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Abstract
The rapidly increasing landscape of Internet-of-Thing
(IoT) devices has introduced significant technical chal-
lenges for their management and security, as these IoT
devices in the wild are from different device types, ven-
dors, and product models. The discovery of IoT devices
is the pre-requisite to characterize, monitor, and protect
these devices. However, manual device annotation im-
pedes a large-scale discovery, and the device classifica-
tion based on machine learning requires large training
data with labels. Therefore, automatic device discovery
and annotation in large-scale remains an open problem
in IoT. In this paper, we propose an Acquisitional Rule-
based Engine (ARE), which can automatically generate
rules for discovering and annotating IoT devices without
any training data. ARE builds device rules by leverag-
ing application-layer response data from IoT devices and
product descriptions in relevant websites for device an-
notations. We define a transaction as a mapping between
a unique response to a product description. To collect
the transaction set, ARE extracts relevant terms in the re-
sponse data as the search queries for crawling websites.
ARE uses the association algorithm to generate rules of
IoT device annotations in the form of (type, vendor, and
product). We conduct experiments and three applications
to validate the effectiveness of ARE.

1 Introduction

Nowadays most of the industries have owned and run dif-
ferent Internet-of-Thing (IoT) devices, including, but not
limited to, cameras, routers, printers, TV set-top boxes,
as well as industrial control systems and medical equip-
ment. Many of these devices with communication capa-
bilities have been connected to the Internet for improv-
ing their efficiency. Undeniably, the development and
adoption of online IoT devices will promote economic
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growth and improvement of the quality of life. Gartner
reports [1] that nearly 5.5 million new IoT devices were
getting connected every day in 2016, and are moving to-
ward more than 20 billion by 2020.

Meanwhile, these IoT devices also yield substantial
security challenges, such as device vulnerabilities, mis-
management, and misconfiguration. Although an in-
creasingly wide variety of IoT devices are connected to
residential networks, most users lack security concerns
and necessary skills to protect their devices, e.g., default
credentials and unnecessary exposure. It is difficult for
end users to identify and troubleshoot the mismanage-
ment and misconfiguration of IoT devices. Even if an IoT
device has a serious security vulnerability, users have no
capability of updating patches in a timely manner due to
their limited knowledge.

In general, there are two basic approaches to address-
ing security threats: reactive defense and proactive pre-
vention. The reactive defense usually requires download-
ing firmware images of devices for offline analysis, lead-
ing to a significant time latency between vulnerability ex-
ploit and detection [38]. By contrast, a proactive security
mechanism is to prevent potential damages by predicting
malicious sources, which is more efficient than the reac-
tive defense against large-scale security incidents (e.g.,
Mirai Botnet [21]). In order to protect IoT devices in a
proactive manner, discovering, cataloging, and annotat-
ing IoT devices becomes a prerequisite step.

The device annotation contains the type, vendor, and
product name. For instance, an IoT device has a type
(e.g., routers or camera), comes from a vendor (e.g.,
Sony, CISCO, or Schneider), with a product model (e.g.,
TV-IP302P or ISR4451-X/K9). The number of device
annotations is enormous, and we cannot enumerate them
by human efforts. In prior works [21, 25, 28, 35–37, 40],
fingerprinting and banner grabbing are the two conven-
tional methods for discovering and annotating devices.
However, the fingerprinting approach [35, 36, 40] can-
not be applied to the IoT device discovery and annota-
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tion because of the high demand for training data and
a large number of device models. The banner grabbing
approach [21,25,28,37] usually generates device annota-
tions in a manual fashion, which is impossible for large-
scale annotations, particularly given the increasing num-
ber of device types. In this paper, we aim to automati-
cally discover and annotate IoT devices in the cyberspace
while mitigating the cost in terms of manual efforts and
the training data.

The key observation we exploit is that the response
data from those IoT devices in application layer proto-
cols usually contain the highly correlated content of their
manufacturers. A variety of websites on the Internet are
used to describe the device products since their initial
sale, such as description webpages of the products, prod-
uct reviews websites, and Wikipedia. Our work is rule-
based, and the automatic rule generation is mainly based
on the relationship between the application data in IoT
devices and the corresponding description websites. Al-
though the basic idea is intuitive, there are two major
challenges in practice, blocking the automation process
of building rules for IoT devices. First, the application
data is hardcoded by its manufacturer. Second, there
are massive device annotations in the market. Notably,
manufacturers would release new products and abandon
outdated products, due to the business policy. Manually
enumerating every description webpage is impossible.

