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Abstract—Machine learning (ML) has become a core com-
ponent of many real-world applications and training data is a
key factor that drives current progress. This huge success has
led Internet companies to deploy machine learning as a service
(MLaaS). Recently, the first membership inference attack has
shown that extraction of information on the training set is possible
in such MLaaS settings, which has severe security and privacy
implications.

However, the early demonstrations of the feasibility of such
attacks have many assumptions on the adversary, such as using
multiple so-called shadow models, knowledge of the target model
structure, and having a dataset from the same distribution as the
target model’s training data. We relax all these key assumptions,
thereby showing that such attacks are very broadly applicable
at low cost and thereby pose a more severe risk than previously
thought. We present the most comprehensive study so far on
this emerging and developing threat using eight diverse datasets
which show the viability of the proposed attacks across domains.

In addition, we propose the first effective defense mechanisms
against such broader class of membership inference attacks that
maintain a high level of utility of the ML model.

I. INTRODUCTION

Machine learning (ML) has become a core component of
many real-world applications, ranging from image classifica-
tion to speech recognition. The success of ML has recently
driven leading Internet companies, such as Google and Ama-
zon, to deploy machine learning as a service (MLaaS). Under
such services, a user uploads her own dataset to a server and
the server returns a trained ML model to the user, typically as
a black-box API.

Despite being popular, ML models are vulnerable to vari-
ous security and privacy attacks, such as model inversion [12],
adversarial examples [15], and model extraction [43], [30],
[45]. In this paper, we concentrate on one such attack, namely
membership inference attack. In this setting, an adversary aims
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to determine whether a data item (also referred to as a data
point) was used to train an ML model or not. Successful
membership inference attacks can cause severe consequences.
For instance, if a machine learning model is trained on the
data collected from people with a certain disease, by knowing
that a victim’s data belong to the training data of the model,
the attacker can immediately learn this victim’s health status.
Previously, membership inference has been successfully con-
ducted in many other domains, such as biomedical data [2]
and mobility data [35].

Shokri et al. [38] present the first membership inference
attack against machine learning models. The general idea
behind this attack is to use multiple machine learning models
(one for each prediction class), referred to as attack models,
to make membership inference over the target model’s output,
i.e., posterior probabilities. Given that the target model is a
black-box API, Shokri et al. propose to construct multiple
shadow models to mimic the target model’s behavior and
derive the data necessary, i.e., the posteriors and the ground
truth membership, to train attack models.

There are two main assumptions made by Shokri et al. [38].
First, the attacker needs to establish multiple shadow models
with each one sharing the same structure as the target model.
This is achieved by using the same MLaaS that trains the target
model to build the shadow models. Second, the dataset used to
train shadow models comes from the same distribution as the
target model’s training data, this assumption holds for most
of the attack’s evaluation [38]. The authors further propose
synthetic data generation to relax this assumption. However,
this approach can only be applied to datasets containing binary
features for efficiency reasons.

These two assumptions are rather strong which largely
reduce the scope of membership inference attacks against ML
models. In this paper, we gradually relax these assumptions
in order to show that far more broadly applicable attack
scenarios are possible. Our investigation shows that indeed,
membership inference in ML can be performed in an easier
way with fewer assumptions than previously considered. To
remedy this situation, we further propose two effective defense
mechanisms.

Membership Inference Attack. We study three different types
of adversaries based on the design and training data of shadow
models. As Table I illustrates, we hereby gradually relax the
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Adversary type Shadow model design Target model’s

No. shadow models Target model structure training data distribution

Shokri et al. [38] multiple X X
Our adversary 1 1 - X
Our adversary 2 1 - -
Our adversary 3 - - -

TABLE I: An overview of the different types of adversaries. Xmeans the adversary needs the information while - indicates the
information is not necessary.

assumptions of the previous work until we arrive at model and
data independent adversary.

Adversary 1. For the first adversary, we assume she has a
dataset that comes from the same distribution as the target
model’s training data. Here, we concentrate on relaxing the
assumptions on the shadow models.

We start by using only one instead of multiple shadow
models to mimic the target model’s behavior. As shadow
models are established through MLaaS, which implements the
pay-per-query business model, using one shadow model no-
tably reduces the cost of performing the membership inference
attack.

Extensive experimental evaluation (we use a suite of eight
different datasets ranging from image to text under multiple
types of machine learning models) shows that with one shadow
model and one attack model, the adversary can achieve a
very similar performance as reported by Shokri et al. [38].
For instance, when the target model is a convolutional neural
network (CNN) trained on the CIFAR-100 dataset,1 our sim-
plified attack achieves a 0.95 precision and 0.95 recall while
the attack with 10 shadow models and 100 attack models (as
in the previous work [38]) has a 0.95 precision and 0.94 recall.

Then, we relax the assumption that the shadow model
is constructed in the same way as the target model, In
particular, we show that training the shadow model with
different architectures and parameters still yields comparable
attack performance. Moreover, we propose a new approach for
shadow model training, which frees the adversary from even
knowing the type of ML models used by the target model.

Adversary 2. For this adversary, we assume she does not have
data coming from the same distribution as the target model’s
training data. Also, the adversary does not know the structure
of the target model. This is a more realistic attack scenario
compared to the previous one.

We propose a data transferring attack for membership
inference in this setting. Concretely, we train our single shadow
model with a different dataset. This means the shadow model
here is not used to mimic the target model’s behavior but only
to capture the membership status of data points in a machine
learning training set.

The main advantage of our data transferring attack is that
the adversary does not need to query the target model for syn-
thetic data generation. In contrast, the previous approach [38]
requires 156 queries on average to generate a single data point.
This means our data transferring attack is much more efficient,
less costly, and harder to be detected by the MLaaS provider.

1https://www.cs.toronto.edu/⇠kriz/cifar.html

Experimental results show that the membership inference
attack still achieves a strong performance, with only a few
percentage drop compared to the first adversary. More inter-
estingly, we show that our data transferring attack even works
between datasets belonging to totally different domains. For
example, by training a shadow model with the 20 Newsgroups
text dataset,2 we are able to get a 0.94 precision and 0.93 recall
for attacking a target model trained on the CIFAR-100 image
dataset.

