privilege Escalation notepad.exe → firefox.exe → svchost.exe
→ python.exe → x.x.x.x:445 9.2

Deepen Access python.exe → conhost.exe → wininit.exe
→ werfault.exe 6.0

Exfiltration notepad.exe → explorer.exe → schtasks.exe → services.exe
→ dllhost.exe → runtimebroker.exe → firefox.exe 7.8

Supply
Chain APT

Initial Access bash → git → bash → docker 6.5
Establish a Foothold bash → sudo → docker → mount 7.3
Privilege Escalation bash → sudo → docker 3.5
Deepen Access docker → bash → python → bash → nmap 2.1
Exfiltration docker → bash → python → wget 2.8

Initial Access python → sh → start-stop-daemon 9.8
Establish a Foothold start-stop-daemon → bash 7.4
Privilege Escalation bash → dhclient3 8.5
Deepen Access dhclient3 → bash → rsync 5.8
Exfiltration bash → curl 7.5

Initial Access python → sh → thunderbird 6.2
Establish a Foothold thunderbird → bash 4.6
Privilege Escalation bash → dbus-daemon 9.8
Deepen Access dbus-daemon → bash → firefox 7.3
Exfiltration bash → curl 7.5

Initial Access python → sh → bash → logrotate 6.1
Establish a Foothold logrotate → bash 6.5
Privilege Escalation bash → ntpd 9.6
Deepen Access ntpd → bash → scp 8.9
Exfiltration bash → curl 7.5

A.4 Gadget Chains at Various Stages of APTs
The table Table 9 presented here provides an overview of
different gadgets that can be utilized at various stages of
enterprise and supply chain APTs. These gadgets include
common programs that are frequently used by attackers to
gain access to systems, escalate privileges, and exfiltrate data.
By understanding the types of gadgets used at each stage of an
APT, the attacker can better prepare their attacks and increase
their chance of a successful attack. Each stage requires a
different set of tools and techniques, and understanding them
can help defenders identify and prevent attacks at each stage.
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