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MalProtect: Stateful Defense Against Adversarial
Query Attacks in ML-based Malware Detection

Aqib Rashid, Jose Such

Abstract—ML models are known to be vulnerable to adver-
sarial query attacks. In these attacks, queries are iteratively
perturbed towards a particular class without any knowledge of
the target model besides its output. The prevalence of remotely-
hosted ML classification models and Machine-Learning-as-a-
Service platforms means that query attacks pose a real threat to
the security of these systems. To deal with this, stateful defenses
have been proposed to detect query attacks and prevent the
generation of adversarial examples by monitoring and analyzing
the sequence of queries received by the system. Several stateful
defenses have been proposed in recent years. However, these
defenses rely solely on similarity or out-of-distribution detection
methods that may be effective in other domains. In the malware
detection domain, the methods to generate adversarial examples
are inherently different, and therefore we find that such detection
mechanisms are significantly less effective. Hence, in this paper,
we present MalProtect, which is a stateful defense against query
attacks in the malware detection domain. MalProtect uses several
threat indicators to detect attacks. Our results show that it
reduces the evasion rate of adversarial query attacks by 80+%
in Android and Windows malware, across a range of attacker
scenarios. In the first evaluation of its kind, we show that
MalProtect outperforms prior stateful defenses, especially under
the peak adversarial threat.

Index Terms—Adversarial machine learning, Malware detec-
tion, Machine learning security, Deep learning

I. INTRODUCTION

ML has offered enormous capabilities, leading to
the large-scale use of Machine-Learning-as-a-Service

(MLaaS) [1], which allows users to leverage remotely-hosted
ML models by requesting predictions from them [2]. The
widespread use of these services means that their reliability
and security is paramount, especially considering the threat
posed by adversarial machine learning [3], [4], [5]. Recent
work has shown that these systems are vulnerable to adver-
sarial query attacks (e.g., [6], [7], [8]). With query attacks,
an attacker iteratively perturbs a malware sample based on
feedback from the target model that includes its predicted
output. Using the feedback, the perturbations to the input
sample are tuned across the queries to observe how the target
model responds until, eventually, the truly malicious sample is
classified as benign (i.e., goodware) [7], [8]. To deal with the
adversarial ML threat, several defenses have been proposed
based on a variety of approaches (e.g., [3], [9], [10], [11]).
However, most of these approaches have been shown to be
ineffective against query attacks in several domains [12], [6],
[7], including ML-based malware detection [5], [8], [13].
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Recent work has stressed that systems must monitor queries
to identify hazards such as adversarial attacks [14]. In fact,
ML-based anomaly detection has been regarded as essential
to detect the misuse of ML-based systems [15]. To this end,
stateful defenses have been proposed to protect ML prediction
models against query attacks [16] by offering greater system
awareness. This is achieved by monitoring queries received
by the system. Researchers have hypothesized that sequences
of adversarial queries are often abnormally similar to each
other, unlike sequences of legitimate queries [16], [17], [18],
and often do not fit their distribution [18], [19], [20]. Hence,
stateful defenses analyze the sequence of queries made to the
system, such as the similarity of feature vectors representing
an image. Several stateful defenses have been proposed (e.g.,
[16], [17], [21], [18], [22]); however, prior to our work, they
have not been tested in the malware detection domain, where
query attacks can cripple prediction models [5], [8]. The
malware detection domain is significantly different from other
domains, with more constraints imposed on attackers regarding
the discrete representation of feature vectors and the preser-
vation of malicious functionality when generating adversarial
examples [5], [23]. Therefore, attackers use techniques that are
different from those in other domains to generate adversarial
examples [8], [13]. Consequently, stateful defenses that have
been applied to other domains may, in fact, be ineffective when
tested in the malware detection domain.

Hence, in this paper, we present MalProtect, which is a
model-agnostic stateful defense against query attacks in the
ML-based malware detection domain. MalProtect employs
several threat indicators that use different data-driven statistical
and ML-based methods to analyze the sequence of queries
received by the system. Upon receiving a new query and
conducting an analysis, the threat indicators each produce
scores reflecting the likelihood of an attack based on different
criteria. These are then aggregated to predict if there is an
attack in progress. This allows MalProtect to detect attacks in
a manner that is reliable and interpretable. Across Android and
Windows, we show that MalProtect reduces the evasion rate
of query attacks by 80+%, and we compare this to the meager
performance of prior stateful defenses across a range of attack
scenarios in the first evaluation of its kind. We further show
that, despite being designed to protect against query attacks,
MalProtect affords a degree of protection against other types
of attacks, such as transferability attacks. Furthermore, we
demonstrate that an adaptive attacker — with complete knowl-
edge of MalProtect — cannot achieve significant evasion. In
summary, we make two key contributions:
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Chen et al.
(SD)
[16]

Li et al.
(Blacklight)
[17]

Azmoodeh
et al.
[34]

Kariyappa
et al.
[37]

Atli et
al.
[20]

Juuti et al.
(PRADA)
[18]

Maintains query
history ✁ ✁ ✁ ✁

Distance-based /
Similarity detection ✁ ✁ ✁ ✁

Account-based
defense ✁ ✁ ✁

Out-of-distribution
(OOD) detection ✁ ✁ ✁

OOD based on
training data ✁ ✁

TABLE I: Overview of stateful defenses and attack detection
for adversarial ML.

the user’s account. However, this can be defeated by a Sybil
attack, where an attacker uses multiple accounts in the attack
[38], [39]. Moreover, inspecting queries per-account limits the
detection scope [17]. Alternatively, Li et al. present Blacklight
[17], which measures the similarity of queries for all users
using the L2 distance (i.e., Euclidean distance), which is a
type of Lp norm [40]. An attack is detected if the Euclidean
distance between several queries (represented by hashes) is
below the threshold. Other distance-based defenses have been
proposed (e.g., [34]), though these can all be evaded when
queries are intentionally designed to be dissimilar [14] or
through query-blinding attacks [21].

Out-of-distribution (OOD) detectors have also been pro-
posed to thwart query attacks and detect adversarial examples
[35]. These check whether a query belongs to the distribution
of the target model’s training data [35], [19], [20]. When
OOD queries are detected, Kariyappa et al. propose returning
inconsistent labels to those detected OOD queries [19]. How-
ever, an attacker may be able to construct adversarial queries
that remain within the required distribution [21], [2]. PRADA
[18] is a defense against model extraction attacks, which is a
related problem. Prior work has found that it can also detect
evasion attacks [16]. PRADA is based on the assumption
that the L2 distance among non-adversarial queries follows a
normal distribution. This is monitored using the Shapiro-Wilk
normality test. However, manipulation of the query distribution
has been found to evade it [16], [2].

Our defense, MalProtect, is model-agnostic allowing it to
be used with any underlying prediction model. To detect
attacks, it utilizes techniques beyond basic similarity and OOD
detection, such as analyzing the autoencoder loss of queries,
the distribution of enabled and shared features across queries,
and more. We next present the threat model we consider for
our work, followed by a detailed description of MalProtect.