Adversary 3. This adversary works without any shadow model,
i.e., the attack only relies on the posteriors (outcomes) obtained
from the target model when querying it with target data
points. No training procedure is required at all. We show that
statistical measures, such as maximum and entropy, over the
target model’s posteriors can very well differentiate member
and non-member data points. To make a concrete membership
inference, we propose a threshold-choosing method. Experi-
ments show that such a simple attack can still achieve effective
inference over multiple datasets.

All these experimental results show that membership infer-
ence can be performed in a much simpler and more efficient
way, which further demonstrates the severe risks of ML
models.

Defense. To mitigate the membership risks, we propose two
defense mechanisms, i.e., dropout and model stacking.

Dropout. One reason behind membership inference attacks’
effectiveness is the inherent overfitting nature of machine
learning models. When an ML model faces a data point that
it was trained on, it returns a high posterior for one class
compared to others. Therefore, to defend against membership
inference, we use a classical approach adopted in deep learn-
ing, namely dropout, which aims at preventing overfitting.
Dropout randomly deletes in each training iteration a fixed
proportion of edges in a fully connected neural network model.

Experiments on multiple datasets show that dropout can be
a very effective countermeasure against membership inference.
On the CIFAR-100 dataset, dropout (with 0.5 dropout ratio)
decreases the performance of our first adversary from 0.95 pre-
cision and 0.95 recall to 0.61 and 0.60, respectively. Moreover,
it almost preserves the same utility as the initial target model:
The target model’s prediction accuracy only drops from 0.22
to 0.21 (CIFAR-100). As dropout serves as a regularizer, we
observe that, for several learning problems, e.g., the Purchase-
100 dataset [38], the target model’s accuracy even improves
after applying dropout. Therefore, these models improve in
performance and resilience in membership inference attacks.

2http://scikit-learn.org/stable/datasets/twenty newsgroups.html
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Model Stacking. Although the dropout mechanism is effective,
it is specific to deep neural networks. For target models
using other machine learning classifiers, we propose a second
defense mechanism, namely model stacking. Model stacking
is a major class of ensemble learning. In model stacking,
multiple ML models are organized in a hierarchical way to
prevent overfitting. In our case, we construct the target model
with three different machine learning models. Two models are
placed in the first layer directly taking the original training data
as input, while the third model is trained with the posteriors
of the first two models.

Through extensive experiments, we show that model stack-
ing is able to significantly reduce the membership inference’s
performance. For instance, both precision and recall of the
attack (adversary 1) drop by more than 30% on the CIFAR-
100 dataset trained with model stacking. Meanwhile, the target
model’s prediction performance stays almost the same.

In summary, we make the following contributions:

• We broaden the class of membership inference attacks
by substantially relaxing the adversarial assumptions.

• We evaluate membership privacy threat under three
different adversarial setups on eight diverse datasets,
ultimately arriving at a model and data independent
adversary. Extensive experiments demonstrate the se-
vere membership privacy threat for machine learning
models.

• We propose two defense mechanisms, namely dropout
and model stacking, and demonstrate their effective-
ness experimentally.

Organization. The rest of the paper is organized as the
following. Section II introduces the definition of membership
inference against ML models and datasets used in the paper.
Section III, Section IV and Section V present the threat models,
attack methodologies, and evaluations of our three different
types of adversaries, respectively. In Section VI, we introduce
the two defense mechanisms. Section VII discusses the related
work and Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we first define membership inference attack
in the machine learning setting. Then, we introduce the datasets
used for our evaluation.

A. Membership Inference Against Machine Learning Models

In this paper, we concentrate on machine learning classi-
fication, as it is the most common ML application. An ML
classifier is essentially a function M that maps a data point
X (a multidimensional feature vector) to an output vector
M(X ) = Y . The length of Y is equal to the number of classes
considered. For most of the classification models, the output
vector Y can be interpreted as a set of posterior probabilities
over all classes, and the sum of all the values in Y is 1. The
parameters of an ML model are learned on a training dataset
(denoted by DTrain ) containing multiple data points following
a predefined learning object.

Membership inference attack in the ML setting emerges
when an adversary aims to find out whether her target data

point is used to train a certain ML model. More formally,
given a target data point xTarget , a trained machine learning
model M, and external knowledge of an adversary, denoted
by K, a membership inference attack (attack model) can be
defined as the following function.

A : xTarget ,M,K ! {0, 1}

Here, 0 means xTarget is not a member of M’s training dataset
DTrain and 1 otherwise. The machine learning model M that
the adversary targets is also referred to as the target model. As
in the work of Shokri et al. [38], we assume the adversary only
has black-box access to the target model, such as an MLaaS
API, i.e., the adversary can submit a data point to M and then
obtain the probabilistic output, i.e., M(xTarget).

The attack model A is essentially a binary classifier. De-
pending on the assumptions, it can be constructed in different
ways, which will be presented in later sections.

B. Datasets Description

We utilize 8 different datasets in this paper to conduct our
experiments. Among them, 6 datasets3 are the same as the ones
used by Shokri et al. [38], i.e., MNIST,4 CIFAR-10, CIFAR-
100, Location [47], Purchase,5 and Adult.6 We follow the same
procedure to preprocess all these datasets.

In particular, the Purchase dataset does not contain any
prediction classes. Following Shokri et al. [38], we adopt
a clustering algorithm, namely K-means, to manually define
classes. The numbers of classes include 2, 10, 20, 50, and 100,
therefore, we extend the Purchase dataset into 5 datasets. For
instance, Purchase-100 represents the Purchase dataset with
100 different classes.

Moreover, we make use of two other datasets, namely News
and Face, in our evaluation. We briefly describe them in the
following.

News. The News dataset (20 Newsgroups) is one of the most
common datasets used for text classification and clustering.
The dataset consists of 20,000 newsgroup documents catego-
rized into 20 classes. The number of data points belonging to
each class is very similar, i.e., the dataset has a balanced class
distribution. We preprocess the News dataset by first removing
headers, footers, and quotes from the documents. Then, we
build the TF-IDF matrix out of the raw documents.

Face. The Face dataset (Labeled Faces in the Wild7) consists of
about 13,000 images of human faces crawled from the web.
It is collected from 1,680 participants with each participant
having at least two distinct images in the dataset. In our
evaluation, we only consider people with more than 40 images,
which leaves us with 19 people’s data, i.e., 19 classes. The Face
dataset is challenging for facial recognition, as the images are
taken from the web and not under a controlled environment,
such as a lab. It is also worth noting that this dataset is
unbalanced.

