
Make your IoT environments robust against
adversarial machine learning malware threats: a

code-cave approach
Hamed Haddadpajouh

University of Guelph
hhaddadp@uoguelph.ca

Ali Dehghantanha
University of Guelph

adehghan@uoguelph.ca

Abstract—As the integration of Internet of Things devices

continues to increase, the security challenges associated with

autonomous, self-executing Internet of Things devices become

increasingly critical. This research addresses the vulnerability of

deep learning-based malware threat-hunting models, particularly

in the context of Industrial Internet of Things environments.

The study introduces an innovative adversarial machine learning

attack model tailored for generating adversarial payloads at the

bytecode level of executable files.

Our investigation focuses on the Malconv malware threat

hunting model, employing the Fast Gradient Sign methodology

as the attack model to craft adversarial instances. The proposed

methodology is systematically evaluated using a comprehensive

dataset sourced from instances of cloud-edge Internet of Things

malware. The empirical findings reveal a significant reduction in

the accuracy of the malware threat-hunting model, plummeting

from an initial 99% to 82%. Moreover, our proposed approach

sheds light on the effectiveness of adversarial attacks leveraging

code repositories, showcasing their ability to evade AI-powered

malware threat-hunting mechanisms.

This work not only offers a practical solution for bolstering

deep learning-based malware threat-hunting models in Internet

of Things environments but also underscores the pivotal role

of code repositories as a potential attack vector. The outcomes

of this investigation emphasize the imperative need to recognize

code repositories as a distinct attack surface within the landscape

of malware threat-hunting models deployed in the Internet of

Things environments.

I. INTRODUCTION

The proliferation of IoT devices introduces significant secu-
rity challenges due to the lack of robust defensive mechanisms
at the application level, creating vulnerabilities that adversaries
exploit by crafting malicious payloads [1]. In response, ML-
based threat hunting models have been integrated to counteract
these threats [2], utilizing properties of both malicious and
benign files to detect potential threats. This approach, while
promising, requires further scrutiny to assess its effectiveness
in the dynamic IoT security landscape.

In recent years, the pervasiveness of malware threats has
emerged as a formidable challenge across diverse IT-based in-
frastructures, as highlighted by [3]. Concurrently, the prolifer-
ation of IoT applications across various business domains has
exposed IoT-based infrastructures to a substantial onslaught of
malware threats.

The architectural framework of IoT infrastructures typi-
cally encompasses a tripartite structure comprising the ap-
plication, network, and edge layers (perceptional layer) i.e.
[4]. Malicious actors, aware of this structural sketch, tend
to concentrate their efforts on crafting malicious payloads
tailored for the edge and application layers. The edge layer,
in particular, becomes a great entry point for attacks due to
the accessibility of its nodes within end-user environments. A
poignant exemplification of this vulnerability is observed in
Mirai attacks [5], wherein malware of the same nomenclature
orchestrates substantial disruptions in the IoT environment.
This underscores the critical nature of addressing malware
threats in the context of IoT infrastructures, especially within
the vulnerable domains of the edge layer.

In recent years, machine learning ML-based solutions have
emerged as the most promising approaches against malware
threats, offering benefits in malware threat prevention, hunting,
and attribution [6], [7]. Deep learning (DL)-based approaches
have also shown significant performance in dealing with mal-
ware threats in both IT [8] and IoT environments [7]. While
the use of end-to-end DL makes it easy to create new models
for a variety of file types by exploiting the vast number of
labeled samples available to organizations, it also opens up the
possibility of attacking these models using adversarial evasion
techniques popularized in the image classification space.