To address these technical challenges, we propose an
Acquisitional Rule-based Engine (ARE) that can auto-
matically generate rules for discovering IoT devices in
the cyberspace. Specifically, ARE utilizes the transac-
tion dataset to mine rules. We define a transaction as
a mapping between a unique response from an IoT de-
vice to its product description. ARE collects the transac-
tion dataset as follows: (1) ARE receives the application-
layer response data from online IoT devices; (2) ARE
uses relevant terms in the response data as the search
queries; and (3) ARE crawls the websites from the list of
the searching result. For those relevant webpages, ARE
uses named-entity recognition (NER) to extract device
annotation, including device type, vendor, and product.
ARE learns rules from the transaction dataset through the
apriori algorithm. Furthermore, ARE provides RESTful
APIs to applications for retrieving the rules for discover-
ing and annotating IoT devices in the cyberspace.

We implement a prototype of ARE as a self-contained
piece of software based on open source libraries. We
manually collect two datasets as the ground truth to eval-
uate the performance of ARE rules. ARE is able to gen-
erate much more rules than the latest version of Nmap
in a much shorter time. Our results show that the ARE
rules can achieve a precision of 96%. Given the same
number of application packets, ARE can find more IoT
devices than Nmap tool. Note that ARE generates rules

without the human efforts or the training data, and it can
dynamically learn new rules when vendors distribute new
products online.

To demonstrate the effectiveness of ARE, we perform
three applications based on IoT device rules. (1) The
Internet-wide Device Measurement (IDM) application
discovers, infers and characterizes IoT devices in the en-
tire IPv4 address space (close to 4 billion addresses). The
number of IoT devices exposed is large (6.9 million), and
the distribution follows long-tail. (2) The Compromised
Device Detection (CDD) application deploys 7 honey-
pots to capture malicious behaviors across one month.
CDD uses ARE rules to determine whether the host is
an IoT device. We observe that thousands of IoT de-
vices manifest malicious behaviors, implying that those
devices are compromised. (3) The Vulnerable Device
Analysis (VDA) application analyzes the vulnerability
entries with device models. We observe that hundreds
of thousands of IoT devices are still vulnerable to mali-
cious attacks.

Furthermore, ARE enables the security professionals
to collect the device information by leveraging those
rules in a large-scale measurement study or security inci-
dent. To facilitate this, we release ARE as an open source
project for the community. ARE is available to public at
http://are1.tech/, providing public the APIs on the tuple
(type, vendor, product) and the annotated data set.

In summary, we make the following contributions.

• We propose the framework of ARE to automatically
generate rules for IoT device recognition without
human effort and training data.

• We implement a prototype of ARE and evaluate its
effectiveness. Our evaluation shows that ARE gen-
erates a much larger number of rules within one
week and achieves much more fine-grained IoT de-
vice discovery than existing tools.

• We apply ARE for three different IoT device dis-
covery scenarios. Our main findings include (1) a
large number of IoT devices are accessible on the
Internet, (2) thousands of overlooked IoT devices
are compromised, and (3) hundreds of thousands of
IoT devices have underlying security vulnerabilities
and are exposed to the public.

The remainder of this paper is organized as follows.
Section 2 provides the background of device discovery,
as well as our motivation. Section 3 describes how the
core of ARE, i.e., the rule miner, derives rules of IoT de-
vices. Section 4 details the design and implementation
of ARE. Section 5 presents the experimental evaluation
of ARE. Section 6 illustrates the three ARE-based appli-
cations. Section 7 surveys the related work, and finally,
Section 8 concludes.
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Table 2: A few example rules learned for IoT devices.
Illustrating Rules

{ “Panasonic”,
“KX-HGW500-1.51” } ⇒ {IPCam, Panasonic,KX-HGW500}

{
“TL-WR1043ND”,

“Wireless”,“Gigabit”,
“0̆0a9”,“Webserver”

} ⇒ { Router, TP-Link, WR1043N }

{ “Welcome”,“ZyXEL”,
“P-660HN-51”,“micro httpd”} ⇒ { Router, Zyxel, P-600HN }

{
“Juniper”,“Web”,

“Device”,“Manager”,
“SRX210HE”,“0̆0a9”

} ⇒ { Gateway, Juniper, SRX210 }

{
“Brother”,“HL-3170CDW”,

“seriesHL-3170CDW”,
“seriesPlease”,“debut/1.20”

} ⇒ { Printer, Brother, HL-3170 }

device annotation. Otherwise, we exclude the webpage
from the transaction set.