3We excluded Texas hospital stays dataset [38], as there is not enough
information provided for preprocessing it.

4http://yann.lecun.com/exdb/mnist/
5https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
6https://archive.ics.uci.edu/ml/datasets/adult
7http://vis-www.cs.umass.edu/lfw/
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III. TOWARDS MODEL INDEPENDENT MEMBERSHIP
INFERENCE ATTACKS (ADVERSARY 1)

In this section, we describe our first adversary considered
for membership inference attack. For this adversary, we mainly
relax the assumption on her shadow model design. In conse-
quence, membership inference attack can be performed in a
much more efficient and less costly way.

We start by defining the threat model. Then, we describe
our first simplification, i.e., using one shadow model instead
of multiple. In the end, we propose our second simplification
which frees the adversary from knowing the target model’s
structure.

A. Threat Model

We define our attack model A as a supervised ML classifier
with binary classes (member or non-member). To train A, the
adversary needs to derive the labeled training data. i.e., the
ground truth membership. As mentioned in Section II, the
adversary only has black-box access to the target model, i.e.,
she is not able to extract the membership status from the target
model. Therefore, the adversary trains a shadow model [38]
to mimic the behavior of the target model, and relies on the
shadow model to obtain the ground truth membership to train
A.

To train the shadow model, we assume that the adversary
has a dataset, denoted by DShadow , that comes from the same
underlying distribution as the training data for the target model.
Note that most of the experiments by Shokri et al. [38] make
the same assumption.

We further assume that the shadow model uses the same
ML algorithm and has the same hyperparameters as the target
model. To achieve this in practice, the adversary can either rely
on the same MLaaS provider which builds the target model or
perform model extraction to approximate the target model [43],
[30], [45]. Later in this section, we show this assumption can
be relaxed as well.

B. One Shadow Model

Methodology. The adversary’s methodology can be organized
into three stages, i.e., shadow model training, attack model
training, and membership inference.

Shadow Model Training. The adversary first splits her dataset,
i.e., DShadow , into two disjoint sets, namely DTrain

Shadow
and

DOut

Shadow
. Then, she uses DTrain

Shadow
to train her only shadow

model, denoted by S .

Attack Model Training. The adversary uses the trained shadow
model S to perform prediction over all data points in
DShadow (consisting of DTrain

Shadow
and DOut

Shadow
), and obtain

the corresponding posterior probabilities. For each data point
in DShadow , she takes its three largest posteriors (ordered from
high to low) or two in the case of binary-class datasets as its
feature vector. A feature vector is labeled as 1 (member), if
its corresponding data point is in DTrain

Shadow
, and as 0 (non-

member) otherwise. All the generated feature vectors and
labels are then used to train the attack model A.

Membership Inference. To perform the attack on whether
xTarget is in DTrain , the adversary queries M with xTarget

to obtain the corresponding posteriors. Then, she picks the 3
maximal posteriors, again ordered from high to low, and feed
them into A to obtain the membership prediction.

It is important to note that our adversary only uses one
shadow model and one attack model in her attack, while
the approach by Shokri et al. [38] adopts multiple shadow
models as well as multiple attack models (one for each class).
In particular, as each shadow model is established through
MLaaS [38], this strategy will largely reduce the cost of her
membership inference attack.

Experimental Setup. We evaluate our attack over all datasets.
For each dataset, we first split it by half into DShadow and
DTarget . Following the attack strategy, we split DShadow by
half into DTrain

Shadow
and DOut

Shadow
. DTarget , on the other hand,

is used for attack evaluation, it is also split by half: One is
used to train the target model, i.e., DTrain , and serves as the
members of the target model’s training data, while the other
serves as the non-member data points.

For image datasets, i.e., MNIST, CIFAR-10, CIFAR-100,
and Face, we use convolutional neural network (CNN) to
build the target model. Our CNN is assembled with two
convolutional layers and two pooling layers with one hid-
den layer containing 128 units in the end. For the other
datasets, we use multilayer perceptron (neural network) with
one hidden layer (128 units) as the target model. Each shadow
model’s structure is the same as its corresponding target
model, following the assumption that the adversary knows the
target model’s structure. The attack model is established with
another multilayer perceptron (a 64-unit hidden layer and a
softmax output layer). All our experiments are implemented in
Python with Lasagne.8 For reproducibility purposes, our code
is available at https://github.com/AhmedSalem2/ML-Leaks.

We compare our attack against the attack by Shokri et
al. [38]. Following the original configuration of the authors’
code,9 we train 10 shadow models and multiple attack models
(one for each class).

As membership inference is a binary classification, we
adopt precision and recall as our evaluation metrics. Moreover,
we use accuracy to measure the target model’s prediction
performance.

Results. Figure 1 depicts the first adversary’s performance.
In general, we observe that our attack has a very similar
membership inference as the previous work [38]. For instance,
our attack on the CIFAR-100 dataset achieves 0.95 for both
precision and recall, while the attack by Shokri et al. has a 0.95
precision and 0.94 recall. It is also interesting to see that our
attack works for both balanced datasets, such as CIFAR-10,
and unbalanced datasets, such as Face.

We also observe variations of the attack performance on
different datasets. We relate this to the overfitting level of ML
models on different datasets, similar to previous works [38],
[48]. We quantify the overfitting level of a target model as
the difference between its prediction accuracy on the training
set and testing set. Through investigation, we discover that if
an ML model is more overfitted, then it is more vulnerable

8https://github.com/Lasagne/Lasagne
9https://github.com/csong27/membership-inference
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(a) Precision.
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(b) Recall.

Fig. 1: Comparison of the first adversary’s performance with Shokri et al.’s using all datasets. (a) precision, (b) recall.
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Fig. 2: The relation between the overfitting level of the target
model measured by the difference between prediction accu-
racy on training set and testing set (x-axis) and membership
inference attack performance (y-axis). (a) precision, (b) recall.

to membership inference attack (see Figure 2). For instance,
our attack on the Adult dataset achieves a relatively weak
performance (around 0.5 precision and recall), and there is
only a 2% difference between the target model’s training and
testing accuracy. On the other hand, the membership inference
attack achieves a 0.95 precision and recall on the CIFAR-100
dataset. Meanwhile, the corresponding target model provides
a much better prediction performance on the training set than
on the testing set, i.e., 78% difference.