III. THREAT MODEL

In our work, attackers aim to evade a feature-based ML
malware detection classifier so that their malicious queries are
misclassified as benign. This is a well-established threat model
in this domain [41], [42], [43], [25], [24], [23].
Target Model. The target model is a remotely-hosted malware
classification system that predicts whether an input sample
belongs to the benign or malware class. We refer to the classi-
fication system as the oracle O. The oracle has two principle
components: the underlying classifier F (i.e., the prediction
model) that predicts whether an input sample is malicious and
the stateful defense that protects F by analyzing queries to

detect attacks (e.g., MalProtect — see Section IV later). In our
work, we use a range of prediction models from prior work
(see Section V later). Generally, to train such a prediction
model F , input samples are represented as binary feature
vectors using the features that are provided by a dataset. With
the features 1...M , a feature vector X can be constructed for
each input sample such that X → {0, 1}M , similar to previous
work [30], [44], [24]. The presence or absence of a feature
i is represented by either 1 or 0 within X . Like prior work
on ML-based malware detection [8], [24], [45], the features
we employ in our work include, among others, libraries, API
calls, permissions, and network addresses; these are provided
by the datasets we use (see Section V later). With their class
labels, several feature vectors can be used to train the binary
classification model that we refer to as the classifier F . Then,
when a user makes a query to O, a prediction is made and
returned. For the predicted outputs, we use 1 for the malware
class and 0 for the benign class. O returns scoreless feedback
[12]. Recall that O consists of the prediction model and the
independent stateful defense designed to protect it.
Attacker’s Goal. The goal of the attacker is to generate an
adversarial example X

→ from a malware sample X to evade
the oracle O and obtain a benign prediction. Suppose O : X →
{0, 1}M and we have a function check() to check the mali-
cious functionality of X . We can summarize this as:

check(X) = check(X →);O(X) = 1;O(X →) = 0 (1)

Other variations of this goal do exist (e.g., achieving evasion
with minimal queries [46]). However, we focus on the more
general goal above, as it is commonly explored in related work
on stateful defenses and ML-based malware detection.
Attacker Capabilities & Knowledge. In order to evalu-
ate MalProtect and other stateful defenses under different
attack scenarios and conditions, we model three types of
attackers that have been featured in prior work [12], [47],
[48], [23] as is common in prior work. We consider the
gray-box attacker, who has limited knowledge, has access
to the same training data as the classifier F and is aware
of the feature representation and the statistical representation
of the features across the dataset. However, the attacker is
unaware of F ’s parameters, configurations, and other pertinent
information. This represents a scenario similar to when some
model data has been leaked. To perform query attacks, this
attacker applies perturbations to the feature vector through a
software transplantation-based approach [8], [13], guided by
their knowledge of the dataset. In contrast, the zero-knowledge
black-box attacker can only observe the predictions received
for their queries and has no information about the target
model but does have some information pertaining to the kind
of feature extraction performed (e.g., the static analysis that
a malware detection classifier may consider). This attacker
also uses a software transplantation-based approach, but with
considerably less information. Neither attacker is aware that
MalProtect is a part of O. We also consider an adaptive
attacker (i.e., a white-box attacker) who has complete knowl-
edge of the target model and knows that MalProtect is in place.
Therefore, this attacker tries to evade all components of the
oracle O with a specific, tailored attack.
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primary method adopted by some stateful defenses (e.g., [16],
[17]). A smaller distance between queries is an indication of
iterative perturbations during a query attack, as an attacker
makes modifications to their queries to assess how the target
model responds [16], [7].

This indicator therefore examines how anomalous the min-
imum distance between qlatest and other queries in Q is (rep-
resented by minDistQ). As the malware detection domain
uses binary feature vectors (unlike other domains, e.g., image
recognition), the L0 distance is the most appropriate distance
metric [40], [44], as it measures the number of features that
are different between two feature vectors. Other norms, such
as L↑ would always have a distance of 1 if at least one change
was present between two feature vectors [44]. To assess the
potential abnormality of minDistQ without using a threshold
and also to normalize it between 0 and 1, we put minDistQ

in the context of the average L0 distance of all samples in
the training data (represented by avgDistD). If minDistQ

is significantly below this, it implies that qlatest is similar to
another query in Q beyond the norm.

The score for this indicator is based on the percentage
change between minDistQ and avgDistD. A smaller per-
centage change means that there exists a query whose sim-
ilarity to qlatest is significantly lower than the average of
the training data (avgDistD). So that a higher threat is
represented by a higher score value, we negate the result. Thus,
the score for this indicator is calculated as follows:

S1 = ↑1 · (minDistQ↑ avgDistD) / avgDistD (2)

Indicator 2. Enabled features shared across queries: This
indicator assesses whether qlatest shares a significant number
of enabled features with another query in Q beyond the norm.
The rationale behind this indicator is that an attacker could
enable unused features in qlatest to intentionally increase the
L0 distance between queries in order to evade basic similarity
detection (e.g., while trying to evade Indicator 1). This is an
attack strategy specific to the malware detection domain. That
is, the query distance can be increased (e.g., by adding features
in bulk) without disrupting the original malicious functionality
(e.g., through dead-code, opaque predicates). Conversely, in
domains such as image recognition, this attack strategy would
not be as useful since adding features to deliberately increase
the query distance in this manner would lead to the original
image being distorted.

Intriguingly, though, some core features of malicious
queries must always remain enabled to preserve the original
malicious functionality across a query attack. Thus, queries
with the same enabled features (and therefore shared) would
imply similarity specifically in this domain. Therefore, the
highest number of enabled features shared between qlatest and
another query in Q is calculated as maxSharedQ.

We then use the average number of enabled features shared
between samples in the training data (avgSharedD) to assess
to what extent maxSharedQ may be abnormal. This is
achieved by calculating the deviation of maxSharedQ from
this mean as a percentage change. A higher value indicates that
qlatest shares an abnormally high number of enabled features
with some other query in Q considering the training data’s

distribution. The score is calculated as follows:
S2 = (maxSharedQ↑ avgSharedD) / avgSharedD (3)

Indicators 3A & 3B. Number of enabled features: An attacker
could also rapidly traverse the decision boundary by enabling
a substantial number of benign features in qlatest at once.
That is, by adding many features to a malware sample that
are present in benign executables, a misclassification can be
achieved. Therefore, an anomalous number of enabled features
could indicate an attack attempt. Hence, the Indicator 3A
is the percentage change between the number of enabled
features in qlatest (|qlatest|) and the average number of enabled
features in training data samples (avgFeaturesD). A large
percentage change implies that far more features are enabled
in qlatest compared to avgFeaturesD. The score is calculated
as follows:
S3A = (|qlatest|↑ avgFeaturesD) / avgFeaturesD (4)

However, the Indicator 3A only assesses whether |qlatest|
is anomalous considering the training data and does not
compare with other queries in Q. It is also useful to assess
whether |qlatest| is anomalous considering the distribution of
Q regardless of the training data, similar to previous works
(e.g., [19], [20], [18]), as most queries are expected to be
legitimate.

Therefore, we also use the Indicator 3B, which assesses
to what extent the number of enabled features in qlatest is
anomalous considering the queries in Q. The Indicator 3B
uses the empirical rule (i.e., 3-ω rule) [51], which is a standard
technique in anomaly detection. The score is calculated as the
percentage change from 3 standard deviations of the mean
using the following equation, where µFeaturesQ is the mean
number of enabled features of queries in Q and ωFeaturesQ is
the standard deviation:

C = µFeaturesQ + (ωFeaturesQ ↓ 3) (5)
S3B = (|qlatest|↑ C) / C (6)

Indicators 4A & 4B. Distribution similarity via autoencoder
reconstruction loss: An autoencoder is a neural network where
the input and output are the same but the hidden layers have
fewer neurons [52]. This limits the amount of information that
can travel through the model, requiring it to learn a compressed
version of the input. Interestingly, input samples that belong to
the distribution of the autoencoder’s training data will produce
a smaller distance between the input and output representations
(known as the reconstruction loss) [53]. Thus, we hypothesize
that an autoencoder trained on legitimate queries will produce
a significantly higher reconstruction loss for an adversarial
query. Other novelty detection techniques, such as one-class
SVMs, have been found to be outperformed by autoencoders
in this task in other domains [54].