For every transaction, a device annotation can be clas-
sified into the following two categories:

• The tuple (device type, vendor, product) is com-
plete. In this case, we use two entity appearing se-
quence orders to eliminate the multiple duplicate la-
bels.

• The product entity cannot be recognized in the for-
mat (device type, vendor, null). Among multiple
duplicate labels, DER selects the device annotations
in the following order: the vendor entity first ap-
pears, and then the device-type entity follows.

3.4 Rule Generation

The rule miner uses the apriori algorithm to derive
the relationship between search queries extracted from
the response data (q1

i ,q
2
i , ...,q

k
i ) and device annotation

extracted from a webpage (t j,v j, p j) in the transaction
set. The general form of the rule is: {q1

i ,q
2
i , ...,q

k
i } ⇒

{t j,v j, p j}. When the response data holds the value q,
we infer {t,v, p} as its device annotation. ARE is able to
discover an IoT device by simply and efficiently match-
ing its response data with the rules in the library.

Parameters. There are two parameters for the apriori
algorithm: support and confidence. The argument sup-
port is used to indicate the frequency of the variable ap-
pearing, and the argument confidence is the frequency of
the rules under the condition in which the rule appears.
In the transaction set T = {t1, t2, ..., tn}, we can calculate
those two parameters of the rule A ⇒ B as follows:

sup(A) = |
n

∑
i

A ∈ ti|/|T |

con f (A ⇒ B) = sup(A
⋃

B)/sup(A)

The apriori algorithm first selects the frequent tuples
in the dataset and discards the item whose support value
is smaller than the support threshold. Then, the al-
gorithm derives the rules whose confidence values are
larger than the confidence threshold. The algorithm can
generate all rules with support ≥ sup(A) and confidence
≥ con f (A ⇒ B). Note that the use of the parameter
sup(A) slightly differs from the one in the conventional
apriori algorithm. In the transaction set, we use search
query to eliminate the irrelevant items for the rule A⇒B.
Thus, the transaction set includes the underlying map-
ping between part A and part B.

We conduct the experiment to validate the threshold
of the apriori algorithm. We randomly choose an IP
address chunk to generate the data set, which contains
2,499 transactions across 250 application response pack-
ets, across 5 device types (printer, access point, router,
modem, and camera), 48 vendors and 341 products. To
avoid the bias, we remove the tuples if they only appear
one time in our data set. We observe that the settings of
sup(A) = 0.1% and con f (A ⇒ B) = 50% work well in
practice.

For data mining, the parameter selection of the apri-
ori algorithm depends on the data set. When the device
annotation becomes larger and more diverse, there are
more infrequent rules in the transaction set. The param-
eter sup(A) should further decrease to identify those in-
frequent pairs (A,B), which may be not-so-obvious. For
the confidence of a rule con f (A ⇒ B), it is desirable
that rules always hold with few false positives. When
the confidence increases, we can achieve high precision
but missing some rules. The threshold of the parame-
ter con f (A ⇒ B) should further decrease if applications
would like to collect more device annotations.

Conflict Rules. When multiple rules have the same
tuple {q1,q2, ...,qi} but different device annotations
{t,v, p}, they conflict with one another. When two dif-
ferent vendors have similar descriptions for their prod-
ucts, rules would have conflicts with each other. In this
case, manual observation can distinguish those conflict
rules for the application response packets. Similar to the
Nmap tool, ARE does not remove those conflict rules.
When confidences of the rules are approximately close
to one another, we output each device annotation with
a confidence. For instance, given the rules, A ⇒ B and
A ⇒ C, when the application matches the condition A,
the output is 50% of the annotation B or C. Otherwise,
we use the majority voting to output the highest confi-
dence of the rules.

Example Rules. Table 2 shows a few example rules
automatically learned by the rule miner based on the
transaction set. The left part is the sequence of words ex-
tracted from the response data, acting as the search query.
The right part is the device information, including device
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behavior and sends individual browser instances to the
search engine. Every time it is accessed, the web crawler
module uses a different user-agents and sleeps for a ran-
dom time after multiple requests. If one access instance
fails, we will perform the retransmission operation at the
end of the search query queue. The search engine will
return a URL list for every search query. Based on these
lists, we can reduce the scale of web crawling. Each
item in the URL list returned by browser instances is a
complete HTML page. There is much redundant con-
tent in these webpages, such as advertisements, pictures,
audios, videos, and dynamical scripts. For each web-
page, the web crawler removes the irrelevant information
and only keeps the textual content, including title, URL,
and snippet. Fortunately, the indexing algorithms in to-
day’s search engines have already found the most rele-
vant websites for the search query. In our experiment,
the top 10 webpages work well in practice for locating
relevant information on IoT devices.