To further demonstrate the relationship between overfit-
ting and membership inference, we perform another – more
controlled – experiment on the Location and Purchase-100
datasets. Concretely, we focus on the number of epochs used in
training, larger number leads to higher overfitting. We vary the
number of epochs used from 10 to 100 and report the result
in Figure 3. As we can see, the attack performance indeed
increases with the increase of number of epochs.

Another factor which also affects our attack’s performance
is the number of classes in the dataset. Both CIFAR-10 and
CIFAR-100 are image datasets with different number of classes
(10 vs 100), it turns out that our membership inference attack
on the latter dataset achieves a 10% better performance than
on the former dataset. Similar results can be observed from all
the Purchase datasets.

20 40 60 80 100
Number Of Epochs

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si
on

Location

Purchase-100

(a)

20 40 60 80 100
Number Of Epochs

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

Location

Purchase-100

(b)

Fig. 3: The relation between the number of epochs used during
the training of the target model (x-axis) and membership
inference attack performance (y-axis). (a) precision, (b) recall.

For our attacks, we use only the three highest posterior
probabilities (in descending order) as the features for our
attack. We test the effect of using more posteriors on the
CIFAR-100, Location, MNIST, and News datasets. The result
in Figure 4 shows that this factor does not have a significant
effect on the attack’s performance for most of the datasets.
Generally, three posteriors achieves the best performance,
especially on the MNIST dataset.
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Fig. 4: The effect of the number of posterior probabilities (used
as features) on the first adversary’s performance. (a) precision,
(b) recall.

A major difference between our attack and the previous
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Fig. 5: The effect of the number of shadow models on the first
adversary’s performance. (a) precision, (b) recall.

one [38] is the number of shadow models used. We further
study this factor’s influence on our own attack’s performance.
Figure 5 shows the corresponding results on the Purchase-
100, Purchase-50, Adult, and Location datasets. By varying
the number of shadow models from 1 to 10, we do not observe
a significant performance difference for both precision and
recall. This means increasing the number of shadow models
does not improve our attack’s performance.

Evaluation on MLaaS. All the above experiments are con-
ducted in a local setting. We further evaluate our attack with
a real-world MLaaS. In particular, we use Google’s MLaaS,
namely Google Cloud Prediction API.10 Under this service, a
user can upload her own data and get the black-box ML API
trained by Google. The user can neither choose which classifier
to use, nor the corresponding model structure and parameters.
We perform our attack following the same methodology as
in Section III-B. We construct both target model and shadow
model with Google’s MLaaS and build our attack model
locally.

We use the Purchase-100 and Location datasets for evalua-
tion and observe that the attack’s performance is even stronger
than our previous local evaluation. For the Purchase-100
dataset, our attack on Google’s MLaaS has a 0.90 precision and
a 0.89 recall, while our local evaluation has a 0.89 precision
and a 0.86 recall. For the Location dataset, the precision is
0.89 and the recall is 0.86, which is almost similar to our
local evaluation (0.88 precision and 0.86 recall).

C. Target Model Structure

One of the above attack’s assumptions is that the adversary
knows the target model’s algorithm and hyperparameters and
implements her shadow model in the same way. Next, we show
how to relax this assumption. We first concentrate on target
model’s hyperparameters, then, the type of classifiers it uses.

Hyperparameters. We assume that the adversary knows the
target model is a neural network, but does not know the details
of the model. We first train the shadow model with half of
the training parameters of the target model. More precisely,
we reduce the batch size, hidden units, and regularization
parameters to half. On the Purchase-100 dataset, our attack

10 Google’s Cloud prediction API is deprecated on April 20th, 2018 (https:
//cloud.google.com/prediction/), the new MLaaS provided by Google is called
Cloud Machine Learning Engine.
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Shadow
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Shadow
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Attack Training Set

DOut
Shadow

DOut
Shadow

DOut
Shadow

Fig. 6: The architecture of the combining attack on generating
data for training the attack model.

achieves a 0.86 precision and 0.83 recall, which is almost the
same as the one reported in Figure 1. We also revert the settings
to test the case when the shadow model has double number
of parameters than the target model. The performance drops a
bit to 0.82 precision and 0.80 recall, but it is still quite close
to our original attack. We also perform evaluation over other
datasets and observe similar results. This evaluation shows the
flexibility of the membership inference attack: An adversary
with no knowledge about the model’s hyperparameters can still
get good performance.

Target Model’s Algorithm. We further assume that the ad-
versary has no knowledge on what classification algorithm is
adopted by the target model. In this setting, our first attempt
is to use any classifier, such as random forests, as the shadow
model and attack the target model that is (very likely to be)
different from the shadow model, such as CNN. However, the
experimental results are not very promising.

To improve the attack with no knowledge of the target
model, we construct a set of ML models, each with a different
classification algorithm, and combine them together as one
shadow model. Each single ML model is referred to as a sub-

shadow model. This is achievable as the types of classifiers are
limited. This attack, also referred to as the combining attack,
can learn the behavior of the different classifiers and therefore
can attack an unknown target model based on the assumption
that there is a sub-shadow model which is trained with the
same classifier as the target model.

Concretely, we use the same methodology as in Sec-
tion III-B to train multiple sub-shadow models as illustrated
in Figure 6, with each sub-shadow model being a different
classifier. The data each sub-shadow model is trained on is the
same. All the generated features by all sub-shadow models
are stacked together, i.e., the attack model A is trained with a
larger dataset. In this new dataset, each data point in DShadow

is represented multiple times with respect to different sub-
shadow models’ outputs.

We run a local experiment on the Purchase-100 dataset
to evaluate this attack. Three popular ML classifiers, i.e.,
multilayer perceptron, random forests (with 1,000 tree), and
logistic regression are adopted as sub-shadow models. The
target model for the Purchase-100 dataset is a multilayer
perceptron. For a more complete comparison, we further build
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Classifier With target model structure Combining attack

Precision Recall Precision Recall

Multilayer perceptron 0.86 0.86 0.88 0.85
Logistic regression 0.90 0.88 0.90 0.88
Random forests 1.0 1.0 0.94 0.93

TABLE II: Comparison of the combining attack and the
original attack by the first adversary proposed in Section III-B.

another two target models that are based on random forests and
logistic regression, respectively, and use the same algorithm
to build a single shadow model as in Section III-B. Table II
depicts the result. As we can see, our combining attack
has a similar performance when target model is multilayer
perceptron and logistic regression. Meanwhile, the attack’s
performance is relatively worse is when the target model is
random forests.