Hence, Indicator 4A’s score is the percentage change be-
tween the reconstruction loss of qlatest (RecLossqlatest ) and
the maximum reconstruction loss observed in training data
samples (maxRecLossD). A higher percentage change sug-
gests a significant increase from the maximum reconstruction
loss observed for training data samples, and that qlatest may
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be adversarial. The score is calculated as follows:
S4A = (RecLossqlatest ↑maxRecLossD) / maxRecLossD

(7)
As with Indicator 3B, we also consider the case where

qlatest is only compared to other queries in Q regardless of
the training data distribution. In this way, the Indicator 4B
uses the empirical rule to assess whether the reconstruction
loss of qlatest is anomalous considering the queries in Q. The
score is calculated as a percentage change from 3 standard
deviations using the following equation, where µRecLossQ is
the mean reconstruction loss of queries in Q and ωRecLossQ

is the standard deviation:
C = µRecLossQ + (ωRecLossQ ↓ 3) (8)

S4B = (RecLossqlatest ↑ C) / C (9)

C. Attack Detection
Once the scores are produced by each indicator, they are

aggregated into the score vector S. The next step is to make a
final decision using all the scores. For this purpose, static tech-
niques can be used to combine several individual scores into
an overall score or decision, such as a weighted sum model
or a sum of squares model [55]. However, a key drawback
of these static methods is that the weights for each indicator
(i.e., how much each indicator contributes to the overall score)
must be selected manually by the defender. Moreover, static
aggregation models cannot detect any underlying trends or
patterns in the data.

Therefore, MalProtect instead uses a pre-trained decision
model (e.g., a neural network) that makes a prediction on
the score vector S. Each threat indicator is a feature of this
model, with the predicted output from the decision model
representing whether there is an attack in progress constituting
its decision. Later, in Section V, we provide details about
how the decision models can be constructed, including the
ones we use in this work (see “MalProtect Configurations”).
Importantly, MalProtect allows analysts to understand why
it has made a particular decision with its scoring system.
Analysts can further evaluate the influence of each threat
indicator on the final prediction by examining the global
feature importance of the decision model. Later, in Section V,
we present the decision models that we evaluated, and we then
discuss how each threat indicator influences the predictions
made by these models in Section VIII.
D. Defensive Action & Prediction

If no attack is detected by the decision model, qlatest is
passed on to the classifier F (also known as the prediction
model). The classifier makes a prediction of whether qlatest is
benign or malware, which is then returned to the user. That is,
if the latest query received is not considered to be part of an
attack by MalProtect, the query is then forwarded to the ML
classifier trained to decide whether an input sample is benign
or malware. Note that the classifier can itself be made more
robust using techniques such as adversarial training (as shown
later). MalProtect only acts as a filter, which only lets what it
considers to be legitimate queries to be passed on to the ML
model used for malware classification.

If MalProtect does detect an attack, a defensive action can
be taken, such as returning a specific prediction, returning

inconsistent labels, notifying system administrators, banning
user accounts, or rejecting further user queries. In the config-
uration of MalProtect that we use in this paper, if an attack is
detected, we take the defensive action of returning a malware
prediction. This is as if the query had actually been forwarded
to the classifier and that had been its output. This means that an
attacker would encounter failure throughout the course of the
attack, believing that their query is being consistently classified
as malware without necessarily knowing about MalProtect’s
presence. An exciting line of future work would be to study
what defensive actions are more or less effective depending
on the setting, but this is out of the scope of this paper.

V. EXPERIMENTAL SETUP & PRELIMINARIES

Datasets. Sampling from the true distribution is a challenging
and open problem in many ML-based security applications
[56], [57]. Particularly, the lack of publicly accessible, up-
to-date datasets in the malware detection domain is a well-
known issue that limits the remits of academic research in this
domain. To mitigate this, we use three datasets representative
of different architectures as well as collection dates and
methods that have been used in a variety of studies (e.g.,
[58], [24], [59], [13], [60], [61], [62]). The datasets we use
are AndroZoo for Android malware [63], SLEIPNIR for Win-
dows malware [26], and DREBIN for Android malware [64].
The consistency of our results across the datasets later show
that MalProtect’s performance transcends the characteristics
and nuances of the datasets.

The AndroZoo dataset [63] contains Android apps from
2017 to 2018, offering apps from different stores and markets
with VirusTotal summary reports for each. Similar to prior
work [13], [62], [49], we consider an app malicious if it has 4
or more VirusTotal detections, and benign if it has 0 VirusTotal
detections (with apps that have 1-3 detections discarded). The
dataset contains ↔ 150K recent applications, with 135,859
benign and 15,778 malicious samples. To balance the dataset,
we use 15,778 samples from each class. Meanwhile, SLEIP-
NIR consists of 19,696 benign and 34,994 malware samples.
This dataset is derived from Windows API calls in PE files
parsed by LIEF. As our work is in the feature-space, we use
SLEIPNIR as a representation of Windows out of simplicity
due to its feature space, which is binary. This permits a
more precise comparison between the Android and Windows
datasets. We use 19,696 samples from each class. Meanwhile,
DREBIN is based on extracted static features from Android
APK files. The dataset contains 123,453 benign and 5,560
malware samples, from which we use 5,560 samples from each
class. As in prior work [27], [24], and for completeness, we
use a large number of features for each dataset, i.e., 10,000 for
AndroZoo, 22,761 for SLEIPNIR, and 58,975 for DREBIN.

Initially, the datasets are partitioned with an 80:20 ratio for
training and test data according to the Pareto principle. This
training data is partitioned again into training and validation
data using the same ratio, producing a 64:16:20 split that has
been extensively used in prior work (e.g., [65], [66]). We use
the training data to construct the prediction models used in our
evaluation. Meanwhile, we use a partition of randomly-chosen
malware samples from a subset of the test data as the input
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samples for the query attacks, with 234 samples for AndroZoo,
230 for SLEIPNIR, and 229 for DREBIN.

We also consider the well-established guidelines for con-
ducting malware experiments [67]. As our prediction models
decide whether an input sample is benign or malicious, it
is necessary to retain benign samples in the datasets. Fur-
thermore, we do not strictly balance datasets over malware
families but instead over the positive and negative classes. We
randomly sample unique samples from each class to appear in
the training and test data without repetition [44], [26], [5].
Prediction Models (Non-Stateful Defenses). Recall that
stateful defenses themselves do not provide predictions, but
rather they protect ML prediction models that decide whether
an input sample is benign or malicious. Hence, for our
experimental evaluation, a selection of prediction models is
required. In our evaluation, we use six non-stateful defenses
as the prediction models. Rather than using vanilla models,
we use single-model defenses, ensemble defenses, and moving
target defenses as the prediction models to demonstrate their
vulnerability to attacks despite being defenses in their own
right. By using MalProtect and other stateful defenses in
conjunction with a defense as a prediction model (rather than
a vanilla model), it can introduce defense in depth, which is
a frequently-adopted strategy in information security.

