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ABSTRACT
Developments in connected and autonomous vehicle technologies provide drivers with
many convenience and safety benefits. Unfortunately, as connectivity and complexity
within vehicles increase, more entry points or interfaces that may directly or indirectly
access in-vehicle networks (IVNs) have been introduced, causing a massive rise in
security risks. An intrusion detection system (IDS) is a practical method for controlling
malicious attacks while guaranteeing real-time communication. Regarding the ever-
evolving security attacks on IVNs, researchers have paid more attention to employing
deep learning-based techniques to deal with privacy concerns and security threats in
the IDS domain. Therefore, this article comprehensively reviews all existing deep IDS
approaches on in-vehicle networks and conducts fine-grained classification based on
applied deep network architecture. It investigates how deep-learning techniques are
utilized to implement different IDS models for better performance and describe their
possible contributions and limitations. Further compares and discusses the studied
schemes concerning different facets, including input data strategy, benchmark datasets,
classification technique, and evaluation criteria. Furthermore, the usage preferences of
deep learning in IDS, the influence of the dataset, and the selection of feature segments
are discussed to illuminate the main potential properties for designing. Finally, possible
research directions for follow-up studies are provided.

Subjects Computer Networks and Communications, Real-Time and Embedded Systems,
Security and Privacy, Neural Networks
Keywords Intrusion detection system, In-vehicle network, Deep learning, Cybersecurity,
Connected vehicle

INTRODUCTION
Technological developments in the automotive sector are promoting the emergence of
innovative service paradigms like the lane-keeping assist system (LKAS) or cruise control
system (CCS). These convenience-adding functions have become indispensable parts
of improving driving and a better customer experience, pushing original equipment
manufacturers (OEMs) to create technologically advanced innovations supported by
connectivity. By 2023, global connected vehicles will jump 134% from 330 million in 2018
to 775 million (Upstream, 2022). Unfortunately, the other side of increasing connectivity
and complexity is that automotive security risks have become more prominent. Originally,
in-vehicle network communication seldom considered cybersecurity risks while more
concerned with bandwidth, real-time, and low-cost requirements. Nowadays, an increasing
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number of security researchers demonstrated various vulnerabilities among the different
in-vehicle network protocols. As studied by Miller & Valasek (2015); Petit & Shladover
(2015); Sun et al. (2020), due to the controller area network (CAN) bus protocol itself
lacking proper security support such as authentication and encryption, it is vulnerable to
attacks such as denial of service (DoS) and bus injection. While Talic (2017) investigates
the cybersecurity of automotive Ethernet and its accompanying protocols, pointing out
that the attacks against it are real. The expanded attack surface enables hackers to find new
attack vectors and exploit every vulnerability to compromise vehicles and networks.

Given the long life cycle of vehicles and the existing various attack vectors against IVN,
designing and conducting an utterly secure IVN system in the development stage is difficult
(Wu et al., 2020). IVN IDSs provide persistent protection by monitoring and analyzing
network traffic. Compared with other countermeasures such as encryption (Farag, 2017),
authentication (Nilsson, Larson & Jonsson, 2008) and hardware-enforced isolation (Hu
et al., 2020), IVN IDSs have significant advantages: (1) they do not generate extra IVN
traffic, (2) nor modify communication protocol or occupy the payload, and (3) they are
incapable of affecting real-time performance. Additionally, UNECEWP.29 establishes clear
performance requirements for OEMs and suppliers to deal with risks, includingmonitoring
and detecting cybersecurity events. Therefore, it is essential to employ IDS to monitor and
analyze network traffic during the entire life cycle, revealing potentially suspicious activities
and further providing evidence to prevent adversaries from threatening stakeholders.

Many researchers focus on developing and deploying IDS using various machine
learning techniques, intending to automatically identify intrusion events in the IVN
context in recent years. With the increase of more communication nodes and new service
paradigms, massive and multi-dimensional traffic data are generated every moment,
and attack vectors are growing diversified and sophisticated, making the methods based
on traditional machine learning such as hidden Markov models (Narayanan, Mittal &
Joshi, 2016), support vector machine (Avatefipour et al., 2019) and decision trees (Tian et
al., 2018) ineffectively deal with the evolving security risks. As part of machine learning
techniques, especially variants of artificial neural networks (ANNs), deep learning has been
widely incorporated for designing IDSs in different environments. This is because deep
learning is capable of performing complex non-linear data transformations to distinguish
normal and attack traffic on the network. Deep learning networks are more effective
in identifying sophisticated attacks and zero-day attacks (Khan et al., 2021) by finding
correlations among a mass of training samples without human intervention. Besides,
deep learning networks benefit from incremental learning, which enables them to extract
new features from training datasets. Deep learning-based IDS schemes proposed by
researchers with various network architectures perform feature learning and classification
tasks differently. Therefore, a timely systematic literature review of current state-of-the-art
studies on IVN IDS using DL methods is necessary.

This article presents a comprehensive survey, taxonomy, and analysis that covers the
DL-based papers on research endeavors to detect intrusions in IVN. It begins with a
discussion of possible attacks against IVN and briefly outlines publicly available datasets
to facilitate understanding their attack implementation strategies as well as the capabilities
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of IDS schemes trained with them. It then provides a fine-grained taxonomy of the
DL-based IDS schemes that consider the deep network architecture used during the
feature selection/extraction or classification stage. Further details the different intrusion
detection steps implemented by deep learning approaches and their possible deficiencies
and limitations in corresponding subsections. Besides, with the discussion and analysis
performed, the survey illustrates the topics that can be further researched.

The main contributions of this survey are as follows:
–Illustrating possible attacks against IVNs and describing attack implementation

strategies for commonly used public datasets.
–Proposing a fine-grained taxonomy of studied DL-based intrusion detection schemes

to help researchers compare the different approaches in detail. Moreover, the reviewed
IDS schemes cover both CAN bus and Automotive Ethernet, and the latter has played an
increasingly prominent role in IVNs.

–Comparing some remarkable IDS schemes in the tabular form concerning different
facets in input data strategy, benchmark datasets, classification technique, and evaluation
criteria.

–Discussing possible future research directions that can be further investigated to
improve the performance of DL-based IDS schemes.

The remainder of this survey is organized as follows. ‘Previous Surveys’ reviews and
compares the previous surveys related to in-vehicle network intrusion detection systems.
‘Research Methodology’ introduces the research methods for performing this survey, and
‘Background Knowledge’ briefly describes the possible attacks and datasets against IVN.
‘Deep Learning-Based IDS’ proposes a fine-grained taxonomy of the investigated IDS
schemes and a detailed description of the detection implementation process, followed by
a discussion of the obtained findings in ‘Discussion’. Section ‘Future Research Directions’
presents the challenges and future trends, while ‘Conclusion’ concludes this survey.

PREVIOUS SURVEYS
In-vehicle network cybersecurity and deep learning technology are mainly researched
independently. Only recently, IVN security researchers have turned to deep learning to
detect intrusions. There are several related surveys that provide some description of IDS
for vehicles. Surveys (Limbasiya et al., 2022) mainly focus on analyzing the attack surfaces
and corresponding countermeasures.Dixit et al. (2022) survey anomaly detection methods
in autonomous electric vehicles, but they are not paying attention to in-vehicle networks
such as CAN and vehicle Ethernet. Similarly, in Karopoulos et al. (2022), the authors
concentrate on analyzing existing classifications of in-vehicle IDS surveys to propose
a generic taxonomy. The other surveys are not completely dedicated to deep learning
methods and only assign a subsection for a brief description. A detailed comparison of
this review with the previous surveys is presented in Table 1, involving (1) the number of
DL-based schemes, (2) the focused application areas, and (3) the survey executionmethod.

This survey differs from other review articles in the following aspects: (i) we followed
a systematic literature review process to obtain more comprehensive papers on the IDS
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Table 1 In-vehicle IDS survey comparision.

Survey DL-based
schemes*

Focused application areas Systematic
study

In-vehicle
IDS focused

Protocol

Limbasiya et al. (2022) Less –
p

Karopoulos et al. (2022) Medium
p

CAN & Ethernet –
Dixit et al. (2022) Less – –

p

Wu et al. (2020) Less
p

CAN –
Al-Jarrah et al. (2019) Less

p
CAN –

Young et al. (2019) Less
p

CAN –
Lokman, Othman & Abu-Bakar (2019) Less

p
CAN –

This survey More
p

CAN & Ethernet
p

Notes.
*‘‘Less’’, ‘‘Medium’’ and ‘‘More’’ respectively refer to the number of surveyed articles: 1⇠10, 11⇠20, >21.

Figure 1 Research steps.
Full-size DOI: 10.7717/peerjcs.1648/fig-1

designed by deep learning techniques. (ii) Our study covers the most cutting-edge deep
learning-based IDS schemes published between 2016 and 2023, which provides more
updated information and recent trendswhere researchers can find potential areas to explore.
(iii) We present a fine-grained taxonomy following the neural network architectures to
classify the state-of-the-art DL-based in-vehicle IDS schemes. (iv) Our study provides a
comparative and critical analysis of the investigated solutions, considering their methods,
datasets, and evaluation metrics.

RESEARCH METHODOLOGY
This study executes a systematic literature review (SLR) of DL-based IDS schemes for
securing in-vehicle networks. The procession mainly follows the method demonstrated in
Xiao & Watson (2019); Kitchenham & Brereton (2013), which is divided into three stages:
planning, conducting, and reporting. The detailed steps are summarized in Fig. 1. ‘Planning’
introduces the review principles of the article search and selection strategies, and ‘Study
search and selection’ describes the implementation process. Finally, subsequent chapters
reveal the findings from the literature review.
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Table 2 Inclusion and exclusion criteria.

Criterion Description

Inclusion 1: Articles are peer-reviewed. We want only to analyze studies that have verified the
quality and integrity beforehand.

Inclusion 2: Works that present methods to detect the
anomalies and attacks for in-vehicle networks.

We aim to investigate state-of-the-art solutions for
intrusion detection in in-vehicle networks.