In conclusion, we show that our combining attack can free
the attacker from knowing the target model, which further
enlarges the scope of membership inference attack.

IV. TOWARDS DATA INDEPENDENT MEMBERSHIP
INFERENCE ATTACKS (ADVERSARY 2)

In this section, we relax the assumption on the adversary
having a dataset that comes from the same distribution as the
target model’s dataset.

We start by explaining the threat model, then describe
the adversary’s attack methodology. In the end, we present
a comprehensive experimental evaluation.

A. Threat Model

Different from the threat model in Section III, we remove
the assumption that the adversary has a dataset DShadow

coming from the same distribution as the training data for the
target model. This largely reduces the attack capabilities of the
adversary. For this scenario, Shokri et al. [38] propose to query
the target model multiple times to generate synthetic data to
train the shadow model. However, this approach can only be
applied when the dataset is assembled with binary features.11

In contrast, our approach can be applied to attack ML models
trained on any kind of data.

B. Methodology

The strategy of the second adversary is very similar to
the one of the first adversary. The only difference is that the
second adversary utilizes an existing dataset that comes from
a different distribution than the target model’s training data to
train her shadow model. We refer to this attack as the data

transferring attack.

The shadow model here is not to mimic the target model’s
behavior, but only to summarize the membership status of a
data point in the training set of a machine learning model.
As only the three - or two in case of binary datasets - largest
posteriors are used for the attack model, we can also neglect
the effect brought by datasets with different number of classes.

11We confirm this with the authors.

C. Evaluation

Experimental Setup. We use the same attack model and
shadow model setup as presented in Section III, such as
data splitting strategy and the types of ML models used.
We perform the data transferring attack over all datasets. For
evaluation metric, we again use precision and recall.

Results. Figure 7 depicts the data transferring attack’s per-
formance. The x-axis represents the dataset being attacked,
i.e., the dataset the target model is trained on, and the y-axis
represents the dataset used for training the shadow model.
Compared to the first adversary the attack results of which
are listed at the diagonal of Figure 7, the second adversary
in multiple cases obtains similar performances. For instance,
using the Face dataset to attack the CIFAR-100 dataset results
in 0.95 for both precision and recall, while the corresponding
results for the first adversary are also 0.95 for both metrics.
In several cases, we even observe a performance improvement
over the first adversary. For instance, using the Purchase-10
dataset to attack the News dataset achieves a 0.93 precision
and 0.92 recall, while the first adversary has a 0.88 precision
and 0.86 recall. More interestingly, in many cases, datasets
from different domains can effectively attack each other, e.g.,
the News dataset and the CIFAR-100 dataset.

For the first adversary, we relax the assumption on shadow
model design. This relaxation also applies for the second
adversary, as the shadow model and target model are trained
with different datasets. For instance, the Purchase-20 dataset
is trained with a multilayer perceptron while the CIFAR-100
dataset is trained with a CNN.

One of the major advantages of our data transferring attack
lies in its applicability. The synthetic data generation strategy
by Shokri et al. [38] cannot be applied to dataset of any kind,
but those with binary features. Even for dataset of binary
features, a single synthetic data point requires 156 queries [38]
to the target model. Given the large dataset quantity needed for
ML models and MLaaS’s pay-per-query business model, this is
very costly. Moreover, sending a large amount of queries to an
MLaaS API would alert the server, which may not even allow
the adversary to finish her synthetic data generation process.
Meanwhile, our data transferring attack does not have any of
the above constraints.

Reasoning. After demonstrating the strong performance of our
data transferring attack, we now seek to understand the reason
behind. To this end, we pick the highest three posteriors (simi-
lar to our attack) of member and non-member data points with
respect to their target ML models of all datasets, and embed
these posteriors into a 2D space using t-Distributed Stochastic
Neighbor Embedding (t-SNE). We show in Figure 8a the
result for two datasets (of different types) between which our
transferring attack is effective. As we can see, the member
and non-member points of these datasets are tightly clustered
together and follow a common decision boundary, thus, the
attack model trained on one dataset can effectively infer the
membership status of points in the other dataset. Meanwhile,
Figure 8b shows the results for two datasets between which
our transferring attack is not effective. As depicted, there are
no clear clusters for members and non-member data points.
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Fig. 7: The performance of our data transferring attack. The x-axis represents the dataset being attacked, i.e., the dataset the
target model is trained on. The y-axis represents the dataset used for training the shadow model.

(a) (b)

Fig. 8: The top three posteriors of member and non-member
data points (a random sample) projected into a 2D space
using t-Distributed Stochastic Neighbor Embedding (t-SNE).
(a) CIFAR-100 and News, (b) MNIST and Purchase-10. M
means member and NoM means non-member.

D. Evaluation On MLaaS

We also evaluate our data transferring attack on Google’s
MLaaS. Concretely, we use a shadow model trained on the
Location dataset to attack a target model trained on the
Purchase-100 dataset. Both models are trained with Google’s
MLaaS. Experimental results show that we achieve a 0.8
precision and 0.78 recall. By further flipping the shadow and
target model, i.e., Purchase-100 dataset attacking Location
dataset, the membership inference result is still very strong
with a 0.87 precision and a 0.82 recall. This shows that our
data transferring attack is not only effective in the local setting
but also in the real-world MLaaS setting.

V. MODEL AND DATA INDEPENDENT MEMBERSHIP
INFERENCE ATTACK WITHOUT TRAINING (ADVERSARY 3)

In this section, we present our third adversary, who does
not need to train any shadow model and does not assume
knowledge of model or data distribution. We start with the
threat model description. Then, we list the attack methodology.
In the end, we present the evaluation results.

A. Threat Model

We relax the assumption that the adversary needs to train
any shadow model to perform her attack. All she could rely
on is the target model’s output posteriors M(xTarget) after
querying her target data point xTarget . Note that Yeom et
al. [48] propose a similar attack, however, their membership
inference attack requires the adversary to know the target data
point’s class label which is hard to obtain in some cases,
such as in biomedical settings [4]. Therefore, our threat model
covers a broader range of scenarios.