The vulnerability of ML-based malware threat-hunting en-
gines to adversarial attacks has become a pressing issue,
as evidenced by recent practical efforts to attack ML-based
malware threat-hunting models using AEs [9]. Adversarial
ML techniques, commonly categorized into white-box and
black-box models, have gained prominence in this context.
These models exploit vulnerabilities in the decision boundaries
of ML-based threat-hunting models, requiring precise adjust-
ments to preserve the functionality of the generated examples.
While most recent works exploit the decision boundaries of
ML-based models, these boundaries cannot be deliberately

Workshop on Security and Privacy in Standardized IoT (SDIoTSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-6-9
https://dx.doi.org/10.14722/sdiotsec.2024.23066
www.ndss-symposium.org

altered and require a precise effort to preserve the functionality
of the generated example. For instance, [10] proposed a
technique that modifies byte features and metadata of the
executable file to attack a gradient-boosted decision trees threat
hunting model. Similarly, [11] developed an attack model
against Malconv [8], a well-known malware threat hunting
model, by editing padding bytes of the executable based on
a gradient-driven approach. These efforts suggest that most
ML-based threat-hunting models are vulnerable to adversarial
gradient-based attacks.

Adversarial attacks targeting malware threat-hunting models
commonly entail introducing random perturbations to different
attributes of executable files, including header files, demon-
strating notable success rates. Nonetheless, a standardized
methodology for delineating the attack surface of executable
files, particularly within the context of IoT environments, is
currently lacking. In this paper, we proposed an innovative
approach, an attack surface analyzer, tailored for IoT malware
executable files. This analyzer leverages the inherent code
caves within the bytecode of these files, strategically exploiting
these concealed spaces to circumvent conventional malware
threat-hunting models. Our study’s focus on Malconv and
Linux environments was chosen due to Malconv’s significance
in IoT malware detection and the prevalence of Linux in IoT
devices. We acknowledge the importance of generalizing our
approach and are committed to exploring its applicability to
other malware detectors and operating systems in future work.

The motivation for minimizing perturbations in the genera-
tion of adversarial examples is twofold. Firstly, it is essential
to preserve the original functionality of the malware, ensuring
that the adversarial modifications do not impair its intended
malicious activities. Secondly, minimizing perturbations helps
maintain the stealthiness of the malware, reducing the like-
lihood of detection by sophisticated malware detectors. This
delicate balance is critical for the success of adversarial attacks
in real-world scenarios, particularly in IoT environments where
the integrity and undetectability of malware are paramount.

Our contributions in evaluating the robustness of IoT mal-
ware threat-hunting models are as follows:

• We propose a byte-level IoT executable file attack surface
finder based on code-caves.

• We generate adversarial examples of IoT cloud-edge
devices based on gradient descent weak points and the
defined attack surfaces.

• We evaluate the robustness of the MalConv and multi-
kernel malware threat-hunting models using the generated
samples.

The remainder of this paper is structured as follows: Section
II presents a review of recent work on adversarial attacks on
deep malware threat hunting systems. Section III provides
an overview of our proposed model for evading malware
threat-hunting mechanisms and explains our methodology for
addressing this challenge. In Section IV, we present our
results and compare them with other works. Finally, Section
V summarizes our work and discusses future extensions.

II. RELATED WORK

Since the main aim of this work focuses on presenting a
novel technique for generative adversarial malware examples
for a could-edge layer of IoT environments, we review related
prior contributions on this topic.

The adversarial ML attack was first introduced in [12] for
image-based classifiers. This concept is then expanded in [13].
This concept presumes f is the target model (classifier) that
the adversary tries to attack. For better understanding, let’s
assume that function f(.) takes input and assigns a label to
it. Therefore, An AE x0 targeting f via perturbing an original
input of x with � so that f(x) 6= f(x0).

x0 = x+ � (1)
f(x) 6= f(x0) (2)

In this section, we survey prior contributions related to our
primary focus on introducing a novel technique for generating
adversarial examples tailored for the cloud-edge layer of IoT
environments.

The inception of adversarial ML attacks traces back to
Goodfellow et al.’s seminal work on generative adversarial
networks [12]. This concept was further elucidated in [13],
where f represents the target model (classifier) under attack.
In the context of our work, we assume a function f(·) that
assigns a label to an input. An adversarial example (x0) is
generated by perturbing an original input (x) with � such that
f(x) 6= f(x0).

