
Received 10 June 2024, accepted 30 July 2024, date of publication 2 August 2024, date of current version 12 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3437416

Intrusion Detection System for Vehicular
Networks Based on MobileNetV3
SHAOQIANG WANG, YIZHE WANG , BAOSEN ZHENG , JIAHUI CHENG ,
YU SU , AND YINFEI DAI
School of Computer Science and Technology, Changchun University, Changchun 130022, China

Corresponding author: Yinfei Dai (220701266@mails.ccu.edu.cn)

This work was supported by the Project of Jilin Provincial Scientific and Technological Department under Grant 20240101343JC and
Grant 20220201154GX.

ABSTRACT With the advancement and refinement of intelligence and connectivity, intelligent connected
vehicles have emerged as a prominent trend in contemporary development. Consequently, invasion attacks
targeting these intelligent connected vehicles have also arisen. Mainstream intrusion detection systems (IDS)
based on deep learning technologies can address malicious traffic infiltrations; however, they often fail to
meet the real-time and lightweight requirements of vehicles. This paper introduces a lightweight vehicular
intrusion detection method leveraging the MobileNetV3 architecture. By utilizing MobileNetV3 as the
core framework, this method incorporates advanced techniques and design principles such as Depthwise
Separable Convolution, Bottleneck structures, and Squeeze-and-Excitation (SE) modules. These innovations
significantly reduce computational and parameter overhead while maintaining high model accuracy. Further-
more, MobileNetV3 is specifically designed for deployment on mobile devices, ensuring efficient operation
even in resource-constrained environments. The proposed intrusion detection model achieved an accuracy,
recall, precision, and F1 score of 100% on the Car-Hacking dataset, and an accuracy, recall, precision, and
F1 score of 99.98% on the CICIDS-2017 dataset. The model size is 16MB. Experimental results demonstrate
that this intrusion detection scheme not only accurately detects malicious attacks on vehicles but also meets
the lightweight requirements of vehicular applications.

INDEX TERMS Intrusion detection, MobileNetV3, lightweight and efficient, connected vehicle networks.

I. INTRODUCTION

Since the Industrial Revolution in Britain, automobiles have
come into public view, with the world’s first car invented by
the German Karl Benz. With the relentless march of tech-
nology, automotive electronic systems have seen exponential
growth. Today’s vehicular landscape has been dramatically
reshaped; vehicles have evolved from purely mechanical,
independent entities reliant solely on human intervention
to entities that are markedly intelligent and electronic [1].
Consequently, vehicle communication systems based on the
Internet of Things(IoT), also known as the Internet of Vehi-
cles (IoV), have emerged [2]. In response, In this new era,
vehicles are increasingly adopting electronic or electrical
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systems for control, with the Electronic Control Unit (ECU)
playing a pivotal role in internal detection and control,
thereby becoming the central authority managing various
vehicular functions. These ECUs intercommunicate through
the Controller Area Network (CAN), enabling a myriad
of vehicular functionalities. Nonetheless, this technologi-
cal progress brings with it significant security challenges,
notably vulnerabilities within the CAN protocol that expose it
to cyber attacks. Cyber attacks are primarily categorized into
Intra-Vehicle Network (IVN) attacks and External Vehicle
Network (EVN) attacks. IVN mainly target the ECUs, with
the prevalent threats being message injection attacks caused
by the lack of identity authentication in CAN communica-
tions and its unique broadcast transmission mechanism [3].
EVN, on the other hand, exploit weaknesses in the interac-
tions between vehicles and infrastructures like roadside units
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through the use of Vehicle-to-Everything (V2X) technology
within Connected Vehicle Networks. Key attack vectors
include Denial of Service attacks(DoS), sniffing, and spoof-
ing attacks.

For Vehicle-to-Everything (V2X) in connected vehicles,
the terminology encompasses Vehicle-to-Vehicle (V2V),
Vehicle-to-Infrastructure (V2I), Vehicle-to-Sensor (V2S),
Vehicle-to-Roadside Unit (V2R), and Vehicle-to-Pedestrian
(V2P) communications [4]. Figure 1 illustrates a prac-
tical transmission paradigm of V2X, which can further
integrate additional technologies such as cloud and edge
computing [5].