We use prediction models from prior work and train them
on the three datasets according to the procedures outlined
earlier. Each prediction model is constructed according to
the procedures outlined in their original papers using the
training data for each dataset (see Appendix B for information
about architectures). For single-model defenses, we test a
neural network with defensive distillation (NN-DD) [9]. We
use several white-box attacks to develop adversarial examples
for a set of vanilla models (see later subsection), which are
used to adversarially-train a neural network (NN-AT). We
adversarially-train with a quantity of adversarial examples that
is 25% of the size of the training data [10]. For ensemble
defenses, we test majority voting and veto voting [30], [29],
[31], [68], [30]. For moving target defenses, we evaluate
Morphence [69] and StratDef [30]. Each prediction model is
evaluated against attacks as is (i.e., a non-stateful setup). Then,
each prediction model is combined with each stateful defense
(e.g., MalProtect), allowing us to evaluate different setups and
configurations. We next provide details about the MalProtect
configurations we use and the other stateful defenses.
MalProtect Configurations. We develop two MalProtect
configurations to showcase our defense’s capabilities. Each
configuration uses a different decision model to predict an
attack based on the indicator scores. For both configurations,
we cap the query history size at 10,000. Later in Section X,
we evaluate and discuss the efficiency related to this.

For each configuration, we follow the steps described in
Section IV for each dataset. For some indicators, we derive
certain values from the dataset that are needed to assess queries
(e.g., avgDistD, which is the average L0 distance of samples
in the training data). Then, to train each decision model
(which are used to predict an attack given a score vector), a
defender could use real-world attack and score data. However,
in its absence, a synthetic dataset can be used. Therefore, in

this work, we develop a synthetic dataset of 1000+ labelled
samples. For this, we initialize the query history to simulate
past user activity with a randomly-chosen set of input samples
from the training data. We then supply a range of queries
(both legitimate and adversarial, as part of attacks) from our
training data to have each indicator produce scores. This
produces the synthetic dataset, where each threat indicator is
a feature and the class labels represent the true condition of
the system at the time (whether it was under attack (1) or
not (0)). To predict if an attack is in progress when given
a score vector, the decision models we train are a logistic
regression model for one configuration (MalProtect-LR) and a
neural network for another (MalProtect-NN) (see Appendix A
for architectures). We use an 80:20 split for the training of
decision models. In theory, both models should offer accurate
predictions [70]. When deployed, the decision model may need
regular maintenance to ensure that it performs well given the
ever-changing threat landscape (see Section XI later).
Other Stateful Defenses. We compare MalProtect with three
stateful defenses that have been applied in other domains to
detect query attacks. The L0 defense is based on similarity
detection using Lp norms (e.g., [17]); PRADA [18]; and
Stateful Detection (SD) [16]. We provide the technical details
of each stateful defense in Appendix D. Although we keep
the implementations of these stateful defenses as close to
the original as possible (e.g., procedures and parameters),
techniques applicable to other domains (e.g., encoding queries
to generate a feature vector) are not applicable to the malware
detection domain. Recall that stateful defenses do not provide
the predictions but are designed to protect the underlying
prediction models.
Performing Query Attacks. To evaluate MalProtect and the
other defenses, we apply query attacks under the black-box,
gray-box and adaptive attacker scenarios. When conducting
attacks and generating an adversarial example in the malware
detection domain, the original malicious functionality must
remain intact, and the feature vectors must remain discrete
(i.e., consist of 0s and 1s) as they represent the presence
or absence of each feature. Query attacks designed for other
domains (e.g., [7], [71]) do not consider these constraints and
cannot produce effective adversarial examples in our domain,
as we show in an experiment in Appendix H.

For our domain, query attacks can use software
transplantation-based techniques to perturb the features
of a malware sample using features from benign “donor”
samples (which are the benign samples from the test set).
In our evaluation, we modify query attack strategies that
have been proven successful in this domain [8]. We refer the
reader to Appendix F for full details of each attack strategy
that we use in each scenario. Commonly under each strategy,
we initialize the query history to simulate past user activity
(as explained before) prior to starting an attack. Then, using
malware samples from our test set, we apply each attack
strategy accordingly under each threat model to perturb
malware feature vectors. We use the parameter nmax to
govern the maximum number of allowed queries permitted,
where the transplantation of features continues until the target
model is evaded, nmax is reached, or the donor features
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are exhausted. We apply a procedure to provide a lower
bound of functionality preservation of the original malware
sample. For this, only valid perturbations for each dataset
are allowed [45], [72], [73], [26], [13], [30]. If a feature has
been modified invalidly — that is, the functionality would
not be preserved in the problem-space — it is restored
to its original value. This is to offer a lower bound of
functionality preservation within the feature-space, similar to
prior work [41], [24], [45], in which it was shown that 60+%
of adversarial examples generated following this approach
executed as expected in a sandbox environment Recent work
[45].

AndroZoo and DREBIN permit feature addition and re-
moval (see Appendix E). For SLEIPNIR, only feature addition
is possible because of the processing performed by LIEF to ex-
tract features when originally developing the dataset. While we
remain in the feature-space (like recent work e.g., [45], [41]),
the perturbations could be translated to the problem-space
using techniques from previous work (e.g., [13], [8]). For
example, feature addition can be achieved by adding dead-
code or by using opaque predicates [74], [13]. Feature removal
— which is more complex — can be performed by rewriting
the dexcode, encrypting API calls and network addresses
(removing features but retaining functionality).
Performing Other Attacks. Prior work [17], [16], [21] has
used query blinding attacks in image recognition with domain-
specific techniques (e.g., modifying contrast or brightness).
Such techniques are not applicable to our domain. Instead, we
later present an adaptive attack strategy, where the attacker
has full knowledge of how MalProtect operates, and aims to
evade both it and the underlying classifier.

We also use a transferability attack strategy to generate
adversarial examples using substitute models. The adversarial
examples are used to adversarially-train models as a defender;
and to evaluate stateful defenses later under different system
conditions under a transferability attack (in Section IX). For

this, we construct four vanilla models using the training
data (see Appendix C for architectures). These models act as
estimations of the prediction models, for they share the same
training data, but not the same architectures. We apply a range
of white-box attacks (BIM [75], Decision Tree attack [76],
FGSM [77], [78], JSMA [79] and SVM attack [76]) against
these models to generate adversarial examples, in anticipa-
tion that they transfer to the target models. However, these
attacks perturb features without considering the constraints of
this domain. Therefore, we preserve the functionality of the
original malware sample in the feature-space and discretize the
generated feature vectors. That is, once an adversarial example
is produced, each value in the feature vector is discretized
(i.e., if the value in the feature vector is < 0.5, it is set to
0, else it is set to 1). Then, if a feature has been modified
invalidly according to functionality constraints, it is restored
to its original value (similar to the process for query attacks).
We then ensure that the adversarial example can still achieve
evasion; if not, it is discarded. This procedure is designed to
offer a lower bound of functionality preservation within the
feature-space.