In the implementation, we write a custom Python
script to pipeline from the response data into webpage
crawling. The web crawler uses the enchant library [17]
to remove dictionary words and the NLP toolkit [7] to
calculate the TF-IDF values. The web crawler uses the
python urllib2 library to simulate and automatically visit
the search engines. The Beautiful Soup [4] library is used
to extract the content from the webpage.

4.3 Implementation of Rule Miner

The rule miner automatically learns rules of IoT devices
from the transaction set. We use Python scripts to im-
plement DER, which is the core of rule miner. The NLP
toolkit [7] is used to process the text content, including
word splitting, stemming and removing stop words. We
also use apriori algorithm [3] in Python Package to gen-
erate rules for IoT devices.

In practice, the rule miner has to handle the scenar-
ios where the response data does not include sufficient
device information to initiate the subsequent web crawl-
ing process for rule generation. For example, from the
FTP response packet “220 Printer FTP 4.8.7 ready at Jan
19 19:38:22,” we can only extract one useful keyword
“Printer” as a search query. With only one search query
being extracted, no local dependency can be exploited
to achieve accurate and fine-grained device annotation.
Thus, there is no need to initiate the web crawling pro-
cess and no rule is created. However, we can still use the
DER module to extract one label in the response data,
achieving a coarse-grained device annotation. There are
two categories for such one-entity annotations, including
(device type, null, null) and (null, vendor, null). Note that
none of the existing tools (Nmap and Ztag) can address

this problem caused by the lack of information in the re-
sponse data.

4.4 Applications on ARE

We explicate how applications work with ARE. As
shown in Figure 4, an application interacts with ARE
by calling APIs (Get() and Update()). If the rule library
meets its requirements, the application directly uses rules
for discovering IoT devices. Otherwise, the RDC mod-
ule would gather the application layer data in the network
based on the parameters of Update(). The rule miner
module would generate rules according to the recently
collected data. In the implementation of the rule library
and planner, ARE provides the REST APIs to applica-
tions, including GET and POST operations. RESTful
GET is used to retrieve the representation of rules from
ARE, and POST is used to update the rule library. The
rule library stores rules in the text files.

In the design of ARE, we aim to provide rules for ap-
plications for discovering IoT devices while minimizing
the requirements of manual effort and training data. To
demonstrate the effectiveness of ARE, we develop three
ARE-based applications.

Internet-wide Measurement for IoT Devices. Like
prior Internet-wide measurements [21,26,31,33,35], we
build the measurement application using the rules from
ARE to collect, analyze, and characterize the deployment
of these IoT devices across the real world.

Detecting Compromised IoT Devices. Like [21, 29],
we build several honeypots to capture malicious behav-
iors in the cyberspace. After capturing their malicious
traffic, we track their IP addresses and use the ARE rules
to identify whether it is an IoT device. If so, we extract its
device type, vendor, and product information, and then
we analyze its malicious behaviors.

Detecting Vulnerable IoT Devices. Like [23, 24],
we build a vulnerability analysis application through the
dataset from the National Vulnerability Database [12]. If
a CVE item occurs in IoT devices, we extract the rules
of those devices from ARE and use the rules to discover
vulnerable online devices with a high probability.

5 Evaluation

In this section, we first elaborate on the system setting
for ARE experiments. Then, we show the experimen-
tal results for ARE evaluation, which include that (1) the
number of rules generated by ARE is nearly 20 times
larger than those of the existing tools, (2) our rules can
achieve very high precision and coverage, and (3) the
time cost introduced by ARE is low.

USENIX Association 27th USENIX Security Symposium    335



Fig. 6: Time cost comparison for
generating the rules.

Fig. 7: Comparison with Nmap. Fig. 8: Dynamic rule learning for
ARE.

5.1 Setting

In the transaction collection, the RDC module only
searches public IPv4 addresses for collecting response
data of four application protocols (HTTP, FTP, RTSP,
and TELNET). Most IoT devices usually have a built-in
Web, FTP, Real-time Media, or TELNET user interfaces.
ARE can be expanded supporting more application pro-
tocols without much modification. So far, ARE can-
not learn device rules if a device only appears behind the
home/private networks. However, ARE can be deployed
into local networks behind a firewall for internal IoT de-
vice discovery without any modification.