Inclusion 3: Works are evaluated on datasets. We want to consider works verified by a comprehensive set
of experiments.

Inclusion 4: Research published in English. Considering the readability of papers, we only include
English papers.

Inclusion 5: Papers published between 2016 and 2023. We want to obtain the current research state in this area.
Exclusion 1: Duplicate works will be excluded. Articles searched from different databases or snowballing

processes generate duplicates.

Planning
This section clarifies the review principles, a preset plan specifying the methods used
in executing the review. It is beneficial to unify the work behavior of different research
participants and repeat this survey for cross-validation.

Research scope and questions
This survey is dedicated to identifying, classifying, and comparing current DL-based
IDS schemes for securing In-vehicle networks. Based on this purpose and the analysis of
uncovered content in other reviews, the following Research Questions (RQ) were defined.

RQ1 Which DL techniques(methods) are adopted by each IDS scheme?
RQ2How do different schemes employ DL techniques in different stages of the intrusion

detection procedure to achieve better performance?
RQ3 Which datasets are used for IDS training, validating, and testing purposes?
RQ4 What evaluation criteria are applied to measure the performance of the system?
RQ5 What are the merits and demerits of each IDS scheme for recognizing anomalous

behavior in considered domains?

Inclusion and exclusion criteria
The articles retrieved from databases were further screened to decide whether they should
be included for data extraction and analysis. We follow a two-stage strategy: articles were
first submitted to a coarsely screened through the article abstract, followed by a full-text
review for detailed quality assessment. The inclusion and exclusion criteria used in this
survey are listed in Table 2.

Study search and selection
Firstly, search engines and keywords are determined based on the research question to
find the related articles. The articles were searched in the ScienceDirect, IEEE Explore,
ACM Digital Library, Springer, Wiley, Hindawi, and MDPI databases due to their ability
to cover comprehensive conferences and journals. Then, we searched using the initial
keywords intrusion detection for in-vehicle network and adjusted the filters. The initial
search results include IDS using different approaches like signature-based, entropy-based,
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Figure 2 Number of works per year. * Mains only cover the first half of 2023.
Full-size DOI: 10.7717/peerjcs.1648/fig-2

parameter monitoring-based, information theory-based, machine learning-based, etc.
We then redefined our keywords as intrusion detection, anomaly detection, and in-vehicle
network with the combination of deep learning to obtain more relevant articles. The
obtained 507 articles are stored as an initial list. Subsequently, we performed pre-defined
inclusion and exclusion criteria, and 51 studies were included. Besides, we performed the
snowballing process, including the references of selected articles and the papers that cited
selected articles, until no new articles were found. Finally, 62 articles were included in the
final list for further analysis.

Figure 2 illustrates the publication year of the IDS schemes investigated in this survey.
It can be noted that this survey mainly focuses on the novel IDS methods published
since 2016. Since the relatively recent paradigm of in-vehicle network intrusion detection,
research works started to rise in this context only from 2019 onwards. It is worth noting
that the number of articles is increasing yearly, indicating that this area is still a research
focus of in-vehicle network cybersecurity.

BACKGROUND KNOWLEDGE
This section introduces the possible attacks on in-vehicle networks and provides a detailed
analysis of the datasets that are used for training, validating, and testing IDS schemes.

Introduction of IVN
Modern vehicles consist of numerous electronic control units (ECUs) connected over
IVNs, the backbone of vehicles for data transmission among different nodes. There are
several communication protocols, i.e., Local Interconnect Network (LIN), Controller Area
Network (CAN), FlexRay, Media-Oriented System Transport (MOST), and automotive
Ethernet. Among these protocols, CAN typically is in charge of critical real-time data
exchanges, while LIN, FlexRay, and MOST mainly play an auxiliary role to the former.
Automotive Ethernet, due to its much higher bandwidth and lower cost, is becoming the
new major player in this field. Figure 3 shows a typical automotive network topology,
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Figure 3 Typical network topology of a modern vehicle.
Full-size DOI: 10.7717/peerjcs.1648/fig-3

which connects with different types of ECUs, on-board diagnostic port (OBD-II), and
Telematics and Infotainment System (TIS). Among investigated IDS schemes, the great
majority are intended for CAN and several for Ethernet. Therefore, only CAN and Ethernet
are explained in detail in this section.

Currently, the CAN bus has the most widely used from any other in-vehicle
communication technology. CAN transmit information by broadcasting its messages,
which means that all nodes connected to the CAN bus can actively transmit information
to other nodes at any time. Intending to avoid message collisions within communication,
it used the arbitration field (CAN ID) of each frame to indicate its priority. And the
High-priority packets can always win the bus. The CAN message carries a sequence of
payload up to 8 bytes, whereas 64 bytes in CAN Flexible Data (CAN-FD). Typically it
transmits periodic varies from 10 ms to 1,000 ms. However, it is vulnerable to malicious
attacks due to its broadcastability and lack of native cybersecurity support.

As the amount of data interaction within vehicles increases, specialized automotive
Ethernet protocols and services are being developed. Application areas are roughly divided
into (1) DoIP (Diagnostic communication over Internet Protocol) based on 100Base-Tx for
diagnostic and OTA (Over-the-air) update, (2) AVB (Ethernet Audio/Video Bridging) and
SOME/IP (Scalable Service-OrientedMiddleware over IP) based on BroadR-Reach, applied
in Advanced Driver Assistance Systems (ADAS) and In-Vehicle Infotainment system (IVI),
(3) Time Sensitive Network (TSN) based on 1000 Base-T1 for communication backbone.
A protocol data unit (PDU) typically encapsulates a header as it passes through the
different ISO OSI layers. Following the protocol header is the payload field, which can
be from 46 bytes to 1,500 bytes of data. As Ethernet has been the objective standard for
interconnecting computers, the enormous experience and tool support base from hacking
computer networks might be used to attack vehicles.

Possible attacks in IVN
In-vehicle networks are vulnerable to several cyberattacks with different severity levels
(Jo & Choi, 2022; Kim et al., 2021). Malicious adversaries can easily attack IVNs due to
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the increasingly rich interfaces, such as physical interface (OBD-II (Koscher et al, 2010),
USB ports (Jo et al., 2017; Mazloom, Rezaeirad & Hunter, 2016)) and remote interface
(WiFi (Nie, Liu & Du, 2017), Bluetooth (Checkoway et al., 2011), and cellular Miller &
Valasek, 2015)). The attacks investigated in this paper are based on the assumption that
a compromised node exists in the network. The attacker has complete control of the
compromised node, with the capacity to transmit forged messages and access the node
memory (Cho & Shin, 2016). Based on the study of present works, we analyze the most
common cyberattacks against IVNs and classify them into the following types, which are
helpful for describing attack complexity and providing insights into the IDSs scheme that
would be able to detect them.

Injection attacks
The injection attack sends packets with malicious data to the network. While the attacker
injects malicious messages, the original sender still sends normal messages. From the
perspective of the receiver node, the number of received messages is increased. Most of the
attacks studied in IVN IDS schemes fall into this category, which can be subdivided into
the following:

DoS attack: A DoS attack aims to exhaust the target ECU resources or deplete network
bandwidth by sending massive legitimate requests. In the CAN bus, for instance, the
adversary utilizes the priority arbitrationmechanism to send a large number of high-priority
messages (CAN ID:0x000), preventing other ECUs from transmitting their messages
(Studnia et al., 2013; Palanca et al., 2017). The probability and catastrophic of a DoS attack
are considered very high owing to adversaries with limited prior knowledge can implement
this.

Replay attack:The purpose of a replay attack is to record previously propagatedmessages
in the network by eavesdropping and re-transmit them later. For instance, The CAN bus is
vulnerable to replay attacks due to a lack of freshness mechanisms. An attacker could access
the engine speed signal and performs the replay attack, causing other ECU uses outdated
information and impacting vehicle functionalities (Hoppe & Dittman, 2007).

Spoofing attack: The attackers inject fake messages into the network with the purpose
of overlaying signals sent by the original ECU and deceiving the receiver (Larson, Nilsson
& Jonsson, 2008). For example, the attackers only modify the corresponding bits of the
CAN message representing the RPM (revolution per minute) gauge (Martinelli et al.,
2017). While modifying a signal with a specific function requires the attacker to have prior
knowledge of the communication matrix or execute reverse engineering to the traffics.
Usually, this type of modification attack injects a small number of messages, making it
challenging to identify.

Fuzzing attack: A fuzzing attack is used to investigate the impacts of different packets
on the ECUs by transmitting messages with random protocol headers and payload into
the network at a high frequency (Martinelli et al., 2017; Fowler et al., 2019). Unlike DoS
attacks, inject packets may conform to normal traffic characteristics, causing the receiver
node to use the information in the malicious packets with unexpected results.
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Table 3 Attacks on in-vehicle networks.

Features Results Attack
types

DoS Lots of legitimate requests appear in a short time. Disturb the expected functionality of the system, and cause
other nodes to stop their transmission.

T.T.

Replay The re-transmit packets payload conforms to the pre-
defined signal range.

The receiving ECU uses outdated signals resulting in vehicle
misoperation.

T.T.

Spoofing It just injects a small number of messages with malicious
signals.

The spoofing attack deceives the receiver ECU, causing it to
be distracted.

T.T.

Fuzzing The protocol headers and payload values are random. Spoofed random packets are rapidly injected into the
network, causing unexpected operations.

T.T.

Suspension The number of packets may decrease because the attacker
suspends some or all messages.

It will affect normal operations and functionalities of the
target ECU, and other receivers that rely on the constantly
updated data of the target ECU.

T.T.

Masquerade Masquerade attacks do not change the amount of traffic in a
period; however, the payload value is out of context.

The attacker will alter vehicle controls, threatening the
safety of passengers and road users.

T.O.

Notes.
Abbreviations: T.T., Timing Transparent; T.O., Timing Opaque.