Adversarial attacks fall into two primary categories: white-
box and black-box attacks [14]. White-box attacks assume
complete knowledge of the target model, including weights,
parameters, and trained data. In contrast, black-box attacks
only have access to the input and output of the target model.

While most adversarial attacks are conducted on image
datasets like MINIST, ImageNet, and CIFAR10 [15], ap-
proaches in the malware threat-hunting domain often focus
on image-based models. However, translating malware prop-
erties into images introduces conversion overhead, rendering
it impractical for IoT environments.

Adversarial ML attacks against malware threat-hunting
models can preserve binaries’ functionalities and fall into
several categories:

• Modifying the import table by adding function names:
Adding function names to mislead the model into classi-
fying malware as legitimate [16].

• Altering binary section names: Renaming sections to
evade model detection [17].

• Removing or changing signer names: Evading detection
by modifying signer information [18].

• Creating new, unused section names: Generating unused
section names to evade detection [19].

• Changing debugging data: Altering debugging data to
confuse the model and evade detection [20].

• Inserting/copying bytes to unused space: Modifying un-
used space in sections to evade detection [21].

2

• Manipulating binary header information: Altering binary
header information to evade model detection [22].

• Obfuscating binaries by wrapping/unpacking techniques:
Using wrapping or unpacking techniques to obfuscate
binaries and evade detection [23].

While traditional adversarial techniques often rely on man-
ual interventions, advancements in machine learning, such
as Reinforcement Learning (RL) and Generative Adversarial
Networks (GANs), pave the way for automated adversarial
example generation that maintains binary functionality. This
shift towards automation, evidenced by works like [24] and
[25], and models like [24] utilizing black-box approaches,
marks a significant evolution from earlier ML and DNN meth-
ods that manually adjusted features like signatures and API
calls, towards leveraging deep learning for more sophisticated,
automated adversarial attacks.

A. Code-Caves: A Strategic Evasion Technique

Code-caves, unused spaces in executable files, provide a
stealthy method for embedding adversarial payloads without
affecting binary functionality. Particularly useful in IoT en-
vironments, these concealed segments allow for the subtle
modification of binaries, facilitating evasion from ML-based
malware detection systems.

1) Code-Caves: Evasion Technique: Utilizing code-caves
as an evasion tactic, our approach injects malicious code
into these overlooked segments, thereby bypassing AI-driven
security measures without compromising the executable’s in-
tegrity. This strategy not only challenges traditional malware
detection models but also suggests avenues for future research
to enhance the transferability and effectiveness of adversarial
example generation across diverse detection systems and com-
puting environments.

III. PROPOSED MODEL AND METHODOLOGY

In this section, we present a comprehensive overview of
our innovative model, specifically crafted to effectively evade
ML-based IoT malware threat hunting models, with the well-
known Malconv serving as a representative example. We aim
to provide a robust defense against evolving cyber threats
targeting IoT environments.

Our exploration begins with a detailed examination of the
intricate structure of IoT executable files, aiming to identify
latent vulnerabilities that can be exploited by adversaries.
We particularly focus on the ELF (Executable and Linkable
Format) files commonly utilized in cloud-edge devices within
IoT ecosystems.

As depicted in Figure 1, our proposed approach takes an
executable sample and dissects it into three distinct byte-
code layers inherent to ELF files: the .text, .data, and
.rodata sections. Each of these segments plays a pivotal role
in the execution of the binary, housing essential instructions,
necessary data, and read-only data, respectively.

The foundation of our model lies in the strategic initia-
tion of the code-cave vulnerability. Code caves, representing
unused or spare spaces within the binary, are prime targets

for exploitation. These vacant areas provide an opportune
entry point for injecting adversarial payloads, allowing us to
navigate through the intricacies of malware detection models.
The strategic injection of these payloads aims to deceive and
bypass the targeted malware threat-hunting models effectively.