We use two datasets for evaluating ARE performance.
In the first dataset, we randomly choose 350 IoT de-
vices from the Internet. The selection process uses
the Mersenne Twister algorithm in Python’s random
package. We manually label those IoT devices, and
the ground truth labels include 4 different device types
(NVR, NVS, router, and ipcamera) 64 different vendors,
and 314 different products. The labeling process is done
by analyzing their application layer responses, searching
some keywords through the search engine, and finally
receiving the labels. Note that this process requires rich
experience on IoT recognition. The second dataset con-
sists of 6.9 million IoT devices that our application col-
lects on the Internet. Because the number of devices is
vast, we apply the same random algorithm to sample 50
IoT devices iteratively for 20 times. In total, the second
dataset contains 1,000 devices across 10 device types and
77 vendors.

5.2 Performance
Number of Rules. We first compare the labeling perfor-
mance between ARE and Nmap. Nmap [8] is an open-
source tool for network discovery and security scanning.
The number of rules in the Nmap library has been in-

Table 3: Precision and coverage of rules on the dataset.
Precision Coverage

The first dataset 95.7% 94.9%
The second dataset 97.5% —

Table 4: Rules generated by ARE.
Category Num Percentage %

(device type, vendor, product) 107,627 92.8
(device type, vendor, null) 8,352 7.2

creasing for two decades, from the initial version V3.40
to the latest version V7.60. The latest version of Nmap
has 6,504 rules [9] for four application protocols (HTTP,
FTP, RTSP, and TELNET). Figure 6 compares the time
cost in rule generation between ARE and Nmap, where
the Y-axis is the number of rules and X-axis is the time
cost in the logarithmic scale (log10). ARE is able to gen-
erate 115,979 rules in one week. While the number of
rules generated by ARE is almost 20 times larger than
that of Nmap, the ARE’s time cost is negligible com-
pared to Nmap’s, The reason is that the rule generation of
Nmap requires the professional background/experience
to write a rule manually, which is a long-term process.
By contrast, ARE automates the rule generation process.

Precision of Rules. We further evaluate the perfor-
mance of ARE rules by using precision. The precision is
equal to |T P|/|FP+T P|, where T P is the number of true
positives and FP is the number of false positives. Table 3
lists the precision of ARE rules. In the first dataset, the
precision of rules is 95.7%. In the second dataset, the
ARE rules can achieve a 97.5% precision.

Coverage of Rules. Table 3 also lists the coverage of
ARE rules. The coverage is |T P|/|FP+FN|, where FN
is the number of false negatives. For the first dataset, the
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Table 5: Average time cost of one ARE rule generation.
Stage Latency (second)

Application layer data 0.5022
Response packet partition 0.0017

Web crawler 0.4236
Apriori algorithm 0.1166

coverage of rules is 94.9%. For the second dataset, the
coverage is unknown, because we cannot determine the
number of false negatives in device annotation. Further,
Table 4 lists the detailed results of the rules generated by
ARE. There are 92.8% of rules that can completely label
IoT devices in the form of (device type, vendor, product).
Only 7.2% of rules just label device type and vendor. As
a comparison, Nmap only has about 30% of rules with a
fine-grained annotation.

We use the hash algorithm to calculate MD5 check-
sums of the application-layer packets from Censys [25],
and then remove the duplicated packets. Based on these
response packets, we use both ARE and Nmap rules for
device identification. Figure 7 shows the performance
of device identification along with the number of the
application-layer packets. Given the same number of
response packets, ARE achieves a larger coverage than
Nmap. When the number of application-layer packets
increases, ARE can find even more devices than Nmap.
Note that the distribution of IoT devices on the Internet
is a typical long tail rather than uniform distribution on
the Internet. This implies that some rules can find much
more devices than other rules. For popular IoT prod-
ucts, ARE rules can classify them with robust labels. For
little-known IoT products, ARE rules can still classify
them because we generate rules based on the embedded
information.

Dynamic Rule Learning. We also conduct experi-
ments to evaluate the learning capacity of ARE. Figure 8
shows that the number of rules is increasing as ARE
learns with the increase of network space. The rule miner
can learn new rules when ARE is deployed into different
networks (e.g., residential/enterprise networks). Thus,
ARE has the capability for dynamic rule learning.