FIGURE 1. Vehicle-to-Everything (V2X) real-time transmission.

With the continuous maturation and advancement of
vehicular network technology, the expansion of vehicle
functionalities leads to an increase in information shar-
ing among vehicles, which in turn elevates security risks,
thereby diminishing the stability and robustness of the
vehicles [6]. Within the broader context of cybersecurity,
Intrusion Detection Systems (IDS) play a pivotal role. Tra-
ditional IDS methods include network-based, host-based,
and hybrid architectures, utilizing signature detection, and
anomaly detection techniques. However, these methods face
limitations in meeting the requirements for real-time respon-
siveness and lightweight convenience demanded by vehicles.
Consequently, an increasing number of researchers are lean-
ing towards lightweight model approaches, offering new
opportunities for intelligent intrusion detection systems.

Figure 2 displays a typical architecture designed to address
attacks on vehicles. For Intra-Vehicle Network attacks, mali-
cious CAN data traffic is launched against real vehicles
through the Second-generation on-board diagnostics system
(OBD II) port. The vehicle intrusion detection system is

positioned between the external connections and the CAN
bus, thereby filtering all data traffic entering the CAN bus.
When an attacker attempts to inject malicious traffic into a
vehicle, the Vehicle Intrusion Detection System will problem
an alert message [7]. For External Vehicle Network attacks,
they are primarily launched through a variety of wireless
devices such as WiFi and Bluetooth. The vehicle intrusion
detection system can be implemented as part of the gateway to
identify and prevent these external malicious attacks targeting
the vehicle [33].
Although significant strides have been made in the appli-

cation of deep learning to IDS, numerous challenges persist.
For example, when utilized in cybersecurity, deep learn-
ing models such as Recurrent Neural Networks (RNN)
are required to process complex sequential data, which
may lead to problems of vanishing or exploding gradients,
thereby impacting the training and stability of the models.
Traditional CNN models, such as VGGNet and AlexNet,
typically possess a vast number of parameters, often exceed-
ing hundreds of millions. This results in computationally
intensive operations, particularly pronounced when dealing
with large-scale or high-dimensional data. They require sub-
stantial computational resources, which are particularly inad-
equate in resource-constrained vehicular environments [8],
[9]. Furthermore, the increasing complexity of modern cyber
attacks has rendered traditional signature-based IDS methods
increasingly ineffective, as they struggle to identify new or
variant attacks [10], [11]. Particularly in Internet of Things
(IoT) environments, the surge in attacks originating from
numerous connected devices has made the challenges faced
by traditional IDS methods even more pronounced. The
resource constraints of IoT devices render the deployment
of complex deep learning models on these devices impracti-
cal [12]. Moreover, although machine learning methods excel
in certain scenarios, their capability is limited when it comes
to handling zero-day attacks and the polymorphic nature of
malware [11].

FIGURE 2. Architectural framework for internal and external vehicle
attacks.

In this milieu, MobileNetV3, distinguished by its stream-
lined architecture, exhibits pronounced benefits in terms of
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efficiency, storage capacity, and power utilization. Utilizing
depthwise separable convolutions, MobileNetV3 markedly
diminishes the quantity of model parameters and computa-
tional burdens [13], thus reducing computational expenses
and storage needs, whilst simultaneously augmenting pro-
cessing velocity on edge devices [14].

To address the security vulnerabilities encountered during
vehicle operation, this paper proposes a lightweight vehi-
cle intrusion detection model based on MobileNetV3. This
model is crafted to identify assaults on both the internal and
external networks of vehicles, thus bolstering the precision
of intrusion detection. This strategy signifies a groundbreak-
ing shift from conventional machine-learning-based intrusion
detection systems, facilitating more potent responses to the
security challenges contemporary vehicles encounter. Ini-
tially, the proposed intrusion detection system processes an
array of datasets to establish an optimal dataset. Thereafter,
the cultivated dataset is partitioned into a training set and a
testing set in an 80%-20% split. Ultimately, the segmented
dataset is input into the intrusion detection model for both
training and assessment. The primary contributions of this
paper are outlined as follows:

1) We propose an anomaly detection method based on
the Isolation Forest algorithm and a feature selection
technique utilizing the Random Forest model. These
methods are employed to eliminate irrelevant outliers
from the dataset and to identify features pertinent to
vehicle intrusion detection, thereby enhancing predic-
tive performance.