VI. BLACK-BOX QUERY ATTACK RESULTS

In the black-box scenario, the attacker can only access
the predicted output of the oracle. Hence, we conduct the
black-box query attack following the black-box attack strategy
in Appendix F and the procedure outlined in Section V for
performing query attacks. That is, the black-box attack selects
the features to perturb in malware samples in a randomized
manner. We conduct the attack against each non-stateful
defense as is, to establish the baseline performance of the
prediction models. We then evaluate and compare each com-
bination of stateful defense and prediction model, including
both MalProtect configurations.

Figure 3 shows the evasion rate of the black-box query
attack versus nmax (see Appendix G for extended results).
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Fig. 3: Evasion rate vs. maximum number of queries (nmax) of black-box query attack against non-stateful defenses (prediction
models) and each combination of prediction model and stateful defense.
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Against non-stateful defenses (that is, the prediction models
as they are), the black-box query attack can achieve a 100%
evasion rate in some cases, with the average evasion rate sitting
at 70+% across the datasets. These results clearly demonstrate
that the non-stateful defenses do not provide adequate pro-
tection in this attack scenario, despite being defenses in their
own right as they do not have any mechanism to detect attacks
in progress. Thus, an attacker can continue to query them and
iteratively develop successful adversarial examples. Out of the
prediction models, only veto voting limits the effectiveness
of the attack to some extent, likely because of a sensitive
constituent model. Against veto voting, the attack achieves a
maximum evasion rate of ↔ 50% across the datasets. Despite
this, around one in two to three queries can still achieve
evasion against this model.

Meanwhile, our stateful defense, MalProtect, significantly
decreases the attack success, with peak reductions in the
evasion rates for AndroZoo, SLEIPNIR, and DREBIN of
84%, 96% and 98%, respectively. This highlights the benefits
(and necessity) of a stateful defense for this domain, as
attacks can be detected using different methods of analysis.
Comparing the two MalProtect configurations, MalProtect-LR
and MalProtect-NN exhibit similar performance, with both
configurations able to detect attacks after 5, 7, and 2 queries
for AndroZoo, SLEIPNIR, and DREBIN, respectively. This
level of performance is achieved without greatly compromising
other metrics, such as the accuracy or false positive rate on
legitimate queries (as we show in Section IX later).

Meanwhile, the other stateful defenses that we evaluate are
significantly less effective against this attack. For AndroZoo,
L0 offers the mildest performance in terms of adversarial
robustness, while SD offers slightly improved performance,
but only marginally. In the attack’s weakest performance
against veto voting, we find that SD performs similarly to
MalProtect for AndroZoo and SLEIPNIR, but its performance
is much inferior in other cases (with other prediction models)

where MalProtect demonstrates robustness, likely because SD
is unable to detect attacks using techniques beyond similarity
detection. For SLEIPNIR, PRADA offers better performance
than the prior stateful defenses, though only marginally in
most cases, while L0 and SD seem similar in their defensive
robustness. Nonetheless, their performance is much inferior
compared to MalProtect. For DREBIN, we observe that the
three prior stateful defenses exhibit similar performance in all
cases. Overall, the black-box query attack can achieve a 60+%
evasion rate in most cases against prior stateful defenses,
compared with a peak evasion rate of ↔ 18% for MalProtect.
Hence, MalProtect provides demonstrably better protection
against the black-box query attack.

VII. GRAY-BOX QUERY ATTACK RESULTS

Prior work has stressed the importance of evaluating de-
fenses against stronger adversaries [32]. Therefore, we next
evaluate MalProtect’s performance against the gray-box query
attack and compare it with other stateful defenses in that attack
scenario. Under this scenario, the attacker has access to the
training data of the prediction models and has more infor-
mation about the features. The gray-box attack strategy that
we use (see Appendix F) therefore utilizes information about
the frequency of features in benign samples to determine the
order of transplantation, resulting in a more effective attack.
As before, we conduct the attack against each non-stateful
defense to establish a baseline performance, and against each
combination of stateful defense and prediction model.

Figure 4 shows the evasion rate of the gray-box query attack
against all combinations of stateful defenses and prediction
models, versus nmax (see Appendix G for extended results).
Against the non-stateful defenses, this stronger attack achieves
significantly greater evasion across all the datasets, with 100%
evasion rate in many cases. This is because the non-stateful
defenses have no mechanism to detect that they are under
attack; against a stronger attack, as in this scenario, they ex-
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Fig. 4: Evasion rate vs. maximum number of queries (nmax) of gray-box query attack against non-stateful defenses (prediction
models) and each combination of prediction model and stateful defense.
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hibit greater vulnerability. Intriguingly, the greatest difference
from the black-box query attack can be observed in the results
against veto voting, which was the least evaded non-stateful
defense in Section VI. Whereas the black-box query attack
peaked at ↔ 40% evasion rate against this model (without any
stateful defense), the gray-box query attack achieves 60 + %
evasion rate.

As far as protection by stateful defenses is concerned,
MalProtect performs the best. In the best case for the config-
urations, it reduces the average evasion rate across all models
from a peak of 84% to 13% for AndroZoo, 94% to 5% for
SLEIPNIR, and 91% to 6% for DREBIN, while only taking
↔ 6, 6, and 2 queries to detect an attack for AndroZoo,
SLEIPNIR, and DREBIN, respectively. Like the black-box
query attack, MalProtect-LR and MalProtect-NN offer simi-
lar performance, with MalProtect-NN slightly outperforming
MalProtect-LR in some cases and vice-versa. In fact, the gray-
box query attack only achieves a maximum evasion rate of ↔
20% against MalProtect across the board. This is higher than
the black-box attack results, though expected, since the gray-
box attack represents a more hostile threat where the attacker
has more knowledge and information.

Meanwhile, for the other stateful defenses, we observe
trends similar to those seen in the results for the black-box
query attack. For AndroZoo, SD outperforms L0 and PRADA,
with average evasion rates of 57.5%, 46.9%, and 37.5% against
L0, PRADA, and SD, respectively. For SLEIPNIR, PRADA
outperforms L0 and SD for the majority of prediction models,
a trend that was also observed in the black-box query attack
results. Here, the average evasion rates of the attack sit at
43.8%, 19.3%, and 50.3% for L0, PRADA, and SD, respec-
tively. Although PRADA appears to offer some robustness, it
underperforms when other metrics are also considered (espe-
cially in false positives, as we show later in Section IX). For
DREBIN, the prior stateful defenses perform similarly with
a more balanced performance. That is, they perform equally
poorly, with the gray-box query attack able to achieve average
evasion rates of 71.3%, 62%, and 69.9% for L0, PRADA,
and SD, respectively, across all configurations. Interestingly,
once again, PRADA (minimally) surpasses L0 and SD in
terms of robustness, though the poor general performance
of these prior stateful defenses seen for both black-box and
gray-box results reaffirms that relying on a single similarity
or OOD detection mechanism is inadequate for this domain.
In our domain, attackers use different techniques to generate
adversarial examples that often include replacing features
rather than making small detectable perturbations.

Further evaluating the evasion rate versus nmax, 100 or
fewer queries are enough to achieve attack success in most
cases. Query attacks in domains using continuous features
(e.g., image recognition) may require substantially more
queries [7] to achieve attack success compared with domains
that use discrete features. This is because perturbations in a
discrete feature-space (e.g., 0 to 1) have a greater effect on the
final prediction, requiring fewer of them to accomplish evasion
than perturbations made per query in a continuous feature-
space (e.g., +0.01 to some feature). In fact, in Appendix H,
we demonstrate the ineffectiveness of query attacks for other

domains when applied to ML-based malware detection.