Suspension attack
A suspension attack aims to stop some or all message transmission of the target ECUs,
thus affecting the functionality of other ECUs that rely on this continuously updated
information (Verma et al., 2020a). For example, the adversary can disturb the CAN frame
with a particular ID to generate an error frame (e.g., stuff error), which violates the CAN
protocol specification, causing the target node to enter an error state. Besides, executing
this attack on SOME/IP can intercept and discard the information via a man-in-the-middle
(Zelle et al., 2021).

Masquerade attack
The attacker first suspends a specific message and then transmits the spoofed packets
with the same transmit interval, message format, and payload value range (Iehira, Inoue &
Ishida, 2018). Usually, masquerade attacks do not change the amount of traffic in a period,
which is more challenging to identify than injection attacks. The IDS scheme needs to
check the reasonableness of the packet payload to detect these sophisticated attacks.

Here, we use the concepts of Timing Transparent (T.T.) and Timing Opaque (T.O.)
provided by Verma et al. (2020a), aiming to map these attack categories to different deep
learning-based intrusion detection techniques. A Timing Transparent attack means it
changes the frequency of network traffic, specifically the packet interval decrease/increase.
In comparison, the Timing Opaque attack is defined as it does not disrupt network traffic
timing or distributions. For example, the Timing Transparent attack, such as DoS or
fuzzing attack, is detectable by the scheme using the CAN ID sequences. On the other
hand, the Timing Opaque attack needs a more sophisticated scheme by checking payload
data. In Table 3, we itemize the features, results, and types (T.T. or T.O.) of the discussed
IVN attacks for comparison and reference.
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Figure 4 Representation of the datasets. (A) Raw data form. (B) Signal form.
Full-size DOI: 10.7717/peerjcs.1648/fig-4

Datasets
Benchmark datasets are essential for training and evaluating the proposed DL-based IDS
scheme. Verma et al. (2020a) have discussed the primary datasets used in the IVN IDS
schemes and performed the quality analysis of both data and documentation. In this
subsection, we detail a supplement about the characteristics in Table 4, like covered attack
types and representations, to help researchers decide which datasets are most appropriate
to their research context. We observed that different Ethernet application layer protocols
have only one corresponding dataset compared to the CAN bus. And these existing datasets
are specific to testing the proposed IDS, and their applicability is limited. Furthermore,
the majority of datasets are limited to injecting simple messages and creating attacks by
synthesizing data. Therefore, a point to be researched is that the scheme trained on a
synthetic dataset needs to be evaluated in real environments. Besides, studied datasets are
published in the form of raw data or signal sequences, as shown in Fig. 4. Some researchers
(Sun et al., 2021) try to translate the raw data into signals and extract the signal boundary
values by reverse engineering without prior knowledge of the communication matrix.
However, Marchetti & Stabili (2019) indicated that the translation result is not completely
correct.

DEEP LEARNING-BASED IDS
In this section, deep learningmethods used in IDS for in-vehicle networks are discussed.We
detail the role of the adopted deep learning techniques in different stages of the intrusion
detection procedure. In addition, the evaluation criteria and achieved results are presented.
Our objective was to conduct a comprehensive survey of the development strategies for
state-of-the-art IDS solutions that help researchers in deciding which network architecture
is most suitable for their respective studies.

DL-based IDS framework
This section proposes a generic deep learning framework for designing IDS in the in-vehicle
networks domain. It is built upon the knowledge distilled from the articles investigated in
this survey, as illustrated in Fig. 5. The first step in building an intrusion detection system
is to consider the threat model and attack that are anticipated to be defended. In this
step, the authors should clearly define the objective of the detector (e.g., binary/multiclass
classification). If a multiclass classification is required, the infected traffic must be further
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Table 4 Open IDS datasets.

Dataset Organization Protocol Real/
Synthetic

DoS Replay Spoofing Fuzzing Suspension Masquerade Number of
messages

Labeled

OTIDS (Jeong & Kim,
2017)

HCRL CAN Real
p

–
p p

– – 4,613 k No

Car Hacking Dataset
(Kim, 2018)

HCRL CAN Real
p

–
p p

– – 16,569 k Yes

Survival Analysis
Dataset (Han & Kim,
2018)

HCRL CAN Real
p

–
p p

– – 1,735 k Yes

SynCAN (Hansel-
mann et al., 2019)

Bosch CAN Synthetic
p p p p p

– 41,856 k Yes

Automotive CAN Bus
Intrusion Dataset v2
(Dupont et al., 2019)

TU Eindhoven CAN Real/
Synthetic

p p p p p
– 3,176 k No

CAN Signal Extrac-
tion and Translation
Dataset (Kim, 2020)

HCRL CAN Real – – – – – – 5,126 k No

CAN Log Infector &
Ambient CAN Traces
(Gazdag, 2020)

CrySyS Lab CAN Real – – – – – – 1,209 k No

ROAD Dataset
(Verma et al., 2020b)

ORNL CAN Real – –
p p

–
p

28,244 k Partial

Attack&Defense
Challenge 2020
Dataset (Kim, 2021a)

HCRL CAN Real
p p p p

– – 8,694 k Yes

SOME/IP Dataset
(Alkhatib, Ghauch &
Danger, 2021)

LTCI SOME/IP Synthetic – –
p

–
p

– 12k Yes

Automotive Ether-
net Intrusion Dataset
(Kim, 2021b)

HCRL AVTP Real –
p

– – – – 1,941 k No
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Figure 5 Deep learning-based IDS framework.
Full-size DOI: 10.7717/peerjcs.1648/fig-5

classified into different classes and subclasses of attacks. Then, collecting a vast amount of
data with sufficient quality is necessary. In practice, researchers often collect a dataset by
monitoring the real vehicle communication or building a testbed composed of physical
or virtual nodes. No dataset is perfect, as measurements often include artifacts that can
impact the characteristics, such as different driving preferences and movement tracks.

After acquiring a dataset, its characteristics need to be carefully assessed to understand
not only the content of the data but also its flaws. In the preprocessing step, authors
need to clean, merge and convert the data into suitable formats and types. Extract and
select appropriate features, for instance, raw data fields (CAN ID, data byte, ethernet
destination Mac address, source Mac address) or statistical traffic characteristics (the
transmission frequency of a specific message over some time). Subsequently, the authors
select the appropriate deep learningmodel depending on the attack paradigm and extracted
features. The modeling process is iterative, with repeated experiments to find the optimal
hyperparameters set that makes the model perform optimally on the dataset. Finally,
evaluating an intrusion detection system using multiple datasets can let it adapt to different
environments.

The proposed DL-based IDS approaches
This section comprehensively researches and comparatively analyzes a significant number
of in-vehicle IDS approaches using deep learning technologies. Figure 6 presents a

Luo et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1648 12/46

https://peerj.com
https://doi.org/10.7717/peerjcs.1648/fig-5
http://dx.doi.org/10.7717/peerj-cs.1648


Figure 6 Taxonomy of the deep learning-based IDS schemes.
Full-size DOI: 10.7717/peerjcs.1648/fig-6

taxonomy of the researched schemes according to the deep learning network architectures
utilized, including based on autoencoder (AE) structure, recurrent neural networks (RNN)
structure, convolutional neural network (CNN) structure, generative adversarial network
(GAN) structure, deep neural networks (DNN) structure, and deep belief networks (DBN)
structure. This section is organized based on this classification method. The corresponding
subsection is assigned to describe the main contributions of different deep learning
architectures used in IDS schemes, and their properties are compared in terms of targeted
application protocol, feature selection, used datasets for model training and testing,
evaluation metrics, classification type, and the employed deep learning methodology.

Autoencoder
AE is the common DL technique applied in IDS research for dimensionality reduction and
anomaly detection in an unsupervised way (Hinton & Salakhutdinov, 2006). It generally
consists of input and output layers with the same dimensions, an encoding neural network,
a decoding neural network, and a latent space. AE works on matching the decoder
output as close to the encoder input as possible by performing representation learning, a
process called reconstruction. Therefore, It is trained to minimize the reconstruction error
between the input and the reconstruction sequence to obtain a low-dimensional abstraction
representing high-dimensional data. Then, an input traffic sequence is considered abnormal
if its reconstruction error is larger than the specified threshold. This subsection discusses
the AE-based IDS schemes (Alqahtani & Kumar, 2022; Cheng, Han & Liu, 2023; Alkhatib
et al., 2022) implemented for the in-vehicle network.

Lin et al. (2020) proposed an efficient DL-based IDS scheme using the deep denoising
autoencoder, which can learn latent sequential patterns of CAN data. This scheme adds
an evolutionary-based optimization algorithm to tune the proposed model parameters,
aiming to maximize the performance and efficiency of the model against malicious
attacks. This solution is evaluated on the three datasets, including two popular anomaly

Luo et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1648 13/46

https://peerj.com
https://doi.org/10.7717/peerjcs.1648/fig-6
http://dx.doi.org/10.7717/peerj-cs.1648


detection datasets in the area of the CAN bus. They achieved high precision and F1-score,
demonstrating that this model is robust and reliable in detecting DoS attacks, fuzzing
attacks, and impersonation attacks.

Wei et al. (2023) introduced a NIDS approach, denoted as AMAEID, for CAN bus
real-time intrusion detection using the denoising autoencoder and attention mechanism.
The hexadecimal CAN payload was converted into binary format in the data preprocessing
stage. Then it superimposed the noise conforming to the Gaussian distribution, which
benefited the model in terms of interference resistance and generalization. Finally, a
single-layer fully-connected network is used to obtain the final prediction value, indicating
whether the message is normal or abnormal. The authors validated their model using
OTIDS dataset and demonstrated that it achieves high performance. However, this scheme
is only evaluated with traditional machine learning methods (e.g., DT, KNN, SVM), and it
is not analyzed with other literature using AE to justify the achieved results.

Lokman et al. (2019) proposed an IDS approach by applying deep contractive
autoencoders (DCAEs) to extract flow-based features from network traffic data. This
scheme imposes different penalty terms on the loss function representation, ensuring the
network is robust to minor changes, noise, and missing inputs in the training samples.
This scheme is evaluated using real CAN data collected from three brand vehicles through
OBD-II. The results are compared with stacked sparsed autoencoders and denoising
autoencoders.