In the subsequent sections, we delve deeper into the mech-
anisms of our proposed model, outlining the steps involved
in code-cave exploitation, adversarial payload generation, and
the overall strategy to preserve the functionality of the exe-
cutable while evading detection. This multifaceted approach
encapsulates our efforts to fortify IoT environments against
the evolving landscape of sophisticated cyber threats. Through
the lens of our innovative model, we provide a strategic and
effective countermeasure to bolster the security posture of
cloud-edge devices within the IoT ecosystem.

To substantiate our approach, we examined an IoT dataset
[7], revealing Code-Caves in benign samples within the
.data section, as depicted in Figure 2. The choice to focus
perturbations within the .data section was driven by its
unique characteristics that typically allow for modifications
without disrupting the executable’s functionality. This section
often contains initialized global and static variables, making
it an ideal target for embedding adversarial payloads while
preserving the malware’s operational integrity. However, we
acknowledge the potential limitations of this focused approach
and the importance of diversifying attack strategies to enhance
evasion capabilities.

A. Adversarial Example Generation

Preserving functionality while generating malicious ex-
amples is a challenge in adversarial machine learning. We
minimize perturbations (�), Eq. 3 and 4, to maintain func-
tionality while maximizing the evasion rate, bypassing the
ML engines. The strategy of generating random adversarial
payloads is predicated on the notion of unpredictability and
broad exploration of the model’s decision boundaries. This
approach is designed to probe the malware detection model in
a manner that is less predictable than targeted modifications,
potentially uncovering vulnerabilities that are not apparent
through deterministic methods.

x0 = x+ � (3)

max(loss(M(x0))) w.r.t. x0 = lim
�!0

(x+ �) (4)

B. Executable Structure and Payload Insertion

Code caves represent stealthy enclaves within executables,
often overlooked by traditional malware detection techniques,
that provide a clandestine avenue for embedding adversarial
payloads. These unused spaces are particularly prevalent in
the .data section, are strategically exploited to maintain
the malware’s operational stealth without altering its external
behavior. This approach not only leverages the inherent biases
of detection models, which typically focus on more active
sections like .text, but also ensures that any modifications

3

Fig. 1: The proposed methodology for generating Adversarial Examples (AE) from cloud-edge gateway samples.

(a) blktool (b) btrfsck

(c) auto-apt-pkgcdb (d) btrfs-convert

Fig. 2: Plots of existing Code-Caves in IoT executable files
within the .data section.

subtly distort the malware’s signature to evade detection while
preserving functionality. However, the traditional view is that
modifying the .text section is impractical—primarily due
to concerns over functionality preservation and increased de-
tectability—and has been challenged by recent advancements
in obfuscation techniques. These emerging methods suggest
new possibilities for safe alterations within the .text section
that maintains the malware’s intent and evades detection,
underscoring the necessity for adaptive strategies that respond
to technological progress in the cybersecurity domain. To
pinpoint the optimal attack space, we assess spare spaces
within each section using Algorithm 1.

Algorithm 1 Assessing the Attack Surface
Function CodeCave(x, Bsize := 256)

ByteSegments [3] ; // .text, .rodata,
.data segments
text, rodata, data chunk(x) ; // extracting
byte segments
ByteSegments text, rodata, data for i 0 to

ByteSegments.length() do

vulSpace Codecave.find(ByteSegments[i]) if

vulSpace.size > Bsize then

CaveInfo vulSpace.info ;
// information about code caves

end

end

return Caveinfo ; // returning sparse space
starting and ending address

C. Target Model: Malconv

Our experiments employ the Malconv model [8] as the
target. Malconv, a convolutional neural network, specializes
in detecting malicious executable files by analyzing raw byte-
codes.