VIII. INTERPRETABILITY & ADAPTIVE ATTACK

A. Interpretability of MalProtect

As ML is being applied more to the cybersecurity domain,
a key challenge is the interpretability of predictions made
by models [80]. As an initial step towards addressing this in
stateful defenses, MalProtect produces interpretable decisions.
By observing the scores produced by each threat indicator,
analysts can better understand how MalProtect made a par-
ticular decision, as higher scores for an indicator give clues
about what is anomalous about queries.

The influence of each threat indicator on MalProtect’s
decision can be examined by analyzing the global feature
importance in MalProtect’s decision model. Recall that each
threat indicator is a feature of the decision model. Therefore,
we can assess the global feature importance using SHAP [81],
which is a widely-used framework for interpreting ML pre-
dictions. Each feature of the decision model of the MalProtect
configurations is given an importance value by SHAP at a
global level, which produces the data observable in Figure 5.

Figure 5 shows that the Indicator 4A has the greatest
influence on MalProtect’s predicted output across all deci-
sion models and datasets, which indicates that a significantly
high autoencoder loss is more likely to affect the predicted
output. Meanwhile, the importance of the other indicators is
more balanced. Intriguingly, the indicators based on similarity
detection seem less influential, which is interesting because
other stateful defenses rely solely on similarity detection to
detect attacks. In malware detection, not only do we show
that attackers can evade stateful defenses relying solely on
such detection methods, but we further show that MalProtect
rightly considers those indicators as less important.
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Fig. 5: Influence of MalProtect (LR & NN) threat indicators.
The average impact on model output magnitude is shown for
each threat indicator.

Intriguingly, a capable attacker could leverage this informa-
tion to evade MalProtect. In an adaptive attack (i.e., white-
box attack) scenario [32], [82], the attacker has complete
knowledge of MalProtect and, thus, knowledge of how much
each indicator contributes to the final decision. With this
information, an attacker could craft an adversarial example that
evades both MalProtect and the underlying prediction model.
We next examine how such an attack could be performed.
Attack Rationale. In the adaptive attacker scenario, the at-
tacker knows precisely how MalProtect operates, its internal
workings, and other pertinent information related to the threat
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indicators. At a high level, to evade MalProtect’s detection
system, adversarial queries must appear as legitimate as pos-
sible and convince the indicators that the queries are distinct
yet normal. Additionally, adversarial queries must remain
within the distribution of legitimate queries. For example,
we know that the Indicator 4A is the most influential in
the final prediction, and therefore it would be essential to
ensure that the autoencoder loss is not abnormally high. In
essence, queries must remain far apart from each other while
retaining their original malicious functionality and appearing
legitimate. Importantly, any generated adversarial example
must also evade the underlying prediction model; otherwise,
such an attack would be of no use. Attackers must bypass all
components of the target model to be successful [1].
Adaptive Attack Strategy. We modify the gray-box attack
strategy to produce the adaptive attack strategy (see Ap-
pendix F). Firstly, we limit the number of features that can be
perturbed in a single iteration of the attack so as not to exhaust
possible perturbations early on. This frees up perturbations to
be used in later iterations of the attack if earlier queries cannot
achieve evasion. While this may increase the query distance
and make queries appear less anomalous, other indicators (e.g.,
Indicator 4A) may still be able to trigger attack detection.
To deal with this, the adaptive attack strategy also removes a
proportion (p) of features at each iteration. This means that
queries will be more distant, with fewer shared and enabled
features, while conforming to the distribution of legitimate
queries and the training data. For example, a combination
of features that may cause an increase in the autoencoder
loss (such that it appears anomalous) may be removed. Only
the AndroZoo and DREBIN datasets support the removal
of features while preserving functionality within the feature-
space. Therefore, the adaptive attack strategy can only be
applied to these datasets.
Results. Figure 6 shows the evasion rate of the adaptive attack
against the stateful defenses (averaged across the maximum
number of queries permitted, up to 500) versus the percentage
of features removed (p). Recall that successful adversarial
examples evade each stateful defense as well as the underlying
prediction model, which is NN-AT.
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Fig. 6: Average evasion rate vs. p for adaptive attack. The
average is across the maximum number of queries permitted.

For both datasets, the adaptive attack fails to achieve sig-
nificant increases in the evasion rate against either MalProtect
configuration. In fact, in some cases, the average evasion rate
decreases as p increases. This is likely because the (benign)
features selected to cross the decision boundary are in fact
removed. This attack causes other stateful defenses to exhibit
similar performance to the gray-box query attack, with an
average evasion rate of 72.9%, 61.9%, and 67.7% for L0,

PRADA, and SD, respectively, and consistent evasion rate
across different values of p. This is expected, as the adaptive
attack is designed to target MalProtect and not the other
stateful defenses (which are included as a comparison here).

IX. BEYOND ADVERSARIAL ROBUSTNESS

We next evaluate the stateful defenses under different sys-
tem conditions using metrics beyond the evasion rate. To do
this, we query stateful defenses with benign and malicious
queries, some of which are adversarial. This is imperative, as
the original task of classifying queries as benign or malicious
must also be done properly.
Procedure. We examine the performance of stateful defenses
in different system conditions with different levels of adversity.
For this, we generate adversarial examples using the transfer-
ability attack strategy described in Section V. Each stateful
defense (with NN-AT as the prediction model) is then queried
1000+ times with values of 0.1 ↗ k ↗ 0.9, where k represents
the adversarial intensity. For example, at k = 0.1 — which
represents a less adversarial environment — 10% of all queries
are adversarial examples, while the remaining 90% are equally
split between benign and non-adversarial malware samples
from the test set. As k increases, the system conditions become
more hostile as the system faces more adversarial queries. We
do not consider k = 0 (no adversarial examples) or k = 1
(only adversarial examples), as such environments are less
likely. As before, the query history is initialized as necessary
with random samples from the training data.
Results. Figure 7 shows the performance of each stateful
defense versus k. In particular, MalProtect exhibits reasonably
stable performance across the datasets considering all met-
rics, with the accuracy and F1 remaining greater than 90%,
demonstrating MalProtect’s ability to properly classify user
queries. Intriguingly, other stateful defenses also appear to
provide decent performance in terms of these metrics in some
cases. For AndroZoo and SLEIPNIR, L0, PRADA, and SD all
exhibit relatively stable accuracy and F1 as k increases. This is
possibly because the stateful defenses have it easier to detect
the (less evasive) adversarial examples, which constitute most
of the queries, as they are generated by attacks not for this
domain. Recall that the perturbations applied by the attacks to
generate the adversarial examples may be reversed if features
are modified such that functionality is affected; this would
limit attack success. Regardless, these stateful defenses do not
perform as well as MalProtect. For DREBIN, we observe the
decline of the non-stateful NN-AT model and stateful defenses
except MalProtect when these metrics are considered.

Importantly, though, additional metrics must be examined to
obtain a comprehensive assessment of performance. Analysis
of the AUC reveals MalProtect’s superiority in distinguishing
the benign and malware classes across the datasets without
disrupting the classification of legitimate queries. Meanwhile,
PRADA and SD exhibit significantly lower AUC in some cases
(especially as k increases), implying that their decisions are no
better than flipping a coin, which is contradictory to the higher
accuracy and F1 that they exhibit. This is possibly because as
k increases, the number of malware queries also increases in
the test set because of more adversarial queries. If PRADA,
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Fig. 7: Accuracy, FPR, F1 & AUC vs. k per stateful defense.

for example, decides that most queries are adversarial (and
therefore malware), this would lead to high accuracy, even
if it misclassifies benign queries. Therefore, PRADA seems
less capable of separating between the classes in this domain.
This is further evidenced through an examination of the false
positive rate (FPR) next.