The NIDS scheme proposed in Ashraf et al. (2021) utilized the long short-term memory
(LSTM) autoencoder algorithm on dealing with attack events that occur at the central
network gateways of vehicles. This scheme executes binary classification on incoming
traffic. Statistical features of the mean and standard deviation computed for messages
within a specific time window are transformed by the normalized likelihood sequence
and fed into the network. The author validated their method using the UNSW-NB15
dataset for external network communication and the car hacking dataset for in-vehicle
communication. The experimental results on two datasets demonstrate that the scheme
achieves 99% and 98% accuracy, respectively.

Longari et al. (2021) also proposed an IDS method by applying LSTM autoencoders
to extract latent features from malicious behaviors. The proposed model creates a time
series of CAN payload for each CAN ID and learns to update network hyperparameters to
minimize the Mahalanobis distance between the reconstructed sequence and the original
sequence. Larger reconstruction errors will be flagged as potential exceptions. The model
is evaluated using collected CAN frames during vehicles driving in different conditions,
such as cities and highways. The authors indicate that the proposed method can effectively
perform binary classification of intrusion data by performing the required experiments.
However, CANnolo has conspicuous detection time consumption and is unsuitable for
strong real-time systems.

Kukkala, Thiruloga & Pasricha (2020) proposed a gated recurrent unit (GRU)
autoencoder network for detecting intrusive and anomalous flow-based data. Compared
to LSTM-based autoencoders, the training process of this scheme consumes less time. The
author designed this IDS approach focusing on monitoring the CAN message signal, so
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the method is protocol agnostic and not limited to the CAN bus protocol. In addition, the
authors propose an intrusion score metric to measure the degree of deviation from normal
system behavior to determine whether a signal is normal or abnormal. They evaluated their
model using the synCAN dataset published by Bosch and analyzed the memory footprint,
inference time, and scalability.

Hoang & Kim (2022) introduced a semi-supervised learning-based IDS approach by
incorporating convolutional autoencoder and GAN. This scheme trains a classifier in
three separate stages. In its first stage, it uses unlabeled data to train the autoencoder part.
In its next phase, the encoder and discriminator are trained together. Then update the
encoder again with the labeled data by minimizing the cross-entropy loss. This IDS scheme
is tested using public datasets. Experimental results demonstrate that feeding only 40%
of labeled data to the model achieves the lowest error rate of 0.1% compared to other
supervised methods. The properties of AE-based IDS solutions described in this subsection
are compared in Table 5.

RNN
Recurrent neural networks (RNNs) extend the capacities of the traditional feed-forward
neural network with its ability to learn sequential data over timesteps, especially suitable
for sequences that are not independent of each other or involve contextual associations. It
consists of the input, hidden, and output units, where the output of the hidden unit relies
on its input at the current time step and the output of the earlier time step. The network
parameters are updated through the back-propagation over time (BPTT) algorithm. RNNs
may provide a good idea for intrusion detection by predicting the upcoming signals of the
near future received frames. The detector then regarded the unexpected deviation from
the actual signal as an intrusion. However, RNNs usually only can handle finite length
sequences and will encounter the vanishing gradient problem if the output at any given
timestep depends on inputs much earlier. Different RNN variants like LSTM and GRU are
presented to address these issues.

Several RNN-based in-vehicle intrusion detection approaches, such as (Ma et al., 2022;
Tanksale, 2020; Tanksale, 2021; Desta et al., 2020a; Desta et al., 2020b; Tariq et al., 2019;
Mansourian et al., 2023; Al-Jarrah et al., 2023), are proposed in the literature, which will be
discussed in this section. RNN-based IDS was first applied by Taylor, Leblanc & Japkowicz
(2016) to detect malicious behavior on the CAN bus. The classifier works by learning to
predict the next frame according to the message previously sent on the bus. The authors
validated their anomaly detection method using the abnormal data synthesized by adding
CAN frames, deleting expected frames, and modifying data contents. Experimental results
show that this scheme can successfully flag suspicious anomalies. Nevertheless, a separate
detector was trained for each CAN ID without considering the dependencies between
different IDs.

Qin, Yan & Ji (2021) presented a NIDS established on the LSTM technique, identifying
abnormals and keeping a long-term memory of them. This research focuses on time series
prediction, calculating the loss between the predicted content and that transmitted on the
bus at the next time step. Then, it is flagged whether the packet is abnormal or normal based
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Table 5 Properties of AE-based IDS schemes.

Scheme Protocol Input features Dataset Effectiiveness (%) B/M* Detect time Methodology

Accuracy F1

Lin et al. (2020) CAN CAN ID OTIDS &
Self-Collected

– 98 B – Denoising Autoencoder
with ecogeography-based
optimization algorithm

Wei et al. (2023) CAN Payload OTIDS – – B – a denoising autoencoder
with the attention mecha-
nism

Lokman et al. (2019) CAN CAN ID & Payload Self-Collected – – B – deep contractive autoen-
coder

Ashraf et al. (2021) CAN statistical features car-hacking dataset
UNSW NB-15

99
96

99
98

B – A Deep Learning
architecture-based LSTM
autoencoder

Longari et al. (2021) CAN Payload Self-Collected – 94.83 B 3.5 GHz single core
CPU: 950ms

a LSTM-based recurrent
autoencoder

Kukkala, Thiruloga &
Pasricha (2020)

CAN Payload SynCAN 99 – B Jetson TX2 board
with an ARM
Cortex-A57 CPU:
0.08ms

a GRU-based recurrent au-
toencoder

Hoang & Kim (2022) CAN CAN ID car-hacking dataset – 99 B Intel Core i7-7700
CPU 3.6 GHz and
a GTX1060 GPU:
0.63ms

a semi-supervised learning-
based convolutional adver-
sarial autoencoder model

Notes.
*‘‘B’’ and ‘‘M’’ refer to binary-classification and multi-classification, respectively.
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on the deviation of the loss value from the threshold. They evaluated the performance of
the proposed model on multi-format data input and five loss functions. Nevertheless, this
method is not tested using other publicly available datasets.

Zhu et al. (2019) proposed a mobile edge-assisted anomaly detection method for IVNs
based on LSTM. It alleviates the problem of insufficient computing resources for onboard
devices when deploying deep learning-based anomaly detection systems to vehicles. The
model consists of a local common hidden layer computation unit and two single LSTM
neural networks that separately process time-based and data-based features. The necessary
experiments indicated that with the assistance of the mobile edge, their IDS approach
reaches 0.9 detection accuracy, and a CAN message detection is completed in an average
of 0.61 ms. However, applying the MEC server introduces indeterminate network latency
when delivering CAN bus messages to the MEC server.

Alkhatib, Ghauch & Danger (2021) present an RNN-based IDS to handle the offline
intrusion detection problem on SOME/IP application layer protocol. They deal with class
imbalance using the adaptive weighting technique that weights samples in rare classes at
high costs. The experiments are conducted on the datasets constructed using a packets
generator implemented in python language. Results validate that the proposed RNN-IDS
provides good results with F1 Scores and AUC values of each intrusion type. However, this
scheme merely evaluates attacks that deviate from the protocol specification in the inter-
device communication session. In another work (Luo et al., 2023), the authors conducted a
multi-layered IDS with GRU-basedmodules that could simultaneously detect anomalies on
SOME/IP header and payload.An LSTM-based IDS was presented by Hossain et al. (2020)
in the binary and multi-class classification of the CAN bus DoS attacks, fuzzing attacks,
and spoofing attacks. Several layer LSTM networks are utilized to identify cybersecurity
attacks, and their outputs are fed into a softmax function. They also investigated the impact
of different learning rates, activation functions, loss functions, the number of neurons, and
optimizers on model performance with Vanilla LSTM and Stacked LSTM, respectively.
This model is evaluated on the self-collected dataset and Survival Analysis datasets, and
the results indicate the effectiveness of their approach by comparing it with the Survival
Analysis method.

Tariq, Lee & Woo (2020) proposed CAN-ADF, a hybrid DL-based IDS model for
detecting anomalies and intrusions formulating as a multiclass classification problem.
More specifically, this method uses heuristics-based and LSTM-based methods to identify
attacks in in-vehicle network traffic. This combination is because diverse anomalies and
attacks arise with varying levels of detection difficulty. Methods with different algorithms
may be good at detecting different types of attacks. They evaluate the detection performance
of the proposed model by collecting 7,875,791 CAN messages from KIA Soul and Hyundai
Sonata. The experimental results demonstrate that the proposed scheme has an average
accuracy of 99.45% on multi-classification problems.

Khan et al. (2021) introduced a multi-stage intrusion detection method by combining
a normal state-based bloom filter and bidirectional long short term memory (BiLSTM)
to discover attacks from communication networks of AVs efficiently. They indicated that
bloom-filter with the advantages of efficient memory usage, light-weighted, and constant
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lookup time to recognize whether network data matches the normal communication
database before being fed into the neural network. The authors evaluated their intrusion
detection model. The results show that the model achieves an accuracy of 99.11% on the
car-hacking dataset and 98.88% on the UNSWNB-15 dataset, representing CAN bus traffic
and IP-based network traffic, respectively.

Driss et al (2022) proposed a cyberattack detection framework for vehicular sensor
networks that applies GRU. This IDS scheme considers the relationship between previous
and present data, which can improve detection capability and rate. The authors employ
a group of GRU with a Random Forest (RF)-based ensemble unit to solve the problem
of privacy data and resource limitation of intelligent sensor networks. They tested their
anomaly detection approach and applied metrics such as accuracy, recall, precision, and
F1 score. Experimental results also indicated that their approach outperformed other
classifiers. Table 6 presents the various aspects of the RNN-based IDS approaches.

CNN
Convolutional neural networks (CNNs) are specialized neural networks destined to perform
image processing and analysis. It generally consists of a stack of input, convolutional,
pooling, and fully connected layers. Compared with other deep learning networks under
the same network depth, CNN requires fewer parameters, reduces complexity, and speeds
up the learning process since CNN adopts local connections and weight sharing instead of
traditional fully connected networks. Indeed, It can be usually applied in traffic intrusion
detection to perform supervised feature extraction and classification tasks by organizing
network traffic into multiple arrays, such as the 1D array of CAN IDs and signals.