D. Generating Malicious Examples

Our model includes three key sections, as depicted in Figure
1. The initial step involves attacking the targeted model Eq.
(5, 6). We preprocess data on the bytecode level, assessing
Code-Cave space to exploit for generating malicious exam-
ples. Algorithm 2 demonstrates the proposed attack model
pseudocode, aiming to generate random adversarial payloads
(8) while preserving functionality. The iterative procedure
continues until the evasion threshold is satisfied.

max C(M,x0, y) (5)

subject to x0 = x+ �x (6)

4

|x|d ✏ ⇤ |x| (7)

�x = ✏ ⇤ sign (rx C(M,x0, y)) (8)

Equation 7 indicates that any dimensions allow being al-
tered, although the number of dimensions should not differ
from original samples [26]. Moreover, the goal of maximizing
the error in 5 is to prevent misclassification of the model based
on the computed �x. This value also reaches Eq. 8. Where
the sign (rx C(M,x0, y)) is the direction of minimized cost
function corresponds to �x value from Eq. 8. In the end, the
cost function of adversarial malicious payloads is C(M,x0, y)
where y 6= y.

After getting the desired information for each segment of
the benign sample, we are going to evaluate the code-cave
space to exploit them for generating malicious examples.
Algorithm 2 demonstrates the proposed attack model pseudo
code. In proposed attack model takes three major inputs, the
original sample batch size, associated code-caves information,
and the target model. The attack model tries to generate a
random adversarial payload based on Eq. 8 to find appropriate
�. To preserve the functionality of AEs, unlike image-based
models, we use code caves and inject a certain payload size
into the original sample then pass it to the model again for
final classification. This iterative procedure continues until the
evasion threshold T > 0.5 is satisfied.

Within our proposed model, the principle of minimizing
perturbations is applied rigorously to ensure that adversarial
payloads not only bypass malware detection models effectively
but also retain their malicious functionality unaltered. This
approach underscores our methodology’s emphasis on creat-
ing stealthy, functional adversarial malware, highlighting the
sophistication and practical applicability of our attack strategy
in evading ML-based malware threat hunters.

Algorithm 2 IoT adversarial payload generator
function (x, Codecsave, model)
while !evade do

payload := generator(x, p = 1) w.r.t Eq. 8
x0 := inject(payload, x, Codecave)
probability = model.predict(x0) if probability > T

then

label := benign
evade := True

end

end

return x0

end function

IV. EXPERIMENTAL RESULTS

To assess the efficacy of our proposed approach in evading
deep-net-based malware threat-hunting models, we conducted
experiments across various test beds. Before delving into
the details of these experiments, we establish key evaluation

metrics. The selection of appropriate metrics is crucial to
comprehensively evaluate the performance and robustness of
a model against adversarial attacks.

A. Rationale for Minimizing Modifications in Executable Bi-

naries

Minimal modifications in executable binaries strike a critical
balance between maintaining stealth and preserving function-
ality. This approach is driven by four key considerations:

1) Detection Model Sensitivity: Malware detection mod-
els, particularly ML-based ones, are finely tuned to
recognize patterns in binary files. Even minor anomalies
can significantly heighten detection risk, making subtle
changes preferable for evading these models without
altering the binary’s intended function.

2) Anomaly Detection Thresholds: Security systems’
anomaly detectors are less likely to flag files with
minimal alterations as suspicious, enhancing the odds
of evasion.

3) Forensic Traceability: Smaller modifications compli-
cate forensic analysis, aiding in obfuscating the origin
or method of an attack.

4) Computational Efficiency: The process of generat-
ing and testing adversarial examples is more resource-
efficient with fewer modifications, a crucial factor for
large-scale or resource-constrained operations.

Opting for minimalistic changes—altering as little as a single
byte—can therefore be a more effective strategy for bypassing
sophisticated detection mechanisms, emphasizing the need for
precision in the creation of adversarial examples.

B. Evaluation Metrics

In this section, we introduce two key metrics employed in
our study: Mean Square Error (MSE) and Maximum Mean
Discrepancy (MMD).

1) MSE: We utilized MSE as the loss function for our target
model to compute the gradient of the model output, as shown
in Eq. 9. Here, n represents the number of data points, and
e2t = (yi � y0i)

2, where yi is the observed value and y0i is the
predicted value.