In the malware detection domain, as we have explained
before, a low FPR is essential to ensure a reliable service
for users [24], [83], [42], [84]. Although a stateful defense
may improve protection against attacks, the FPR may also
increase compared with the underlying prediction model. This
can be attributed to the sensitivity of detection mechanisms;
that is, benign queries may be more frequently misclassified
as malicious. Importantly, though, MalProtect offers a low
FPR that is as close as possible to the non-stateful prediction
model for all datasets as it uses several indicators to predict an
attack. Meanwhile, L0 is the only other stateful defense that
offers comparable performance to MalProtect in this regard.
However, as we have seen, it does not work well at defending
against query attacks in this domain. Conversely, PRADA
exhibits a significantly high FPR for nearly all datasets, which
supports the notion that it is merely classifying most queries
as malware or adversarial rather than actually distinguishing
queries between the classes in this experiment. This is some-
what resembled by SD, with its high FPR for the Android
datasets. Overall, across the metrics and datasets, we showcase
MalProtect’s ability to perform well across a range of different
queries.

X. EFFICIENCY OF MALPROTECT VS. OTHER DEFENSES

Another important aspect is to evaluate MalProtect’s storage
and time costs and compare them with those of other defenses.

Storage. The storage cost scales linearly with the size of the
query history, Q, where queries are stored. The storage costs
are the same for any stateful defense that uses a query history
of the same size. In our evaluation, the size of Q is capped at
10,000, which only consumes ↔ 0.08MB storage for all the
datasets. If |Q| is increased to 50K, only ↔ 0.4MB would be
required for all datasets, which is negligible.
Prediction Time. The prediction time refers to the total dura-
tion from when a query is received by the system until a pre-
diction is returned to the user. For most non-stateful defenses
and ML classifiers, this is nominal. However, there is latency
associated with the analysis of the query history by stateful
defenses, resulting in longer prediction times. In the worst-
case, stateful defenses must analyze the entire query history,
whose time cost is the worst-case prediction time. Figure 8
shows how the worst-case prediction time is affected by |Q|.
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Fig. 8: Worst-case prediction time vs. size of Q (|Q|). Impor-
tantly, with optimization and distributed computing techniques,
the time costs can be drastically reduced.

Figure 8 shows that the worst-case prediction-time scales
linearly with |Q| for all defenses. In our experiments where
|Q| is 10,000, the worst-case prediction time for MalProtect
sits at ↔ 0.4 seconds for AndroZoo and SLEIPNIR, and ↔
0.6 seconds for DREBIN. Both MalProtect configurations have
the same overall cost as they have an identical analysis stage,
while predictions from the decision model are near-instant.
Meanwhile, other stateful defenses such as L0, PRADA, and
SD have slightly lower worst-case prediction times (↔ 0.03-
0.6 seconds across the datasets) for this size of Q. In all cases,
however, the worst-case prediction times increase linearly with
|Q|. This means that with MalProtect, a significant improve-
ment in robustness can be achieved (up to 80% reduction in
evasion rate as shown in our experimental evaluation) at a
slightly higher but still linear cost.
Optimization. MalProtect’s performance can be easily opti-
mized. For example, by running MalProtect on an NVIDIA
A100 GPU, the worst-case prediction time is reduced by
over half (↔ 0.21-0.41 seconds) across the datasets when
|Q| = 10, 000.

XI. CONCLUSION

In this paper, we presented MalProtect, which is the first
stateful defense for adversarial query attacks in the ML-based
malware detection domain. As we have shown, ML prediction
models and defenses exhibit significant vulnerability to query
attacks in this domain. Prior stateful defenses that have been
applied to other domains provide little protection here either.
Meanwhile, our defense, MalProtect, does not rely solely on
a single form of similarity or out-of-distribution detection,
as these prior stateful defenses do. Instead, we use several
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threat indicators and a decision model to detect attacks more
effectively. Our evaluation has shown that MalProtect performs
well against attacks under various scenarios and also offers
more reliable predictions for non-adversarial queries than prior
stateful defenses. Furthermore, MalProtect displays resilience
even against adaptive attackers.

In future work, we aim to explore a number of key aspects.
Firstly, we aim to better understand the relationship between
the size of the query history, the defender’s available resources,
and the detection effectiveness. Since the query history cannot
be infinite, it may be possible for attackers to submit multiple
queries in order to move the sliding window to a particular
point. An attacker may then dispatch adversarial queries at
specific intervals so as to evade detection in a spaced-out at-
tack. However, this attack may also be considered less practical
for a number of reasons. The attacker would somehow need
to know the size of the query history and then spread adver-
sarial queries accordingly, notwithstanding the associated cost
of doing so (e.g., time). Moreover, MalProtect is not a defense
that is to be deployed in complete isolation. Hence, there is no
guarantee that if a spaced-out attack were to succeed in evad-
ing the sliding window for detection, the underlying prediction
model would be evaded.

Secondly, we seek to understand how additional indicators
could be added to increase protection, such as cyber-threat
intelligence [85], [86]. Moreover, there is an open research
direction regarding concept drift. This relates to the constant
evolution of malware, which makes it difficult to detect
unseen behavior [60], [87], [88], leading to unsustainable
models. Prior work has suggested retraining a model regularly
[89], [90]. In the case of MalProtect, the defender may need
to regularly evaluate the indicators and the decision model
for predicting attacks. One potential way to do this would
be to couple MalProtect with a detection framework for de-
tecting when such modifications are necessary [60]. A further
intriguing research direction is exploring the effectiveness of
online learning in stateful defenses. With such a mechanism,
the underlying prediction models could be updated on queries
that are considered adversarial by the detection system in real-
time.
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APPENDIX A
MALPROTECT

Model Parameters
Logistic Regression
(MalProtect-LR) No configurable parameters.

Neural Network
(MalProtect-NN)

4 fully-connected layers (128 (Relu), 64 (Relu),
32 (Relu), 2 (Softmax))

TABLE II: Decision models for MalProtect configurations.
APPENDIX B

PREDICTION MODELS

We use six non-stateful defenses as the prediction models.
These are evaluated without any stateful protection and then
evaluated in combination with each stateful defense.

Defense Configuration/parameters/setup

Defensive distillation [9] Neural Network (128 (Relu), 64 (Relu), 32 (Relu),
2 (Softmax) with defensive distillation applied.

Ensemble adversarial
training [10], [30]
(NN-AT)

Neural Network (128 (Relu), 64 (Relu), 32 (Relu),
2 (Softmax)). Adversarially-trained up to 25% size of
training data.

Morphence [69] n = 4, p = 3, Qmax = 1000.

StratDef [30] Variety-GT using same models as original paper.
Assumed strong attacker and ω = 1.

Voting (Majority & Veto) Using same models as StratDef.

TABLE III: Architectures of prediction models.
APPENDIX C

VANILLA MODELS

The following vanilla models are used in some instances
(e.g., to generate adversarial examples, see Section V).