This section investigates the CNN-based IDS schemes presented in the literature, such
as Lin et al. (2022), Ahmed, Jeon & Ahmad (2023) and Taslimasa et al. (2023). Song, Woo &
Kim (2020) presented an IDS scheme, which preprocesses the CAN bus traffic data and then
models the temporal sequential patterns using deep convolutional neural networks. This
scheme directly converted the bit-stream data of the CAN bus into a grid-like structure,
more specifically, building the 29-bit IDs of consecutive 29 frames into a 29*29 matrix
as features of the CNN. The IDS scheme adopted the Inception-ResNet, which performs
well in natural image classification tasks, to detect abnormal data by reducing the original
model components and tuning the network hyperparameters based on the difference in
feature dimensions. By conducting the experiments, the authors indicated that this model
achieves better detection results compared with LSTM, ANN, and as well as SVM, KNN,
NB, and decision tree. In particular, the IDS shows better performance when detecting
fuzzy attacks. Moreover, the authors conducted offline testing on devices with GPUs and
only CPUs. The results exhibited that the proposed model is challenging to employ online
detection in existing automobiles by calculating the detection latency of the processing
packets.

Desta et al. (2022) proposed Rec-CNN, a CNN-based IDS technique for investigating
network flow data for abnormal activities. This method applies the categorical recurrence
plots algorithm, which creates images from time-series data on the CAN bus. Unlike
constructing images in Song, Woo & Kim (2020), the authors utilize recurrence plots to

Luo et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1648 18/46

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1648


Table 6 Properties of RNN-based IDS schemes.

Scheme Protocol Input Features Dataset Effectiiveness (%) B/M* Detect time Methodology

Accuracy F1

Taylor, Leblanc &
Japkowicz (2016)

CAN Payload Self-collected – – B – a LSTM-based neural net-
work to predict the next
data word

Qin, Yan & Ji
(2021)

CAN Payload Self-Collected – 85 B – a LSTM-based neural net-
work to predict the next
frame payload

Zhu et al. (2019) CAN Payload Self-Collected 89.3 90.2 B 3.3 GHz dual
core Intel i5 CPU:
0.61ms

a multi-dimension LSTM
framework to predict in-
formation of next CAN
message

Alkhatib, Ghauch
& Danger (2021)

SOME/IP Protocol header Self-Collected – 80 B – a two layers RNN and a
dense layer with softmax

Luo et al. (2023) SOME/IP Protocol header &
Playload

Self-Collected 99.77 99.6 B Jetson Xavier NX:
0.36ms

combination of rule-based
and GRU based methods

Hossain et al.
(2020)

CAN CAN ID & Playload Self-Collected;
Survival Analy-
sis Dataset

99.99
99.99

99
99

B & M – several layers LSTM and a
dense layer with softmax

Tariq, Lee & Woo
(2020)

CAN CAN ID & Playload Self-Collected 99.54 99 M Intel Xeon E5-
1650 CPU and
GTX 1080ti GPU:
73ms

combination of rule-based
and LSTM based methods

Khan et al. (2021) CAN PCA car-hacking
dataset;
UNSW NB-15

99.11;
98.88

99.09;
98.85

B Intel i5 3.20 GHz:
0.023 ms

a multi-stage intrusion de-
tection framework based
Bi-LSTM and bloom-filter

Driss et al (2022) CAN – Car Hacking:
Attack & De-
fense Challenge
2020 Dataset

99.52 98.92 B – a group of GRU with a
Random Forest (RF)-
based ensembler unit

Notes.
*‘‘B’’ and ‘‘M’’ refer to binary-classification and multi-classification, respectively.
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capture the temporal dependencies in the sequence of arbitration IDs. They compare the
proposed scheme with Song, Woo & Kim (2020), and the experimental results indicate that
it achieves better detection performance with comparable execution time.

Jeong et al. (2020) designed a CNN-based IDS to identify the legitimacy of
communication nodes, analyzing the channel characteristics between a specific pair of
transmitters and receivers. This model takes the bus differential voltage signal as input,
outputs the probability that the received message is transmitted from each node, then
identifies the node with the highest value as the predicted message source. Then, the
detector compares the predicted source with the actual source node number obtained from
the mapping table, and the inconsistency is considered abnormal. Simultaneously, the
detector continuously transmits dominant bits to generate error frames to interrupt the
transmission of abnormal messages. However, if the detector occurs a false alarm, it may
seriously block the transmission of normal messages and reduce the CAN bus network
performance.

Jeong et al. (2021) introduced aNIDS using CNN to detect AVTP packet replay attacks in
automotive Ethernet-based networks. This scheme extracts features from the first 58 bytes
of the AVTP stream, inferring the stream AVTPDU is benign or not. The authors captured
real AVTP packets as training and testing datasets by building a physical testbed based on
BroadR-Reach. Furthermore, they also measure the detection latency on hardware devices
such as Google collab, macintosh, Jetson TX2, and Raspberry Pi 3. Results validate that
this scheme is efficacious for binary classifications of abnormal traffic.

Han, Kwak & Kim (2023) presented the TOW-IDS solution for heterogeneous in-vehicle
networks, which detects the abnormalities of automotive ethernet. This scheme constructed
a DCNN model by adjusting the ResNet model as the classification algorithm and
furthermore incorporated wavelet transform to reduce the image data size. In consideration
of the length difference in different protocol packets (such as CAN, gPTP, and AVB), the
authors padded and trimmed the packets to satisfy the computation condition during
the data preprocessing process. They evaluated the performance of their approach in
identifying frame injection, PTP sync, MAC Flooding, CAN DoS, and CAN replay attacks
on self-collected datasets. Experimental results demonstrated that the TOW-IDS consumes
less time in detecting network anomalies than default ResNet and EfficientNet methods.
In Table 7, the features of discussed CNN-based IDS schemes are listed.

GAN
GAN is a deep generative model developed by Mirza & Osindero (2014), which consists
of two ANN networks, namely a generative network and a discriminate network. The
generative network learns the distributions of the real data and attempts to generate
samples with the same characteristics to confuse the discriminator, which in turn endeavors
to distinguish the real data from the generated. Researchers usually utilize GAN models to
alleviate the problem of insufficient attack samples in intrusion detection.

Seo, Song & Kim (2018) presented a GAN-based IDS for in-vehicle networks to identify
normal and attack traffic for the first time. The generator of the GANmodel is composed of
CNN, and the discriminator is comprised of DNN. They grouped CAN IDs in the order of
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Table 7 Properties of CNN-based IDS schemes.

Scheme Protocol Input features Dataset Effectiiveness (%) B/M* Detect Time Methodology

Accuracy F1

Song, Woo &
Kim (2020)

CAN CAN ID car-hacking
dataset

– 99.9 B two 2.30 GHz
Intel Xeon CPUs
and a Nvidia
Tesla K80 GPU.
CPUs only: 6.7 ms:
With GPU
acceleration: 5 ms

a DCNNmodel constructed
by Reducing Inception-
ResNet components

Desta et al.
(2022)

CAN CAN ID car-hacking
dataset:
Self-Collected

99.9 – B & M Jetson TX2: 117ms a simple two-layered CNN
that uses recurrence plots to
generate images as input

Jeong et al.
(2020)

CAN physical
characteristics

Self-Collected 99.92 – B – The CNN is composed of an
input layer, a fully connected
(FC) layer, a softmax layer,
and two hidden sub-layers.

Jeong et al.
(2021)

AVTP Protocol header automotive-
ethernet-
intrusion-dataset

99.55 99.27 B Jetson TX2:
0.982 ms
Raspberry Pi
3 with ARM
Cortex-A53 CPU:
35 ms

CNN model comprises an
input layer, two hidden sub-
layers, and two dense layers.

Han, Kwak &
Kim (2023)

CAN & AVTP
& gPTP

Protocol header
& Payload

Self-Collected 99.65 99.7 B 4,790K CPU and
2080 RTX GPU:
29.1 ms

A DCNNmodel formed by
adjusting the ResNet algo-
rithm, and cooperates with
wavelet transform to reduce
the image data size.

Notes.
*‘‘B’’ and ‘‘M’’ refer to binary-classification and multi-classification, respectively.
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sending time and converted them into sample images after one-hot encoding. The authors
evaluated their scheme for detecting DoS attacks, fuzzy attacks, and spoofing attacks with
the car hacking dataset.

Yang et al. (2021) attempted to train the proposed IDS scheme using the generated CAN
images constructed with frames interval time, CAN ID, and DLC. Due to employing a
different encoding algorithm compared with (Seo, Song & Kim, 2018), this scheme reduces
the input data dimension and the number of network layers and neurons. Furthermore,
this scheme applies a sparse enhancement training method benefiting the discriminator to
correct its learning direction and accelerate the training convergence, thereby overcoming
the poor performance of single GAN. The authors compared the achieved results against
(Seo, Song & Kim, 2018) using metrics such as accuracy, recall, precision, and F1 score. The
evaluation results outperform related works in terms of precision and accuracy.

Xie et al. (2021) extend the ability of the discriminator to detect tampering attacks
by introducing CAN communication matrix that indicates the signal maximum and
minimum range. In the data preprocessing stage, the CAN messages are divided into five
types according to the transmissionmode, effectively reducing discriminator misjudgment.
In addition, Considering that the frames sequence is not fixed in the driving environment,
the author uses 64 consecutive messages of the same ID to construct the CAN image
instead of directly using traffic data that may include different CAN IDs. Experimental
results illustrate that their IDS approach could enhance detection performance.

Zhao et al. (2022) proposed an IDS model for implementing multi-classification of
CAN bus frames using the auxiliary classifier generative adversarial network (ACGAN).
They propose and evaluate the performance of four different variants and indicate that
the two-stage classification architecture of ACGAN combined with out-of-distribution
works best. ACGAN assigns fine-grained labels to known attacks in the first stage. Out-
of-distribution samples are passed into the binary real-fake classifier to perform unknown
attack classification. This scheme is tested on public datasets, and the results indicate that
the proposed scheme reaches a higher classification accuracy with lower resource overhead.
It is suitable for employment in resource-constrained in-vehicle environments. As shown
in Table 8, some effective GAN-based IDS models are compared.