Overhead of ARE. Finally, we conduct experiments
to measure the time cost of ARE. Our ARE prototype
is running on a commercial desktop computer (Windows
10, 4vCPU, 16GB of memory, 64-bit OS), indicating that
CPU and memory costs of ARE can be easily met. The
ARE process is running in a single thread. Table 5 lists
the average time cost of individual components of ARE
for one rule generation. The acquisition of application-
layer data takes 0.5022 seconds, and the web crawling
takes 0.4236 seconds. Those components require the
message transmissions, and the time cost is dependent

Table 6: Automatic Internet-wide identification.
Device Type Number (%) Vendor Number (%)

Router 1,249,765 (18.3) Mikrotik 641,982 (9.3)
NVR 785,810 (11.3) Zte 352,498 (5.1)
DVR 644,813 (9.3) Tp-link 325,751 (4.7)

Modem 466,286 (6.7) Sonicwall 279,146 (4.0)
Camera 379,755 (5.5) D-link 215,122 (3.1)
Switch 180,121 (2.6) Dahua 153,627 (2.2)

Gateway 127,532 (1.8) Hp 106,327 (1.5)
Diskstation 35,976 (0.5) Asus 101,061 (1.5)

upon the network conditions. As comparison, the packet
partition and the apriori algorithm induce little time cost.
Overall, the time cost of ARE for automatic rule gener-
ation is low in practice, and we could further reduce the
time cost by running ARE in multiple threads.

6 ARE-based Applications

In this section, we present the experimental results ob-
tained from three ARE-based applications, which further
demonstrate the effectiveness of ARE.

6.1 Internet-wide Device Measurement
IoT devices are usually deployed across many different
places, such as homes, infrastructure facilities, and trans-
portation systems. Traditionally IoT devices are behind
a broadband router with NAT/PAT/Firewall, but many of
them are now directly exposed on the Internet. Thus, it
is necessary to conduct an Internet-wide measurement of
IoT devices to have a deep understanding of their deploy-
ment and usage on the Internet. Previous Internet-wide
measurements have focused on network topology [22],
websites [27], and end hosts [31, 33]), but few has been
done on IoT devices. ARE greatly facilitates such an
Internet-wide measurement to infer, characterize, and an-
alyze online IoT devices.

In the IDM application, we use three application-layer
datasets from Censys [25], including HTTP, FTP, and
Telnet. Additionally, we deploy the collection module
on the Amazon EC2 [20] with 2 vCPU, 8GB of memory,
and 450Mbps of bandwidth, which collects the RTSP
application-layer response data. Overall, we found 6.9
million IoT devices, including 3.9 million from HTTP,
1.5 million from FTP, 1 million from Telnet, and 0.5 mil-
lion from RTSP. Using ARE rules, the IDM application
can give an annotation to every IoT device. Furthermore,
we use MaxMind’s GEOIP [34] database to find the loca-
tion of an IoT device, which has a relationship between
IP address and the city-level location label.
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Table 7: Geographic distribution.
District Number Percentage (%)

United States 1,403,786 20.26
China 466,007 6.73
Brazil 442,781 6.39
India 297,446 4.29

Mexico 289,976 4.18
Taiwan 273,024 3.94

Republic of Korea 255,924 3.69
Russia 239,236 3.45
Egypt 204,237 2.95

Vietnam 199,415 2.88

Discovery. Based on the analysis of millions of IoT
devices, we have three discoveries. (1) Although a
large portion of IoT devices may be behind firewalls
in home/enterprise networks, the number of visible and
reachable IoT devices on the Internet is still very large.
Even if only 0.01% of IoT devices are accessible to the
external networks, considering the sheer size of active
IoT devices (billions), the absolute number of exposed
devices will reach the level of millions. (2) The long-tail
distribution is common for IoT devices, including device
types, vendors, and locations. Table 6 lists the distribu-
tion of the top 10 device types and vendors. We observe
that nearly 31% of IoT devices are from the top 10 de-
vice vendors. The location distribution of IoT devices is
a typical long-tail, as shown in Table 7. The top 10 coun-
tries (127 countries in total) occupy nearly half of the
IoT devices. (3) Many devices should not be visible or
reachable from the external networks. It is common for
routers, gateways, switches, and modems to be visible
and reachable on the Internet. However, the monitoring
devices, such as camera and DVR, should not be directly
exposed to the external networks. Unfortunately, there
are more than two million of those types of IoT devices
accessible on the Internet, as shown in Table 6.