MSE =
1

n

nX

t=1

e2t (9)

In the context of generated malware bytecode and tracking
training loss using MSE, this metric plays a pivotal role in
assessing the effectiveness of the model in replicating the
features of legitimate and adversarial samples.

When dealing with malware bytecode, the model aims to
understand the patterns and characteristics inherent in both
benign and malicious executable files. The observed values
(yi) represent the actual features extracted from the malware
bytecode, while the predicted values (y0i) are the model’s
estimations based on its current set of parameters.

The equation for MSE, as given in Eq. 9, quantifies the
average squared difference between the observed and predicted

5

values across all instances in the training dataset. In the context
of generated malware bytecode, this means that MSE measures
how closely the model’s predictions align with the actual
features of both benign and adversarial examples.

e2t = (observed featuret � predicted featuret)
2

Here, the subscript t denotes individual features within the
bytecode. By minimizing the MSE loss during training, the
model is essentially learning to generate malware bytecode
that closely resembles the characteristics of real-world exam-
ples, both benign and adversarial.

2) MMD for Adversarial Sample Generation: We em-
ployed MMD as a statistical technique to quantify, Eq. 10,
the similarity between the adversarial samples generated by
our proposed model and non-adversarial (legitimate) examples.
MMD assessed the density distribution of the top 20 feature
components in adversarial and non-adversarial executable files,
obtained through Principal Component Analysis (PCA), –See
Figure 3.

MMD(Padv, Qnon-adv) =
1

m(m� 1)

mX

i=1

mX

j=1

k(xi, xj)

� 2

mn

mX

i=1

nX

j=1

k(xi, yj)

+
1

n(n� 1)

nX

i=1

nX

j=1

k(yi, yj)

(10)

C. Experiments and Test Beds

The primary experiment aimed to delineate the decision
boundary of the Malconv model by examining different seg-
ments of each dataset sample. Table I presents the evaluation
results for each malware segment within the IoT dataset,
revealing the efficacy of various file sections in generating
adversarial examples.

Section Name Recall

.text 0.98

.data 0.48

.rodata 0.99

TABLE I: Decision boundary of IoT dataset malware for each
section.

To execute our experiments, we initially trained the target
model using the IoT dataset [7], focusing on primitive hunting
for entire executable files. Subsequently, we employed a 70-30
splitting technique for testing the Malconv model with the IoT
dataset, achieving over 99% detection accuracy for malicious
payloads.

D. Adversarial Example Generation

After generating and evaluating samples using Malconv,
we advanced to launch attacks on both target threat hunting
models: Malconv and the Multi-kernel SVMs model. The

outcomes, detailed in Table II, unequivocally showcase the
efficacy of our approach in successfully evading detection by
Malconv and the multi-kernel models. This evasion is achieved
through the strategic injection of adversarial payloads into IoT
executable files.

To further illustrate the impact of our adversarial examples
on the training process, we present Figure 6. This figure
displays the training loss function (MSE) of Malconv, specif-
ically when trained with the generated adversarial dataset.
The observed fluctuations in the training loss underscore
the model’s adaptation to the adversarial examples, further
emphasizing the efficacy of our approach in influencing the
learning dynamics of the target threat hunting model.

Furthermore, to visually demonstrate the similarity between
the generated adversarial examples and their non-adversarial
counterparts, we present Figure 4. This figure encapsulates
the distribution of the top 20 feature components in both
adversarial and non-adversarial executable files, as assessed
by MMD The striking similarity between the two distributions
underlines the model’s capability to craft adversarial examples
that closely resemble legitimate samples, substantiating the
effectiveness of our proposed adversarial example generation
approach.

Our evaluation metrics, including evasion rates and de-
tection accuracy, further underscore the potential of random
adversarial payloads. For instance, an evasion rate of 24% was
observed against the target model when employing randomly
generated payloads, compared to 16% with deterministic ap-
proaches.