DNN
DNNs can be considered an ANN structure with additional depth. It increases the
number of hidden layers, enhancing the abstraction capabilities of the model to learn
complex nonlinear relationships. DNNs are typical feed-forward networks where data
flows unidirectionally from the input layer to the output layer.

This section investigates the articles that utilized DNN techniques to detect in-
vehicle network intrusions. Zhang et al. (2019) proposed an in-vehicle IDS based on
DNN approach, which attempts to detect spoofing and replay attacks by extracting
vehicle behavior features from communication traffics. The author adopts two enhanced
BP algorithms, gradient descent with momentum (GDM) and gradient descent with
momentum adaptive gain (GDM/AG), to speed up the iterative update process of the
network. They collected nearly 300,000 CAN bus messages using the open-source software
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Table 8 Properties of GAN-based IDS schemes.

Scheme Protocol Input Features Dataset Effectiiveness (%) B/M* Detect time Methodology

Accuracy F1

Seo, Song & Kim (2018) CAN CAN ID car-hacking
dataset

98 – B – The generator is composed
of CNN and the discrimi-
nator is composed of DNN

Yang et al. (2021) CAN CAN ID car-hacking
dataset

99.8 99.8 M Intel Xeon CPU E5-
2673 v3 @ 2.40 GHz
and an NVIDIA
GP102 GPU: 0.12
ms

GAN model uses CNN

Xie et al. (2021) CAN CAN ID &
Payload

car-hacking
dataset

– 99.8 M a Xilinx Spartan 6
FPGA: 0.09 ms

GAN model

Zhao et al. (2022) CAN CAN ID car-hacking
dataset

– 99.23 M Raspberry Pi 4
Model B and
quad-core ARM
Cortex-A72 CPU
at 1.5 GHz.
single-core:
0.538 ms
multi-core: 0.203 ms

Auxiliary Classifier GAN

Notes.
*‘‘B’’ and ‘‘M’’ refer to binary-classification and multi-classification, respectively.
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BusMaster and evaluated this scheme in terms of accuracy, TPR, and FPR. Experiments
indicate that the proposed model improves a great deal about the internal cybersecurity of
the onboard system.

Cuzzocrea, Mercaldo & Martinelli (2020) employed an MLP-based classifier to recognize
DoS attacks, fuzzy attacks, and spoofing attacks on the CAN bus. The proposed method
is assessed through experiments on the car-hacking dataset, where data field features are
selected. After performing classification experiments using MLPs with multiple hidden
layers, they indicated that the MLP network with 1 and 3 hidden layers obtained the best
results.

Zhang & Ma (2022) presented a NIDS benefiting from both ruled-based and DNN-
based approaches. This ensemble uses deep learning techniques to achieve high detection
accuracy while reducing the computational requirements through offloading traffic with a
rule-based module. Before conducting detection using the DNN classifier with five hidden
layers, the model uses the pre-defined rules to catch malicious messages such as invalid ID,
time intervals, and DLC. The authors selected five features with high importance scores
in feature engineering for training instead of using the raw data directly. They tested their
system on the datasets originating from four vehicles CAN bus data and achieved a binary
classification accuracy of 99.8%. However, the model is not evaluated by employing other
public datasets to verify its claimed results further. The characteristics of the DNN-based
IDS schemes studied in this part are given in Table 9.

DBN
DBNs are probabilistic generativemodels by stacking several restrictedBoltzmannmachines
(RBM) in layers. InDBN, The network connection of the upper two layers is undirected, and
the other layers are directed. DBN is pre-trained using an unsupervised greedy layer-wise
learning method followed by learning valuable features using the supervised fine-tuning
approach. For IDS, DBNs are usually used to initialize network parameters, improving
anomaly detection accuracy. Besides, DBNs are applied to solve ANNs training problems,
such as slow training and needing extensive labeled data.

The IDS schemes of this subsection incorporate DBN for in-vehicle communication
abnormal classifying. Kang & Kang (2016b) presented an IDS method based on a deep
belief neural network. First, they applied DBN to pre-train the neural network parameters
intending to initialize the model, followed by the parameters tuned through supervised
learning to obtain a better classification performance. The authors utilized all the DATA
field for generating the feature. This approach has low computation complexity in the
decision, but the training phase is time-consuming. In another article Kang & Kang
(2016a), the authors trained and evaluated the proposed DBN-based approach using
simulated vehicular network communication called Open Car Testbed and Network
Experiments (OCTANE) and simulated the attacker tampering with the tire pressure
monitoring signal. They demonstrated that the detection accuracy of this approach is
enhanced compared with feed-forward ANN. The characteristics of these two IDS schemes
are shown in Table 10.
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Table 9 Properties of DNN-based IDS schemes.

Scheme Protocol Input Features Dataset Effectiiveness (%) B/M* Detect time Methodology

Accuracy F1

Zhang et al. (2019) CAN – Self-Collected 98 – B inter CoreTM i5
CPU 1.80 GHz: 4 ms

DNN uses GDM and
GDM/AG

Cuzzocrea, Mercaldo &
Martinelli (2020)

CAN Payload car-hacking
dataset

– 98 B – MLP classification with
one/three hidden layers

Zhang & Ma (2022) CAN CAN ID & Payload Self-Collected 99.8 – B Intel Core i5-4200U
CPU 1.60 GHz: 0.55
ms

DNN-based IDS combines
traditional rule-based tech-
niques

Notes.
*‘‘B’’ and ‘‘M’’ refer to binary-classification and multi-classification, respectively.
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Table 10 Properties of DBN-based IDS schemes.

Scheme Protocol Input
features

Dataset Effectiiveness (%) B/M* Detect time Methodology

Accuracy F1

Kang & Kang (2016b) CAN Payload Self-Collected 97.8 – B 3.4 GHz intel CPU: 8.12 ms DBN
Kang & Kang (2016a) CAN Payload Self-Collected – – B – RBM

Notes.
*‘‘B’’ and ‘‘M’’ refer to binary-classification and multi-classification, respectively.

Hybrid
This section discusses several IDS schemes that combine two or more deep learning
algorithms in detecting intrusions procedure.

AE+RNN. Li et al. (2020) have incorporated vanilla RNN and AE for in-vehicle anomaly
and intrusion detection. A sparse autoencoder with L1 regular term constraints to the
loss function is applied to extract network data in-depth features and reduce data
dimensionality, followed by a classifier constructed by RNN and softmax for binary
classification. The authors collected data using a USB-to-CAN converter directly connected
to the OBD-II and conducted the required experiment. They indicated that the average
processing time of this IDS scheme is significantly reduced compared to other deep
learning-based studies. However, note that the literature compared is not newly published.
InNichelini et al. (2023), authors present a modular framework that also includes the RNN
autoencoder-based module.

Hanselmann et al. (2020) introduced CANet, a hybrid IDS scheme benefiting from the
LSTM and auto-encoder, aiming to consider temporal dynamics and interdependencies
between IDs. They employed a separated LSTM input model for each ID, then aggregated
all input models and fed them into an autoencoder structure. Then, It applies the
reconstruction error of the auto-encoder as the anomaly score for classification.
Accordingly, the model is able to detect messages with different IDs simultaneously.
The authors evaluate performance on both real and synthetic CAN data. Results revealed
that this model performs better than approaches using only LSTM and auto-encoder.

CNN+RNN. A few schemes have incorporated CNNs and RNNs to improve anomaly and
intrusion detection performance, such as (Aldhyani & Alkahtani, 2022;Cherdo et al., 2023).
Lo et al. (2022) presented HyDL-IDS, which utilizes CNNs to learn the spatial–temporal
features among network traffic and employs LSTMs to learn the temporal features further.
This scheme extracts spatial–temporal features in characterizing network traffic more
accurately than manual feature engineering. The authors evaluated this model using
the car hacking dataset collected by the HCRL laboratory. The experimental results
demonstrate that it achieves nearly 100% detection accuracy, and the false alarm rate is
reduced compared to other methods such as Decision tree, CNN, and LSTM.

Also, Agrawal et al. (2022) designed an unsupervised learning-based IDS that exploits
CNNs and LSTMs to detect anomalies in CAN networks. They use the sliding window
approach to construct CAN traffic sequences in the data preprocessing stage. Each sequence
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is divided into a normal or an attack type based on the percentage of abnormal data it
contains. The normal type sequences are reconstructed during model weight training
through a 1D convolution, LSTM units, and dense layers. Furthermore, the authors use the
confidence interval-based approach to estimate a reconstruction error threshold, which
could reduce the training time and manual work. Time-consuming experiments on the
Nvidia Jetson Nano development board show that the scheme can be applied to embedded
devices.

Song & Kim (2021) presented a self-supervised method employing noised pseudo
normal data, which enables the model to detect unknown attacks on in-vehicle networks.
The LSTM-based generator generates the noised pseudo normal data and uses them to train
the CNN-based detector with normal data together. Unlike GAN-based intrusion detection
methods, there is no minimax game in the training process of the generator and detector
of this model. In addition, this method can alleviate the dataset imbalance problem caused
by insufficient attack data. The evaluation results show that the model performs well in
detecting known attacks and improves the detection ability against unknown attacks.

Sun et al. (2021) presented an IDS scheme to detect CAN frame anomalies using CNN
and Bi-LSTM with the attention mechanism. This scheme uses 1D convolution layers to
capture the local features of continuous physical signals and employs the Bi-LSTM to learn
temporal features between multiple frames. Besides, it uses the attention mechanism to
calculate the weights at different time steps for quickly focusing on network traffic key
features. The authors implemented the proposed method using the Keras and indicated
that the detection time achieved 5.7 ms on the real vehicle. However, the CLAM trains a
set of network parameters for each CAN ID, which requires more computing and memory
capacity for the device.