B. Methodology

The attack model for the third adversary is implemented as
an unsupervised binary classification. Concretely, the adversary
first obtains M(xTarget). Then, she extracts the highest pos-
terior and compares whether this maximum is above a certain
threshold. If the answer is yes, then she predicts the data point
is in the training set of the target model and vice versa. The
reason we pick maximum as the feature follows the reasoning
that an ML model is more confident, i.e., one posterior is much
higher than others, when facing a data point that it was trained
on. In another words, the maximal posterior of a member data
point is much higher than the one of a non-member data point.
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Fig. 9: The AUC values for three different statistical measures
over all datasets. We include the results for the Adult and
News datasets as AUC is independent of a concrete detection
threshold.

Threshold Choosing. The attacker can pick the threshold for
membership inference depending on her requirements, as in
many machine learning applications [50], [3]. For instance, if
she concentrates more on inference precision (recall), then she
can pick a relatively high (low) threshold.

Nevertheless, we provide a general method for choosing
a threshold. Concretely, we generate a sample of random
points in the feature space of the target data point. For image
datasets including CIFAR-10, CIFAR-100, MNIST, and Face,
we generate random images, where the value of each pixel
is drawn from a uniform distribution. For datasets with binary
features including Location and Purchase datasets, we generate
0 and 1 for each feature according to an unbiased coin flip.
For Adult and News, as the bounds for features are not clear,
our method cannot apply. One way to tackle this is to collect
News articles or people’s records (with the same features as
in the Adult dataset) from the Internet as the “random” points.
We leave this for future work. Next, we query these random
points to the target model to get the corresponding maximal
posteriors. We hypothesize that these points act as the non-
member points. Thus, top t percentile of these random points’
maximal posteriors can serve as a good threshold. Below, we
show empirically that there exists a choice of t percentile that
works well and generalizes across all the dataset and therefore
can be used to automatically determine the detection threshold.

C. Evaluation

Experimental Setup. We evaluate the third adversary over all
datasets except News and Adult. Note that we do not need to
split the dataset as this adversary does not train any shadow
model. Instead, we split each dataset by half, and use one part
to train the target model and the other part is left out as non-
members.

Results. We first evaluate the effectiveness of maximal poste-
rior on differentiating member and non-member points without
setting a threshold. To this end, we adopt the AUC (area under
the ROC curve) value, which reports the relation between true
positive rate and false negative rate over multiple thresholds,
as the evaluation metric [13], [3], [35], [32], [49]. Besides
maximal posterior probability, we further test the effect of
using other statistical metrics, including standard deviation and
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Fig. 10: The relation between the percentile of the maximal
posterior, i.e., threshold, (x-axis) and the third adversary’s
performance (y-axis). (a) precision, (b) recall.

entropy. In particular, the entropy of posteriors is defined as
�
P

pi2Y pi log pi, where pi denotes the posterior for the i-
th class. Figure 9 shows that maximal posterior achieves very
high performance: In multiple datasets, we obtain AUC values
above 0.8. Meanwhile, the AUC score is almost the same for
all the three measures. This indicates that standard deviation
and entropy can also be used as features for the attack.

Next, we evaluate our concrete prediction following our
threshold-choosing method. We generate 1,000 random data
points for each dataset and experiment multiple thresholds with
respect to the top t percentile. Figure 10 shows the results.
As we can see, setting t to 10 achieves a good performance
(both precision and recall) for most of the datasets, such as
CIFAR-100. Figure 11a further shows the maximal posterior
distribution of member, non-member, and random points for
CIFAR-100. As the figure shows, our random points’ max-
imal posteriors behave similarly to the distribution of the
non-member points’ which leads to the strong membership
inference. On the other hand, our attack does not perform
well on some datasets, such as Purchase-10, the corresponding
maximal posteriors of which are shown in Figure 11b.

We also experiment with picking a fixed threshold for
membership inference, e.g., maximal posterior above 50%.
However, the evaluation shows that there is no single number
that can achieve good performance for all the datasets. Thus,
we conclude that our threshold-choosing method is suitable.
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Fig. 12: Comparison of the three different adversaries’ perfor-
mance. (a) precision, (b) recall.

D. Comparison of the Three Attacks

Figure 12 compares the performance, i.e., precision and
recall, of the three attacks.12 In particular, we show the best
performance for our data transferring attack (adversary 2). As
we can see, our first two adversaries achieve very similar
performance for most of the datasets. On the other hand, the
performance of our third adversary with the minimal assump-
tions is only slightly worse (especially for precision). These
results clearly demonstrate membership inference attacks are

12All the comparisons are done on the same dataset setting.

very broadly applicable, thereby the corresponding risks are
much more severe than previously shown.

VI. DEFENSE

In this section, we propose two defense techniques aiming
at mitigating membership privacy risks. The effectiveness of
our membership inference attacks is mainly due to the overfit-
ting nature of ML models. Therefore, our defense techniques
are designed to increase ML models’ generalizability, i.e.,
prevent them from being overfitted.

Our first technique is dropout which is designed for neural
network-based classifiers.13 Our second technique is model
stacking. This mechanism is suitable for all ML models,
independent of the classifier used to build them.

As the first and second adversaries follow the same method-
ology of building a shadow model (with different assumptions
on the dataset), we only show the effectiveness of our defense
on the first adversary as well as on the third adversary to
conserve space. For the first adversary, to fully assess the
attack’s performance under our defense, we further assume
the attacker knows the defense technique being implemented
and builds her shadow model following the same defense
technique.

A. Dropout

Methodology. A fully connected neural network contains a
large number of parameters which is prone to overfitting.
Dropout is a very effective method to reduce overfitting based
on empirical evidences. It is executed by randomly deleting
in each training iteration a fixed proportion (dropout ratio) of
edges in a fully connected neural network model. We apply
dropout for both the input layer and the hidden layer (see
Section III) of the target model. We set our default dropout
ratio to be 0.5.

Evaluation. We test dropout on all datasets against the first
adversary and third adversary (except for the News and Adult
datasets). Figure 13a and Figure 13b compare the performance
of the first adversary’s performance before and after the
dropout defense. As we can see, the attack performance is
reduced in almost all cases. For instance, the precision of the
attack on the Purchase-100 dataset drops from 0.89 to 0.64,
while the recall drops from 0.86 to 0.63. In another example,
the precision and recall on the CIFAR-100 dataset drop by
more than 30%. There is only one case where dropout does not
help much, i.e., the target model trained on the News dataset.