2) A novel spatial feature extraction architecture has been
designed to enhance the detection efficiency of the
model by extracting spatial features from the dataset
prior to training with the MobileNetV3 model.

3) Experimental evaluations were conducted on the par-
titioned dataset, and compared with other methodolo-
gies, our approach achieved superior results in terms of
accuracy and F1 score.

The residual framework of this manuscript unfolds as fol-
lows. Initially, within Section II, we present the contemporary
investigations pertaining to intrusion detection in vehicular
networks. Subsequently, Section III scrutinizes the archi-
tectural design of the intrusion detection models elucidated
in this paper. This encompasses preprocessing of data and
the intrinsic architecture of the intrusion detection model.
In Section IV, we utilize corresponding assessment method-
ologies to holistically evaluate the training outcomes of the
model. Finally, in Section V, we concisely summarize the
conclusions derived from this study and deliberate upon
future work plans.

II. RELATED WORKS

Vehicular networks constitute an integrated network system
that facilitates the exchange of information and collabo-
rative control among vehicles, roadways, and other traffic
participants through various sensors, controllers, and com-
munication technologies [15]. Given its attributes such as

elevated mobility and dynamism, vehicular ad hoc networks
(VANETs) are prone to an extensive array of assaults [16].
The principal concerns encountered by VANETs encompass
security, reliability, and confidentiality. To tackle these tripar-
tite challenges, numerous scholars have conducted thorough
explorations into VANETs. In their 2014 study, Engoulou
et al. [16] put forward multiple strategies to mitigate the
challenges inherent in vehicular ad hoc networks, However,
there was an absence of discourse regarding methods for
safeguarding privacy. Regarding the Controller Area Net-
work (CAN), its deficiency lies in the absence of identity
authentication and message source validation. Greenough
demonstrated in their investigation [17] that vehicles can
be remotely manipulated through attack vectors such as CD
players and cellular networks, thereby exerting control over
functions such as braking and steering whereas the vehicle
is in motion, prompting widespread concern. Azees et al.
scrutinized meticulously the methods of identity authen-
tication for safeguarding privacy in their investigation of
2016 [18]. Due to their stringent requirements for real-time
performance and reliability, as well as constraints in com-
putational capacity, storage resources, and cost, In-Vehicle
Networks (IVNs) pose considerable challenges [19]. Thus,
in practical settings, conventional deep learning methodolo-
gies are frequently inapplicable to real-world IVN scenarios.
In the research conducted by Wu et al. [19], a intrusion
detection system based on temporal periodicity intervals
was proposed. Nonetheless, this model is solely applicable
for anomaly detection in cyclic message transmissions and
lacks broad applicability. In the research conducted by Yao
et al. [20], they introduced an intrusion detection model
named STDeepGraph specifically designed for the extrinsic
vehicular network. This model primarily focuses on malev-
olent data originating externally to the vehicle, The datasets
employed encompass CICIDS2017 and UNSW-NB15, and
the amalgamation of Long Short-Term Memory (LSTM)
and Convolutional Neural Network (CNN) architectures was
utilized for this integration. In the research conducted by
Aswal et al. [21], a proposition was made to employ classical
machine learning algorithms for intrusion detection, utilizing
the CICIDS2017 dataset. However, their consideration of
various types of network attacks was deemed inadequate.
In the research conducted by Schmidt et al. [22], a intru-
sion detection model named KFC was proposed, employing
spline-based modeling. The NSL-KDD dataset was utilized
for this endeavor. In the domain of intrusion detection,
numerous investigations have harnessed a variety of machine
learning and deep learning methodologies. For instance,
certain studies concentrate on employing Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs),
or their derivatives to discern anomalous patterns within net-
work traffic. Whereas these approaches have demonstrated
significant achievements in conventional network environ-
ments, they still face challenges in specific scenarios within
the vehicular network domain, including problems related
to processing speed, model complexity, and optimization of
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energy consumption. In the research conducted by Vuong
et al. [23], they devised a decision tree-based intrusion detec-
tion model and conducted training to detect four types of
attacks. The outcomes demonstrated notable precision, albeit
with a latency of one second. In the research conducted by
Fu et al. [24], they devised an intrusion detection system
founded on FPGA architecture, attaining elevated real-time
efficacy in vehicular settings. Nonetheless, this framework
is strictly tailored for FPGA deployment and is ill-suited
for alternative platform contexts, thereby harboring inherent
constraints. In the investigation by Taylor et al. [25], they
proposed a frequency-based detector capable of swiftly iden-
tifying anomalies by calculating the integral of curves within
a one-second timeframe. However, this solution is confined
to the usage of periodic messages, presenting considerable
constraints within the context of vehicular networking envi-
ronments. In the study conducted by Wasicek et al. [26],
they proposed a behavior-centric context-aware intrusion
detection framework, wherein the intrusion detection model
framework utilizes networking mechanisms to discern oper-
ations. The study demonstrates that the model achieves an
exceedingly high level of precision. However, its applicability
to real-world scenarios or anticipated driving conditions may
not be assured. In the domain of vehicular environments,
the significance of lightweight models is paramount, owing
to their diminished reliance on computational resources and
expeditious processing velocity, thereby mitigating the con-
straints posed by the finite resources inherent in vehicular
systems. In the realm of vehicular networking, particularly
within the context of edge computing environments, employ-
ing lightweight models proximal to the data source facilitates
expeditious processing, thereby mitigating both data trans-
mission overhead and processing latency [27]. Additionally,
the refinement and enhancement of streamlined models
persistently captivate the interest of scholars. Specifically,
through precise structural modifications and enhancements to
the MobileNetV3 architecture, it is possible to substantially
reduce the computational complexity while preserving high
precision, an essential quality in the dynamically evolving
environment of vehicular networks [13]. Moreover, by incor-
porating these optimizedmodels into the security frameworks
of vehicular networks, there is not only an augmentation of
the network’s real-time surveillance capabilities but also an
improvement in the adaptability and reaction time to nascent
threats [28]. By leveraging enhanced deep learning archi-
tectures, coupled with unique data from vehicular networks,
effective pattern recognition and anomaly detection can be
conducted within intricate network environments, thus signif-
icantly boosting the overall security efficacy of the network.