Model Parameters
Decision Tree max depth=5, min samples leaf=1

Neural Network 4 fully-connected layers (128 (Relu),
64 (Relu), 32 (Relu), 2 (Softmax))

Random Forest max depth=100
Support Vector Machine LinearSVC with probability enabled

TABLE IV: Architectures of vanilla models.

APPENDIX D
OTHER STATEFUL DEFENSES

L0 defense. The L0 defense measures the similarity between
feature vectors using the L0 distance. This is akin to similarity
detection schemes that use Lp norms in other domains (e.g.,

[17]). As binary feature vectors are used in the malware
detection domain, L0 is the most appropriate measure of
distance between two such feature vectors, X and X

→ [40],
[44]. It measures the number of instances such that Xi ↘= X

→
i .

For the L0 defense, an attack is detected if there are queries
with an L0 distance of less than 10 as lower thresholds may
easily miss attacks [17], [18], [16].
PRADA [18]. For PRADA, we use ε = 0.9 for the threshold,
as per the original paper [18].
Stateful Detection (SD) [16]. For SD, the threshold for
detecting an attack is derived by calculating the k-neighbor
distance for the 0.1 percentile of the training set. At prediction-
time, if the mean distance of the k-nearest queries falls below
the calculated threshold, an attack is detected. For this, we use
k = 50 (as per the original paper). The calculated thresholds
for detection are as follows:

AndroZoo SLEIPNIR DREBIN
94.64749019607844 44.350758426966294 34.37145577151924

TABLE V: Thresholds for detection for SD as per calculations
based on original paper.

APPENDIX E
PERMITTED PERTURBATIONS FOR ANDROID DATASETS

The AndroZoo [63] and DREBIN [64] datasets are based
on the Android platform. Both datasets can be divided into
eight feature families comprised of extracted static features
such as permissions, API calls, hardware requests, and URL
requests. Based on their family, features may be addable or
removable during attacks to traverse the decision boundary,
according to prior work and industry documentation (e.g.,
[45], [72], [73], [26], [13], [30]). However, it is imperative
to preserve malicious functionality in the feature-space as a
core constraint in this domain. For example, attacks cannot
remove features from the manifest file nor intent filter, and
component names must be consistently named. Therefore,
Table VI summarizes the permitted perturbations for each
feature family for these datasets. This is used to determine
whether the perturbations performed by an attack are valid. For
example, if a feature belonging to the S1 family is removed
by an attack, its original value is restored as it is not permitted
to be removed (see Section V).

Feature families Addition Removal

manifest

S1 Hardware ✁ ✂
S2 Requested permissions ✁ ✂
S3 Application components ✁ ✁
S4 Intents ✁ ✂

dexcode

S5 Restricted API Calls ✁ ✁
S6 Used permission ✂ ✂
S7 Suspicious API calls ✁ ✁
S8 Network addresses ✁ ✁

TABLE VI: Permitted perturbations for Android datasets.

APPENDIX F
QUERY ATTACK STRATEGIES

We use variations of attack strategies from prior work in our
domain [8]. These are based on a software transplantation ap-
proach where an attacker makes perturbations based on benign
samples. We modify prior attack strategies by transplanting
multiple features per iteration (rather than one perturbation

https://doi.org/10.1145/3484491
https://doi.org/10.1145/3183440.3195004
https://doi.org/10.1007/978-3-642-04342-0_2
https://www.mdpi.com/2218-6581/8/3/50
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per iteration). The differences between the black-box and gray-
box strategies lie in how perturbations are applied. The black-
box attack selects the features to perturb in a randomized
manner, while the gray-box attack perturbs features based on
their frequency in benign samples in a heuristically-driven
approach. Recall that the black-box query attack strategy is
used in Section VI and the gray-box strategy in Section VII.

For the adaptive attack against MalProtect (in Section VIII),
the number of features that are added in a single perturbation
is capped, and from the removable features of the query, p%
of features are removed. This is to make queries as distinct
from each other as possible while remaining within the general
distribution of other queries.

Algorithm 1 Black-box query attack: for oracle O, malware
sample X , set of (randomly-ordered) benign features F ,
maximum permitted queries nmax.

Input: O, X , F , nmax

1: X
→ ≃ X , n ≃ 0

2: while O(X →) = 1 & n < nmax & n < F.length do
3: X

→ ≃ AddFeature(X →
, F [n])

4: r ≃ RandomInteger(0, Length(F ))
5: Fr ≃ ChooseRandomFeatures(r, F )
6: X

→ ≃ AddFeatures(X →
, Fr)

7: X
→ ≃ V alidatePerturbations(X,X

→)
8: n ≃ n+ 1
9: if O(X →) = 0 then return Success

10: return Failure

Algorithm 2 Gray-box query attack: for oracle O, malware
sample X , vector of sorted benign features ϑs, maximum
permitted queries nmax.

Input: O, X , ϑs, nmax

1: X
→ ≃ X , n ≃ 0

2: while O(X →) = 1 & n < nmax & n < ϑs.length do
3: X

→ ≃ AddFeature(X →
,ϑs[n])

4: r ≃ RandomInteger(0, Length(ϑs))
5: Fr ≃ ChooseRandomFeatures(r,ϑs)
6: X

→ ≃ AddFeatures(X →
, Fr)

7: X
→ ≃ V alidatePerturbations(X,X

→)
8: n ≃ n+ 1
9: if O(X →) = 0 then return Success

10: return Failure

Algorithm 3 Adaptive attack: for oracle O, malware sample
X , vector of sorted benign features ϑs, maximum permitted
queries nmax, p percentage of features to remove, m maxi-
mum features to add in each iteration.
Input: O, X , ϑs, nmax, m

1: X
→ ≃ X , n ≃ 0

2: while O(X →) = 1 & n < nmax & n < ϑs.length do
3: X

→ ≃ AddFeature(X →
,ϑs[n])

4: r ≃ RandomInteger(0,m)
5: Fr ≃ ChooseRandomFeatures(r,ϑs)
6: X

→ ≃ AddFeatures(X →
, Fr)

7: X
→ ≃ RemoveFeatures(X →

, p)
8: X

→ ≃ V alidatePerturbations(X,X
→)

9: n ≃ n+ 1
10: if O(X →) = 0 then return Success

11: return Failure

APPENDIX G
EXTENDED RESULTS

The extended results are located at: https://osf.io/sfvyn/
?view only=2caaef2fd7ae416a8891ce3f3bd50d2d

APPENDIX H
EVALUATING OTHER QUERY ATTACKS

We also examine the Boundary [6], HopSkipJump [7],
and ZOO [71] query attacks. We demonstrate their inability
to generate adversarial examples in this domain, as these
attacks are designed for other domains and do not consider
the constraints of the malware detection domain (functionality
preservation and discretization of features). We use each attack
to try and generate adversarial examples against the NN-
AT model. For this, once the feature vector of a malware
sample has been perturbed, we discretize the feature vectors
and evaluate whether the perturbations are permitted for each
dataset. As usual, any invalid perturbations are reversed.

Figure 9 shows that these attacks are unable to achieve
evasion at all. Evidently, the perturbations used to cross the
decision boundary are reversed. That is, invalid perturbations
are consistently made that must be discretized and reversed to
ensure functionality preservation in the feature-space. Mean-
while, in Figure 9, we also show that our black-box query
attack strategy achieves 80+% evasion rate across the datasets.
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Fig. 9: Evasion rate of additional query attacks against NN-AT
model vs. nmax.
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