Target Model Evasion method Detection Accuracy Evasion Rate

Malconv [8] Code Cave Injection 98% ⇠16%
Multi-kernel [6] Code Cave Injection 99% ⇠24%
Malconv [11] Random Byte Addition N/A ⇠10%

TABLE II: Comparative Analysis of Evasion Rates: Assessing
the Effectiveness of Our Proposed Attack Model Against
Established Benchmarks.

E. Generalizability and Cybersecurity Impact

Our approach has broad potential across ML-based malware
detectors, emphasizing the need for dynamic defenses in IoT
devices. Enhanced security measures are critical given the
demonstrated evasion capabilities, highlighting the urgency for
evolving IoT security protocols.

F. Evaluation of Adversarial Payload Effectiveness

Our analysis of the generation of random adversarial pay-
loads revealed a significant insight: the path to a successful
evasion against the MalConv model typically began after
approximately 1000 attempts. This variability underscores the
iterative nature of crafting effective adversarial examples and
the importance of understanding the target model’s vulnera-
bilities. The convergence phenomenon, depicted in Figure 7,
visualizes the iterative process toward achieving an effective
adversarial payload, highlighting the blend of persistence and

6

Fig. 3: PCA scatter plot of top 20 feature components for adversarial and non-adversarial samples

strategic insight required in this endeavor. Future work will
aim to explore this area more comprehensively, addressing the
complexities and challenges identified.

G. Comparison with Other Attack Strategies

Our method emphasizes stealth and operational integrity,
leveraging code caves for enhanced evasion in IoT-specific
malware detection models. Unlike [11]’s approach, which
requires adding approximately 2000 bytes to achieve only
a 10% evasion rate—a change likely to alert IoT malware
detectors due to the substantial byte increase—our strategy
employs strategic, minimalistic modifications (⇠256-512 bytes
code-cave). These adjustments yield adversarial examples in-
distinguishable from genuine files, significantly lowering the
risk of detection. Our refined approach not only ensures better
adaptability and sophistication within IoT application security
but also maintains a lower computational footprint, crucial for
cloud-edge devices with limited resources, as detailed in Table
II.

V. CONCLUSION AND DISCUSSION

The advancement of IoT devices, equipped with sophisti-
cated operating systems, has introduced new vulnerabilities,
particularly in the form of malicious payloads. In addressing
these challenges, this paper presented a novel adversarial
model aimed at probing the vulnerabilities of ML-based
malware detection systems, specifically targeting the Malconv
model through strategic payload insertion into code caves. Our
methodology demonstrated a notable reduction in detection

accuracy, highlighting the potential for adversarial examples
to bypass current security measures.

Our experiments on a real-world dataset from cloud-edge
IoT devices underscored the effectiveness of our approach,
reducing Malconv’s classification accuracy significantly. Fu-
ture endeavors will concentrate on developing robust defensive
strategies to mitigate such adversarial threats, enhancing the
resilience of malware detection frameworks within IoT envi-
ronments.

We have illustrated the strategic importance of minimizing
modifications and incorporating randomness in adversarial
payload generation, balancing operational stealth with evasion
effectiveness. Moving forward, our research will expand to
investigate these aspects further, alongside exploring the adapt-
ability of our techniques across different detection models
and environments. This will include a focus on enhancing
the sophistication and unpredictability of adversarial attacks,
aiming for broader applicability and robustness in countering
malware threats across the IoT landscape.

REFERENCES

[1] A. Al-Meer and S. Al-Kuwari, “Physical unclonable functions (puf) for
iot devices,” ACM Computing Surveys, vol. 55, no. 14s, pp. 1–31, 2023.

[2] X. Zhang, L. Hao, G. Gui, Y. Wang, B. Adebisi, and H. Sari, “An
automatic and efficient malware traffic classification method for secure
internet of things,” IEEE Internet of Things Journal, 2023.

[3] H. HaddadPajouh, R. Khayami, A. Dehghantanha, K.-K. R. Choo, and
R. M. Parizi, “Ai4safe-iot: An ai-powered secure architecture for edge
layer of internet of things,” Neural Computing and Applications, vol. 32,
no. 20, pp. 16119–16133, 2020.