Similarly, the performance of our third adversary is reduced
due to dropout (see Figure 14). For example, the precision and
recall of the attack on the CIFAR-100 dataset drop by more
than 25% and 40%, respectively. However, on some datasets,
such as MNIST, the recall of the attack even improves. This
indicates that our third adversary is more resistant to dropout
than our first adversary.

Figure 15 further shows the original target model’s perfor-
mance (prediction accuracy) after dropout has been applied.

13Note that for different kinds of classifiers, dropout can be replaced by
other regulation techniques, such as the L2-norm, which is also shown to be
effective against the membership inference attack [38].
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Fig. 13: Comparison of the first adversary’s performance under both of the defense mechanisms. (a) precision, (b) recall.
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Fig. 14: Comparison of the third adversary’s performance under both of the defense mechanisms. (a) precision, (b) recall.
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Fig. 15: Comparison of the target model’s accuracy under both
of the defense mechanisms.

We observe that, on more than half of the datasets, the dropout
mechanism even increases the target model’s prediction per-
formance. For instance, on the Purchase-50 dataset, the target
model’s accuracy increases from 0.72 to 0.83.

Figure 16 plots the relation between the overfitting level
(see Section III) reduction and the first adversary’s perfor-
mance reduction after dropout has been applied. The overfitting
level reduction is calculated as the original target model’s over-
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Fig. 16: The relation between the overfitting level reduction
(x-axis) and the first adversary’s performance reduction (y-
axis) when applying dropout as the defense mechanism. (a)
precision reduction, (b) recall reduction.

fitting level subtracting the dropout-defended target model’s
overfitting level. As we can see, more effective dropout which
results in larger reduction on overfitting level leads to better
defense against membership inference attacks. These results
support the argument by Shokri et al. [38] that overfitting is
a common enemy for the membership privacy risks and the
target model’s performance.
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Fig. 17: The effect of the dropout defense on the first adversary’s performance, i.e., (a) precision and (b) recall, and on (c) the
target model’s accuracy under different dropout ratios in different layers of the neural network. The x-axis represents the input
layer, and the y-axis represents the hidden layer.

So far, we have used 0.5 as the dropout ratio. We further
test the effect of varying the dropout ratio of our defense. We
try different dropout ratios on both input and fully connected
layers while monitoring the results on the first adversary’s
performance and the target model’s accuracy. Figure 17 shows
the result on the Purchase-100 dataset. We first observe that
higher dropout ratio leads to lower attack performance. For
instance, dropout ratio 0.75 on both layers reduces the attack’s
performance to 0.53 precision and recall. On the other hand,
both large and small dropout ratio result in the low perfor-
mance of the target model. This means the accuracy of the
target model is the strongest when dropout ratio is mediate.
In conclusion, 0.5 dropout ratio is a suitable choice for this
defense technique.

B. Model Stacking

Methodology. The dropout technique is effective, however, it
can only be applied when the target model is a neural network.
To bypass this limitation, we present our second defense
technique, namely model stacking, which works independently
of the used ML classifier.

The intuition behind this defense is that if different parts
of the target model are trained with different subsets of data,
then the complete model should be less prone to overfitting.
This can be achieved by using ensemble learning.

Ensemble learning is an ML paradigm, where instead of
using a single ML model, multiple ML models are combined
to construct the final model. There are different approaches to
combine these ML models, such as bagging or boosting. For
our defense, we focus on stacking the models in a hierarchical
way. Figure 18 shows a sample architecture for model stacking.

Concretely, we organize the target model in two layers over
three ML models. The first layer consists of two ML models
(the first and second model). The second layer consists of a
single ML model (the third model). As shown in Figure 18, to
get the model’s output on some data point x, we first apply x
on each of the first two models to have their posteriors Y1 and
Y2. We then concatenate both outputs, i.e., Y1||Y2, and apply
the result to the third model which predicts the final output Y .

To maximize the prevention of overfitting, we train the
three different models on disjoint sets of data. The intuition
behind is that there is no data point seen by more than one
model during training.

Model 1 
CNN

Model 3 
Logistic Regression

Model 2 
Random Forests

Y

Layer 2

Layer 1

X X

Y1 Y2

Y1 || Y2

Fig. 18: The architecture of model stacking.

Evaluation. For our evaluation, we use multilayer perceptron
or CNN as the first model, random forests as the second
model, and logistic regression as the third model. We pick
this architecture to test the effect of using different machine
learning models in the different layers. However, a different
selection of models also suffices.

We build both target and shadow models for the first
adversary as described, i.e., each model consists of 3 different
ML models. To train our target and shadow models, we split
the data into 12 disjoint sets. We use the first 6 sets to train
and test our target model, and the remaining 6 to train and test
the shadow model.

We evaluate this technique on all datasets but the Face
dataset as it does not have enough data to provide meaningful
results in this setting. Figure 13 shows the result for the
first adversary. As we can see, model stacking reduces the
attack’s performance significantly in all cases. For instance,
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Fig. 19: The relation between the overfitting level reduction (x-
axis) and the first adversary’s performance reduction (y-axis)
when applying model stacking as the defense mechanism. (a)
precision reduction, (b) recall reduction.

on the CIFAR-10 dataset, model stacking reduces the attack’s
precision and recall by more than 30%. Moreover, compared to
the dropout defense, model stacking is more effective in some
cases. Dropout does not change the attack’s performance on the
News dataset while model stacking reduces the corresponding
precision and recall by 28%. The same result can be observed
on the Location dataset. However, model stacking affects target
model’s accuracy more than dropout in multiple cases, e.g.,
the Purchase datasets. The relation between overfitting level
reduction and attack performance reduction for the model
stacking technique is very similar to the one for the dropout
technique, the results are depicted in Figure 19.

Similarly, the performance of our third adversary drops
after model stacking has been applied (see Figure 14). For
instance, model stacking reduces the attack’s performance on
the Location dataset by more than 20% for the precision
and 30% for the recall. But similar to the dropout defense,
exceptions like MNIST also exist.

In conclusion, if the target model is not based on neural
networks, model stacking is an effective defense technique.
Otherwise, dropout is sufficient to mitigate the membership
privacy risks due to its high utility maintenance.

VII. RELATED WORK

Membership Inference. Membership inference attack has
been successfully performed in many different data domains,
ranging form biomedical data [18], [2] to mobility traces [35].