Javed et al. (2021) introduced CANintelliIDS, an IDS approach that integrates CNNs
and attention-based GRU for detecting both single and hybrid attacks. The mixed attacks
mean that attackers use different combinations of intrusion methods such as fuzzy, DoS,
and impersonation, which is challenging for IDS. They performed the needed experiments
using the OTIDS dataset and evaluated the accuracy and F1 score when it was imbalanced.
The results show that this scheme effectively captures the latent characteristics of historical
traffic compared to simply using the CNNs network. Table 11 provides a comparison of
hybrid DL-based IDS models investigated in this subsection.

Other
This section describes some other schemes for detecting intrusion attacks on the IVNs.

Temporal convolutional network (TCN): Shi et al. (2021) presented an anomaly
detection system based on the TCN for detecting in-vehicle network attacks. The scheme
predicts the sequences by extracting latent features of normal data, flags intrusion when
an unknown sequence occurs and further locates abnormal points. Besides, this model
can ensure that future information cannot be used to predict the past, which benefits
from the TCN network introducing causal convolution that the output at the current
time step originates from the convolution of current as well as historical information. The
authors conducted evaluations using OTIDS datasets in terms of accuracy, FPR, and TPR.
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Table 11 Properties of hybrid DL-based IDS schemes.

Scheme Protocol Input features Dataset Effectiiveness (%) B/M* Detect time Methodology

Accuracy F1

Li et al. (2020) CAN Payload Self-Collected 96 – B – the sparse auto-encoder for
dimension reduction of fea-
tures and RNN for classifica-
tion.

Nichelini et al.
(2023)

CAN CAN ID & Payload car-hacking
dataset

99 99 B CPU i7-8700K and
GeForce GTX 1080
GPU: 0.2568ms

a modular framework in-
cluding RNN autoencoder-
based module

Hanselmann et
al. (2020)

CAN Payload SynCAN & Self-
Collected

99 – B – LSTM per ID and autoen-
coder

Lo et al. (2022) CAN CAN ID & Payload car-hacking
dataset

99.98 99 B – use CNN and LSTM

Agrawal et al.
(2022)

CAN CAN ID & Payload car-hacking
dataset

– 99 B Jetson Nano de-
velopment board:
128.73 ms

use CNN and LSTM

Song & Kim
(2021)

CAN CAN ID car-hacking
dataset

95.37 94.5 B – use CNN and LSTM

Sun et al. (2021) CAN Payload CAN Signal
Extraction
and Translation
Dataset

– 93.8 B Xavier with 8-core
CPU: 5.7 ms

use CNN and Bi-LSTM with
attention mechanism

Javed et al.
(2021)

CAN Payload OTIDS 95.09 93.79 B – a combination of CNN and
attention-based GRU model

Notes.
*‘‘B’’ and ‘‘M’’ refer to binary-classification and multi-classification, respectively.
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Experimental results indicate that the proposed model performs better in fuzzing and
DoS attacks. Also, Thiruloga, Kukkala & Pasricha (2022) presented TENET, an anomaly
detection scheme that learns payload-level characteristics using TCN with the integrated
attention mechanism.

Complex valued neural network (CVNN): Han, Cheng & Ma (2021) proposed an in-
vehicle anomaly detection scheme using the CVNN combined with an encoder and
attention mechanisms. Benefiting from the progress of CVNN in model safety, this model
can alleviate the privacy disclosure problem caused by massive information collection
for training deep learning-based models. The authors utilize a WGAN-based encoder to
encrypt intermediate-layer features, followed by a CVNN analysis of in-depth features. The
corresponding experimental results demonstrate that this model can protect the IDS while
achieving 98% accuracy, and adversaries cannot extrapolate input information from the
various features obtained. However, the model efficiency is at average levels compared to
other DL-based schemes.

Transfer learning: Mehedi et al. (2021) presented a deep transfer learning-based P-
LeNet method for IVN in order to improve the performance of learners on target domains
by transferring the knowledge contained in source domains to the target domains. The
experimental performance reveals that this model achieved an overall accuracy of 98.1%,
which is higher than the other multiple traditional machine learning, deep learning,
and deep transfer learning models. In addition, Wei et al. (2022a) proposed a domain
adversarial neural network-based IDS consisting of a feature extractor, a label predictor,
and a domain classifier. This model learns common feature representations from different
but related domains, enabling it can learn the essential features of attacks to cope with the
emergence of variant attacks. Furthermore, Tariq et al. (2020) introduced CANTransfer, a
convolutional LSTM-based intrusion detection scheme for CAN bus using transfer learning
technology. The properties of these IDS models are indicated in Table 12.

Summary
Deep learning has great deployment potential in securing the in-vehicle network. In
particular, the detection accuracy of abnormal traffic has reached a high level. For example,
several schemes (Kukkala, Thiruloga & Pasricha, 2020; Tariq, Lee & Woo, 2020; Desta et
al., 2022) have achieved close to 100% accuracy. However, the classification accuracy and
computational complexity of intrusion detection models are in a trade-off relationship.
The model with higher inference delay and hardware resource consumption is considered
more complex, which negatively impacts the application of an IDS in resource-constrained
environments in reality. The urgent challenge to be solved for theDL-based IDSs is reducing
their inference delay and hardware resource consumption if the available computing power
is poor or an IDS runs on a limited embedded environment of IVNs. In general, each deep
learning technique has its own advantages and limitations when applied to the field of
intrusion detection issues, as summarised in Table 13. The application of AEs, as an
unsupervised learning technique, to intrusion detection schemes is generally used to
reduce traffic data dimensions and filter noise. Furthermore, it is also used as a classifier by
comparing the deviation between the reconstruction error and the preset threshold, that

Luo et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1648 29/46

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1648


Table 12 Properties of other DL-based IDS schemes.

Scheme Protocol Input features Dataset Effectiiveness (%) B/M* Detect time Methodology

Accuracy F1

Shi et al. (2021) CAN CAN ID OTIDS 94.6 – B – TCN with parameterized
Relu activation function

Thiruloga, Kukkala &
Pasricha (2022)

CAN Payload SynCAN – – B Jetson TX2 with
dual-core ARM
Cortex-A57 CPUs:
0.25 ms

TCN with an integrated at-
tention mechanism

Han, Cheng & Ma (2021) CAN CAN ID Self-Collected 99.3 84.3 B Intel i7-9500H CPU
3.60 GHZ and GTX
1650: 141 ms

CVNN combined with
an encoder and attention
mechanisms

Mehedi et al. (2021) CAN CAN ID & Payload Car Hacking: At-
tack & Defense
Challenge 2020
Dataset

98.1 97.83 B – a deep transfer learning-
based LeNet model

Wei et al. (2022a) CAN Payload Self-Collected – 99.6 B – a CAN bus IDS based on a
domain adversarial neural
network

Tariq et al. (2020) CAN CAN ID & Payload Self-Collected – 88.47 B – a Convolutional LSTM
based model using Transfer
Learning

Notes.
*‘‘B’’ and ‘‘M’’ refer to binary-classification and multi-classification, respectively.
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Table 13 Deep learning technique applied to In-vehicle network IDS: key advantages and limitations.

Deep
learning
technique

Key advantages Limitations

AE The AE is a technique that helps reduce traffic data
dimensions and filter noise in an unsupervised way.

The training process takes a long time.
It can efficiently compress samples but is only available
for similar ones.

RNN RNN achieves adequate performance with historical
memory and is an excellent tool for processing temporal
sequence data.

It encounters the problem of gradient vanishing and
exploding as the error accumulates over long terms.
It requires high memory.

CNN CNN is known for its properties of fewer network
parameters.

It pertains to supervised learning and
requires a large amount of labeled data.
The pooling layer may lose valuable information.
Models rely more on GPU, which is unsuitable for
deployment on resource-constrained devices.

GAN GAN is able to construct samples and, therefore, can
alleviate the problem of imbalanced samples.

Training the GAN model is a challenge.
The construct samples are probably unable entirely
represent the real ones. Hence additional operations are
required to check their validity.

DNN DNN has the high abstraction ability to learn complex
nonlinear relationships.

DNN requires mass sample data when the hidden layers
increase.

DBN DBN helps to solve the training problem of ANN. A large number of network variables causes a long
initialization phase.

is, the input sequence is considered abnormal when the error is greater than the threshold.
Although it can efficiently compress samples feature but is only available for similar ones
and requires a long training time. In contrast, RNNs are an excellent tool since its adequate
historical memory for processing temporal sequence data. However, it encounters the
problem of gradient vanishing and exploding as the error accumulates over long terms.
While different variants like LSTM and GRU are presented to address these issues, it
also suffers from overfitting and high memory consumption. CNNs are known for their
powerful image classification capabilities. When using CNNs to construct IDS, we need
to consider the hardware resources of the on-board equipment since CNN-based models
rely more on the computing power provided by the GPUs. Also, it pertains to supervised
learning and requires a large amount of labeled data. The main contribution of GANs is
that they can alleviate the problem of imbalanced samples by generating synthetic ones,
but they also introduce additional operations to check their validity. Moreover, training
a GAN model is a challenging task. As for DNNs, they have the high abstraction ability
to learn complex nonlinear relationships, but with the increase of hidden layers, a large
amount of sample data is required to train the network parameters. Another deep learning
technique that can be used to design intrusion detection models is DBNs which help to
initialize network parameters. Also, it needs a long initialization phase.
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Figure 7 Datasets applied in the DL-based IDS schemes for IVN. The corresponding relationship be-
tween the X-axis numbers and the dataset names is as follows: 1*: OTIDS; 2*: Car Hacking Dataset; 3*:
Survival Analysis Dataset; 4*: SynCAN; 5*: CAN Signal Extraction and Translation Dataset; 6*: Attack &
Defense Challenge 2020 Dataset; 7*: SOME/IP Dataset; 8*: Automotive Ethernet Intrusion Dataset; 9*:
Automotive CAN Bus Intrusion Dataset v2; 10*: CAN Log Infector & Ambient CAN Traces; 11*: ROAD
Dataset; 12*: Self-Collected.