6.2 Compromised Device Detection
Our detection of compromised IoT devices is based on
the capture of malicious IoT traffic behaviors. A recent
work [21] leverages honeypot traffic to detect the Miria
botnet infections based on unique packet content signa-
tures. After the collection of suspicious IPs, the Nmap
identification rules [9] are used to obtain the device type.
Similarly, we develop the CDD application to discover
compromised devices.

In particular, we deploy seven honeypots as vantage
points for monitoring traffic on the Internet, across four
countries (Brazil, China, India, and Ukraine) and six
cities, including Fuzhou, Kharkiv, Kunming (2 honey-

Figure 9: Compromised IoT device distribution.

pots), Maharashtra, Sao Paulo, and Shanghai. The mon-
itoring duration is nearly two months. We use the open-
source Cowrie SSH/Telnet Honeypot [6] in the CDD. Ev-
ery honeypot is configured with weak SSH/Telnet cre-
dentials and instructed to forward traffic functions to the
CDD application. If a honeypot captures one IP address
that attempts to connect to our honeypot with SSH or Tel-
net, we will leave this IP into the Kafka queue [2]. The
CDD runs on Amazon EC2, and sends a request to each
IP address in the Kafka queue for receiving a response
data. Then ARE rules are used to identify IoT devices
from the response data. The rationale behind such a de-
sign lies in the fact that a normal IoT device should never
access honeypots. If an IoT device accesses our honey-
pot, there are only two reasons: it is misconfigured or
compromised.

Discovery. Figure 9 shows the number of compro-
mised devices captured by the CDD application. We can
capture about 50 different compromised IoT devices ev-
ery day. In total, we detect nearly 2,000 compromised
IoT devices among 12,928 IP addresses attempting to
connect to our honeypots. Many compromised IoT de-
vices attempt to brute force the SSH/TELNET creden-
tials of our honeypots. After mounting a successful
brute-force attack, the devices will execute some com-
mands on one of our honeypots, indicating that these IoT
devices are compromised and they try to compromise
more devices. Table 8 lists the distribution of the top 5
device types and vendors for compromised devices. We
can see that among different device types, DVR has by
far the largest number of compromised devices, followed
by network attached storage device (NAS) and router. In
addition, we also observe that a few smart TV boxes are
compromised and exhibit malicious behaviors.

6.3 Vulnerable Device Analysis
The disclosure of underlying vulnerable devices is also
valuable to the security community. From the defensive
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Table 8: Device type and vendor for compromised de-
vices.

Device Type Num (%) Vendor Num (%)

DVR 1168 67.7 Hikvision 231 13.4
NAS 189 10.9 Dahua 216 12.5

Router 173 10.0 Qnap 189 10.9
Webcam 92 5.3 Mikrotik 81 4.7

Media device 83 4.8 TVT 79 4.5

perspective, it can help us find out which online devices
are still vulnerable and perform security patches for criti-
cal infrastructure immediately. Normally one vulnerabil-
ity of IoT devices is associated with a particular model of
IoT devices. For instance, a buffer overflow vulnerabil-
ity CVE-2015-4409 has occurred in the Hikvision DS-
76xxNI-E1/2 series and Hikvision DS-77xxxNI-E4 se-
ries devices.

We develop the VDA application to reveal underlying
vulnerable devices. VDA first crawls the vulnerability
information from the NVD website [12] [5]. For every
vulnerability item, VDA obtains their vendor names and
product names. Then VDA uses the regex to match rules
with the vulnerability information. We extract the cat-
egory information of vulnerabilities and group similar
weakness descriptions. One vulnerability usually occurs
on multiple platforms and device models. Table 9 lists
the Common Weakness Enumeration (CWE) of online
IoT devices, in which the left column is the CWE ID,
the middle column is the weakness description, and the
right column is the number of IoT devices with this type
of vulnerability. The VDA application aims to reveal un-
derlying vulnerable devices accessible on the Internet.

Discovery. From Table 9, we can see that there is still
a large number of underlying vulnerable devices in the
cyberspace. The majority of the top 10 vulnerabilities
in the CWE list are related to improper implementation
(Path Traversal, Credentials Management, and Improper
Access Control), which could be easily avoided if a de-
veloper pays more attention to security. On the CVE
website, the security patches have been distributed for
those IoT devices. However, updating security patches
of IoT devices is a non-trivial task for many users. They
must download the firmware from the official support
website or via administrative tools, and then install the
firmware into the ROM to reprogram integrated chip cir-
cuits of the devices.