7

(a) Feature density for the class of Non-Adversarial
examples

(b) Feature density for the class of Adversarial examples

Fig. 4: Feature density of generate samples bytecode for
adversarial and non-adversarial train set classes

Fig. 5: Training loss function (MSE) of Malconv with IoT
dataset.

[4] S. K. Smmarwar, G. P. Gupta, and S. Kumar, “Deep malware detection
framework for iot-based smart agriculture,” Computers and Electrical

Engineering, vol. 104, p. 108410, 2022.
[5] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
et al., “Understanding the mirai botnet,” in 26th USENIX Security

Symposium (USENIX Security), pp. 1093–1110, 2017.
[6] H. Haddadpajouh, A. Mohtadi, A. Dehghantanaha, H. Karimipour,

X. Lin, and K.-K. R. Choo, “A multikernel and metaheuristic feature
selection approach for iot malware threat hunting in the edge layer,”
IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4540–4547, 2021.

[7] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo,

Fig. 6: Training loss function (MSE) of Malconv with the
generated adversarial dataset.

Fig. 7: Visualization of the convergence point in the process
of generating successful adversarial payloads against the Mal-
Conv model.

“A deep recurrent neural network based approach for internet of things
malware threat hunting,” Future Generation Computer Systems, vol. 85,
pp. 88–96, 2018.

[8] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” arXiv preprint

arXiv:1710.09435, 2017.
[9] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, “Automatic

generation of adversarial examples for interpreting malware classifiers,”
arXiv preprint arXiv:2003.03100, 2020.

[10] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static pe machine learning malware models via reinforcement
learning,” arXiv preprint arXiv:1801.08917, 2018.

[11] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in IEEE 26th European

signal processing conference (EUSIPCO), pp. 533–537, IEEE, 2018.
[12] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
arXiv preprint arXiv:1406.2661, 2014.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[14] K. Aryal, M. Gupta, and M. Abdelsalam, “A survey on adversarial
attacks for malware analysis,” arXiv preprint arXiv:2111.08223, 2021.

[15] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le,
“Adversarial examples improve image recognition,” in Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition,
pp. 819–828, 2020.

[16] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and

8

defenses for deep learning,” IEEE transactions on neural networks and

learning systems, vol. 30, no. 9, pp. 2805–2824, 2019.
[17] H. Gao, S. Cheng, Y. Xue, and W. Zhang, “A lightweight framework

for function name reassignment based on large-scale stripped binaries,”
in Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis, pp. 607–619, 2021.
[18] X. Li and Q. Li, “An irl-based malware adversarial generation method

to evade anti-malware engines,” Computers & Security, vol. 104,
p. 102118, 2021.

[19] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, “Mab-
malware: A reinforcement learning framework for blackbox generation
of adversarial malware,” in Proceedings of the 2022 ACM on Asia

conference on computer and communications security, pp. 990–1003,
2022.

[20] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine
learning change software development practices?,” IEEE Transactions

on Software Engineering, vol. 47, no. 9, pp. 1857–1871, 2019.
[21] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando,

“Functionality-preserving black-box optimization of adversarial win-
dows malware,” IEEE Transactions on Information Forensics and Secu-

rity, vol. 16, pp. 3469–3478, 2021.
[22] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Explain-

ing vulnerabilities of deep learning to adversarial malware binaries,”
arXiv preprint arXiv:1901.03583, 2019.

[23] M. Schloegel, T. Blazytko, M. Contag, C. Aschermann, J. Basler,
T. Holz, and A. Abbasi, “Loki: Hardening code obfuscation against
automated attacks,” in 31st USENIX Security Symposium (USENIX

Security 22), pp. 3055–3073, 2022.
[24] W. Hu and Y. Tan, “Generating adversarial malware examples for black-

box attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.
[25] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Adversarial

learning in the cyber security domain,” arXiv preprint arXiv:2007.02407,
2020.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

9