Homer et al. [18] propose the first membership inference
attack on genomic data. This attack relies on the L1 distance
between the allele frequencies and the victim’s genomic data.
Backes et al. [2] generalize this attack to other types of
biomedical data. More recently, Pyrgelis et al. [35] have
shown that people’s aggregate mobility traces are also prone to
membership inference attack. They first formalize membership
inference as a distinguishability game. Then, they implement
the attack with machine learning classifiers. Large-scale evalu-
ation on two real-world datasets has demonstrated their attack’s
effectiveness. Moreover, the authors show their framework
can easily incorporate different defense mechanisms, such as
differential privacy, to allow a comprehensive evaluation of
membership inference risks.

Membership Inference Against Machine Learning. Shokri
et al. [38] present the first membership inference attack against
machine learning models. The key contribution of this work
is the proposal of shadow model training, which aims at
mimicking the target model’s behavior to generate training data
for the attack model.

The first adversary in the current paper follows a very
similar setting. We have shown that one shadow model and
one attack model are sufficient to achieve an effective attack
compared to the proposal of multiple shadow models and
attack models by Shokri et al. [38]. Moreover, we show that
data transferring attack can bypass the expensive synthetic data
generation scheme and achieve a very similar performance.
Another major contribution of our paper is the two effective
defense mechanisms, such as dropout and model stacking.
Many recent works have studied membership inference against
machine learning as well from different angles [25], [17], [48],
[26].

Attacks Against Machine Learning. Besides membership
inference, there exist multiple other types of attacks against
ML models. Fredrikson et al. [13] present the model inversion
attack in biomedical data setting. In this scenario, an attacker
aims to infer the missing attributes of her victim, relying on the
output of a trained ML model. Later, model inversion attack
is generalized to a broader scenario [12]. For instance, the
authors show that it is feasible for an attacker to reconstruct a
recognizable face of her victim with model inversion.

Tramèr et al. [43] propose another attack on ML models,
namely model extraction attack. This attack aims at stealing
the ML model, i.e., the model’s learned parameters, through
the output of MLaaS API itself. They first propose an equation-
solving attack, where an attacker queries MLaaS API multiple
times and use the output posteriors to construct a set of
equations. By solving these equations, the attacker can obtain
the weight of the ML model. Tramèr et al. [43] further propose
a path-finding algorithm, which is the first practical method to
steal decision trees. In the end, Tramèr et al. show that even
ML models which do not provide prediction posteriors but
only prediction class labels can still be stolen with retraining
strategies, such as active learning. It is worth noting that due
to the effectiveness of the model extraction attack, we do not
consider hiding posteriors as one valid defense mechanism in
this paper.

Another major family of attacks against machine learning
is adversarial examples [33], [44], [8], [23], [42], [34], [46].
In this setting, an attacker adds a controlled amount of noise
to a data point which aims to fool a trained ML model to mis-
classify the data point. Adversarial examples can cause severe
risks in multiple domains, such as autonomous driving, and
voice recognition. On the other hand, researchers have recently
shown that adversarial examples can also help to protect users’
privacy in online social networks [31], [22], [49].

Privacy-Preserving Machine Learning. Another relevant line
of work is privacy-preserving machine learning [24], [19],
[11], [10], [14], [28], [5], [6], [1]. Mohassel and Zhang [28]
present efficient protocols for training linear regression, lo-
gistic regression, and neural networks in a privacy-preserving
manner. Their protocols fall in the two-server mode where data
is distributed over two non-colluding servers. The authors use
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two-party computation to implement these protocols. Bonawitz
et al. [5] propose a protocol for secure aggregation over high-
dimensional data, which is a key component for distributed
machine learning. The protocol is also based on multi-party
computation, and the authors show its security under both
honest-but-curious and active adversary setting. Large-scale
evaluation demonstrates the efficiency of this protocol.

Besides privacy-preserving model training, other works
study privacy-preserving classification. Bost et al. [6] design
three protocols based on homomorphic encryption. They con-
centrate on three ML classifiers including hyperplane decision,
Naive Bayes, and decision trees, and show that their protocols
can be efficiently executed. Based on the scheme of Bost et
al., Backes et al. [1] build a privacy-preserving random forests
classifier for medical diagnosis. Besides the above, many
recent works have tackled security and privacy in machine
learning from various perspectives [39], [16], [9], [37], [7],
[27], [20], [45], [36], [21], [40], [29], [41], [20].

VIII. CONCLUSION

Training data is a key factor that drives machine learning
model being widely adopted in real-world applications. How-
ever, ML models suffer from membership privacy risks. The
existing membership inference attacks have shown effective
performance, but their applicability is limited due to strong
assumptions on the threat model. In this paper, we gradually
relax these assumptions towards a more broadly applicable
attack scenario.

Our first adversary utilizes only one shadow model.
Extensive experiments show that this attack achieves a very
similar performance as the previous one which utilizes multiple
shadow models. As shadow models are established through
MLaaS, our proposal notably reduces the cost of conducting
the attack. We further perform the combining attack which
does not require knowledge of the type of classifiers used in
the target model.

The attack assumption is further relaxed for the second ad-
versary, who does not have access to a dataset that comes from
the same distribution as the training data of the target model.
This is a more realistic attack scenario, but the previously pro-
posed synthetic data generation solution can only be applied in
specific cases. In contrast, we propose data transferring attacks,
where the adversary utilizes another dataset to build a shadow
model and generates the corresponding data to attack the target
model. Through experiments, we have discovered that data
transferring attack also achieves strong membership inference
while being more general, realistic and widely applicable.

The third adversary has a minimal set of assumptions,
i.e., she does not need to construct any shadow model and
her attack is performed in an unsupervised way. We show that
even in such a simple setting, membership inference is still
effective.

Our evaluation is comprehensive and fully demonstrates
the severe threat of membership privacy in ML models under
those generalized conditions on 8 diverse datasets.

To remedy the situation, we propose two defense mecha-
nisms. As we show the connection between overfitting and
sensitivity to membership inference attacks, we investigate

techniques that are designed to reduce overfitting. The first
one, namely dropout, randomly deletes a certain proportion
of edges in each training iteration in a fully connected neural
network, while the second approach, namely model stacking,
organizes multiple ML models in a hierarchical way. Extensive
evaluation shows that indeed our defense techniques are able
to largely reduce membership inference attack’s performance,
while maintaining a high-level utility, i.e., high target model’s
prediction accuracy.
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