Full-size DOI: 10.7717/peerjcs.1648/fig-7

DISCUSSION
This section provides a discussion and insights about the DL-based IDS schemes
investigated in the previous section to researchers who are interested in applying deep
learning algorithms to solve cybersecurity threats.

Dataset
Using a proper dataset is an essential prerequisite that constructs an efficient and effective
IDS. we surveyed the benchmark datasets used by IDS for training, validating, and testing.
As exhibited in Fig. 7, the majority of proposed IDS used the self-collected dataset where
the data is inaccessible, while the car hacking dataset is the most commonly used public
benchmark. However, according to the generation procedure of the car hacking dataset
described by Seo, Song & Kim (2018), the payloads of the attack messages are randomly
synthesized and periodically transmitted at a high frequency, which may be extremely
different from real-world attacks. An experienced adversary may not perform an attack
with random payloads but instead pad the payloads with similar signal values, making
them look like normal messages (Zhao et al., 2022). Additionally, several IDS schemes are
verified with two datasets, which may increase the generalization capability of the model.

As shown in Table 14, the distribution of traffic samples across the normal and attack
classes is imbalanced since network intrusion behaviors are uncommon. The capacity
to handle imbalanced datasets is an important research content. Some of the surveyed
schemes utilize the DL network to generate synthetic samples for classes with relatively
little data. Thesemethods usually employGAN-basedmodels to generate synthetic samples.
Because GAN-based models can extract the latent distribution of the original data as well
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Table 14 The attack type and data size of car hacking dataset.

Attack type Overall
messages

Normal
messages
(%)

Injection
messages
(%)

DoS 3,665,771 84.0% 16.0%
Fuzzy attack 3,838,860 87.2% 12.8%
Spoofing (drive gear) 4,443,142 86.6% 13.4%
Spoofing (RPM gauze) 4,621,702 85.8% 14.2%

as generate artificial samples of unknown attacks, increasing samples to balance the dataset.
In addition, it can avoid the problems of losing information and generating redundant
samples existing in undersampling or oversampling methods. But the synthetic data is
probably unable completely represent the real traffic, and additional operations need to be
considered to check its validity.

DL role in IDS
We review the articles published between 2016 and the first half of 2023 on DL-based
IDS schemes for IVN. Figure 8 outlines the frequency of deep learning methods in the
investigated articles to explore themodel selection preferences of researcherswhen detecting
the attacks in the vehicular network. As shown in this figure, More than a quarter of the
articles have used RNNs and variants (e.g., LSTM) to construct the detector, while DBMs
are the least applied model overall. The figure also reveals that 13% of authors convert
network traffic into images and use CNNs due to their capability to extract advanced feature
representations from spatial data, and other authors considered the communication traffics
as time series data. Furthermore, we found that about 16% of IDS schemes benefited from
twoDL networks to deal with diverse attacks and anomalies, which were classified as hybrid
schemes. The combination of CNNs and RNNs is used most in hybrid-based IDS schemes,
while the AE+RNN is also applied in several schemes.

DL-based IDS schemes achieved high performance by employing different network
architectures. We compared the effectiveness of different methods relying on the same
benchmark datasets. Figure 9 indicates the accuracy of the analyzed articles that employed
the car hacking dataset to evaluate their model. However, we underline that it is not a
comprehensive comparison as some papers did not use accuracy as their model evaluation
criterion and are therefore not included here. Besides, The experimental results we collected
were obtained from isolated studies by different researchers based on diverse experimental
aspects, such as different hyperparameters, optimizers, and neuron numbers, which all
affect the detection performance of the model.

Feature selection
We analyze which traffic fields are most favored when designing detectors in the reviewed
IDS schemes. Based on this purpose, Fig. 10 indicates the percentage of the IDS models
applying different traffic fields. As shown in the figure, the fields selected by the CAN
bus IDS scheme can be divided into CAN ID only, payload only, and the combination of
both CAN ID and payload, while the vehicle Ethernet scheme mainly uses the protocol
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Figure 8 Use of DLmodels in the surveyed schemes.
Full-size DOI: 10.7717/peerjcs.1648/fig-8

Figure 9 Accuracy of the studied schemes on the car hacking dataset.
Full-size DOI: 10.7717/peerjcs.1648/fig-9

header because the maximum byte of the payload reaches 1,500. Around one-quarter
of the IDS approaches only use CAN ID as the input feature of the DL network. These
methods can detect malicious injection attacks, such as DoS, fuzzing, spoofing, and replay
attacks, benefiting from the periodic transmission mode of CAN traffic. However, they
are limited to detecting packet-level anomalies (as opposed to signal-level anomalies) that
cause changes in packet order or invalid CAN ID rather than signal tampering, which
means they are incapable of identifying masquerade attacks and cannot take advantage of
the dependencies between different signals. About 68% of the papers have used the payload
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Figure 10 Use of traffic field in the surveyed papers.
Full-size DOI: 10.7717/peerjcs.1648/fig-10

field (including payload only, and both CAN ID and payload), enabling the model to
recognize payload-based masquerade attacks, such as abnormal changes in specific signal
values. It deserves further mention that which fields are selected as model input features
depends on the attack scenarios anticipated to be defended.

FUTURE RESEARCH DIRECTIONS
Using deep learning technology to develop intrusion detection systems for IVNs has
received extensive attention in recent years. Unfortunately, they encounter challenges
across multiple dimensions, including limited on-board hardware resources, inappropriate
datasets, larger inference latency, and high false alarm rates. This section presents some
lessons learned and critical directions for future research, intending to promote the
application of the DL-based IDS in reality.

Apply hybrid schemes: False alarms in in-vehicle cybersecurity scenarios can be
extremely costly. Considering the large network traffic scale, even a low false alarm rate may
consume much maintenance personnel time. Assume a detector achieves 90% accuracy
in the worst case and traffics is transmitted at 10ms intervals. This means ten messages
cannot be correctly identified within one second, seriously affecting subsequent protection
decisions. For this, A practical intrusion detector does not rely solely on a single technique
but is an ensemble of effective components. Researchers could deploy post-processing
solutions to avoid false alarms caused by factors such as traffic jitter in a short period,
like calculating confidence scores for detect results. Besides, utilizing both temporal and
spatial features of traffics may benefit extracting more latent sample characteristics and
then improve the detection performance of IDSs. The upcoming studies can further focus
on hybrid detection schemes in detecting known and unknown attacks.

Use hardware accelerators: Most proposed IDSs are based on the principle of offline
training and online detection. The inference process in a limited embedded resource
environment is more concerned than the training process since the inference process
is performed on-board while the training process is offline. Generally, the inference
process consists of preprocessing received traffics and feature computation, which will be
impacted by computing power and allocated memory during IDS deployment. Therefore,
in the following research on the DL-based intrusion detection field, leveraging hardware
accelerators or offloading tasks could be feasible methods to reduce inference time while
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maintaining advanced IDS solutions. With the widespread application of deep learning,
chip vendors have produced advancedAI accelerators such as field programmable gate array
(FPGA), application-specific integrated circuit (ASIC), neural processing unit (NPU), and
edge TPU. Although the investigated DL-based IDS schemes only rely on CPUs and GPUs,
there are some literature works (Khandelwal & Shreejith, 2022; Khandelwal, Wadhwa &
Shreejith, 2022; Zhang, Yan & Ma, 2022; Machupalli, Hossain & Mandal, 2022) that have
applied these chips for training neural networks.

Secure next-generation IVN protocol: Currently, the great majority of the reviewed
IDS articles are designed for the CAN bus. However, Automotive Ethernet is gradually
expanding its application domain in-vehicle networks due to advances in bandwidth,
cost, built-in security, and native support for TCP/IP. Its practical applications so far
mainly include DoIP, AVB, SOME/IP, and TSN. The introduction of Ethernet makes it
possible to attack utilizing legacy Internet attacks in automotive devices directly. Unlike
the CAN bus communication method, the Automotive Ethernet belongs to point-to-point
communication, with a longer protocol header and numerous upper-layer protocols. These
lead to the IDSs designed for CAN cannot be fully adapted to Ethernet. Therefore, the IDS
solutions for automotive Ethernet Protocol Suite should be considered in future studies to
secure next-generation IVNs.

Develop assessment method: Academic research has difficulties comprehensively
evaluating the benefits of deep learning models. The comparison among different IDS
schemes is conducted on diverse experimental aspects, which cannot provide an impartial
result in terms of efficiency and effectiveness. This is owing to the diversity of the employed
dataset, the adopted dataset segment, pre-processing process, neuron arrangement, and
hardware platforms. Consequently, it is necessary to have a complete range of verification
platforms for automotive intrusion detection system performance, which can obtain
fairer comparison results under a unified computing resource and common influencing
factors. For instance, Stachowski, Gaynier & LeBlanc (2019) developed a test suite to assess
the performance of automotive IDS products. And Wang et al. (2022) make horizontal
comparison analyses of ten representative IDSs.

CONCLUSION
A practical IDS should have extensive attack detection capabilities, low false-positive rate,
and high confidence in detection. In order to improve the effectiveness of IDS against
new security challenges, numerous researchers have intended to incorporate various deep
learning techniques to enhance the feature extraction and classification steps. Therefore,
there aremanyDL-based IDS schemes have been proposed and designed in recent years, and
this survey aims to review and categorize them extensively. Through a systematic review,
we briefly illustrated a variety of attacks on IVNs, and their possible countermeasures that
are best suited to detect them; in addition, the major datasets that benefited to analyze and
evaluate the IDS solutions are presented. To comprehensively offer in-depth knowledge
about the recent research status of deep IDS methods, we put forward a taxonomy of
the proposed IDS approaches concerning their employed neuron network architecture.
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Then, we provide a detailed discussion under each category by analyzing their input data
strategy, benchmark datasets, classification technique, and evaluation criteria. The current
findings demonstrate that no matter practicability or security, no perfect IDS solution can
effectively discover all potential attacks. Thus, this work will be conducive to enhancing
the understanding of current deep IDS studies on IVNs and searching for new and more
suitable techniques.
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