7 Related Work

IoT device recognition has gained much interest re-
cently, mostly due to the increasing number of IoT de-

Table 9: Top 10 CWE by the number of CVEs.
CWE

ID Weakness Summary Number of
IoT devices

200 Information Disclosure 573,656
22 Path Traversal 363,894

352 CSRF 348,031
264 Permission, Privileges, Access Control 345,175
255 Credentials Management 342,215
79 Cross-site Scripting 331,649

119 Buffer Overflow 149,984
399 Resource Management Errors 93,292
284 Improper Access Control 69,229
77 Command Injection 64727

vices that are connected to the Internet. The research
community has also proposed many recognition tech-
niques, particularly in two methodologies: fingerprinting
and banner-grabbing.

Fingerprinting. We have witnessed a 20-year de-
velopment for fingerprinting technologies, which map
the input to a narrower output for object identifica-
tion [8, 10, 11, 15, 18, 19, 32, 35, 36, 39]. Dependent upon
the method of data collection, fingerprinting can be di-
vided into active and passive. Active fingerprinting is
to send probing packets to remote hosts for extracting
features and inferring the classification model. One clas-
sic usage is OS fingerprinting, which identifies the OS
of a remote host based on the different implementations
of a TCP/IP network stack. Nmap [8] is the most pop-
ular tool for OS fingerprinting, which sends 16 crafted
packets for extracting features. Xprobe [15] uses ICMP
packets to extract OS features. The retransmission time
between vantage points and hosts can be exploited as
another feature for OS fingerprinting. Snacktime [11],
Hershel [36], and Faulds [35] use this feature to finger-
print OSes on the large scale. Passive fingerprinting is to
collect the traffic/behavior of an object without sending
probing packets. P0f [10] is the passive fingerprinting
tool that extracts ongoing TCP packets to infer different
OS versions. Kohno et al. [32] proposed monitoring TCP
traffic for calculating the clock skews as features.

In general, a fingerprinting tool consists of three major
components: feature selection, training data collection,
and learning algorithms. Prior works are focused on how
to select distinctive features for fingerprinting OS ver-
sions. However, due to the lack of training data, we can-
not apply fingerprinting techniques for identifying IoT
devices. Furthermore, the number of different IoT de-
vice models is vast, and it is impossible to manually col-
lect the training data. Thus, we propose ARE that is able
to learn the rules for automatic IoT device identification
without any training data or human effort.
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Banner-grabbing. The banner-grabbing technique is
to profile the text information of applications and soft-
ware services. Nowadays various tools have been used
to gather web applications for administrative and security
auditing purposes. WhatWeb [14] is a website auditing
tool that uses 1,000 plugins (similar to regex) to recog-
nize the platform version of a website. Wapplyzer [13]
is an open-source tool for identifying web applications,
which extracts response headers of websites and uses
regex patterns for matching. Nmap [8] also provides a
service library to identify application and web services
for end users. For annotating IoT devices, people cur-
rently tend to use banner-grabbing in practice. In the
analysis of the Mirai botnet [21], the regex in banner-
grabbing is used to annotate the device type, vendors,
and products. Xuan et.al [30] proposed to utilized the
banner of industrial control protocols to find a critical in-
frastructure equipment. Shodan [37] and Censys [25] use
a set of rules in the banner-grabbing technique to identify
online devices.

To use those banner-grabbing tools, developers usu-
ally need the necessary background knowledge to write
the regex/extensions for grabbing application informa-
tion. This has to be done in a manual fashion, which
incurs high time cost, impeding a large-scale annotation.
By contrast, ARE overcomes these obstacles by automat-
ically generating rules.

8 Conclusions

As the increasing number of IoT devices are connected
to the Internet, discovering and annotating those devices
is essential for administrative and security purposes. In
this paper, we propose an Acquisitional Rule-based En-
gine (ARE) for discovering and annotating IoT devices.
ARE automates the rule generation process without hu-
man effort or training data. We implement a prototype
of ARE and conduct experiments to evaluate its perfor-
mance. Our results show that ARE can achieve a preci-
sion of 97%. Furthermore, we apply ARE to three ap-
plication cases: (1) inferring and characterizing millions
of IoT devices in the whole IPv4 space, (2) discovering
thousands of compromised IoT devices with malicious
behaviors, and (3) revealing hundreds of thousands of
IoT devices that are still vulnerable to malicious attacks.
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