III. PROPOSED SYSTEM MODEL

A. FRAMEWORK OVERVIEW
In the current domain of vehicular malicious traffic data
detection, numerous research efforts have aimed at develop-
ing effective intrusion detection systems. However, several

shortcomings persist, presenting opportunities for our model
framework. Firstly, many extant studies exhibit deficiencies
in data preprocessing. Some research may be confined to
rudimentary data cleaning and missing value imputation,
overlooking more sophisticated preprocessing techniques.
Secondly, certain existing models employ deep neural net-
works and ensemble learning methods characterized by
excessive computational overhead and substantial mem-
ory requirements, limiting their applicability to theoretical
research and impeding practical deployment in real-world
vehicular systems.
Comparative Analysis with Existing Work, Many existing

models suffer from limitations in both preprocessing and
model complexity. While sophisticated methods like deep
neural networks and ensemble learning are often employed,
these approaches can be hindered by high computational
costs and significant memory usage. For example, most of the
experiments in the work used Convolutional Neural Network
(CNN) based models. The main focus was on basic data
cleaning techniques such as simply removing null values
and linear interpolation of missing data. These models often
neglect advanced preprocessing steps like SMOTE (Syn-
thetic Minority Over-sampling Technique) for handling class
imbalances or outlier detection using robust statistical meth-
ods. This can lead to suboptimal data quality and integrity,
impacting the model’s overall performance.
Addressing these deficiencies, our model framework offers

distinct advantages. This study introduces amodel framework
specifically designed for detecting malicious traffic data in
vehicular environments. The architecture of this vehicular
intrusion detection system is depicted in Figure 3. Initially,
we implement an extensive series of data preprocessing steps,
including data filtering, outlier management, and oversam-
pling, to ensure data quality and structural integrity. Unlike
other studies that may perform basic preprocessing, our
approach employs more targeted and innovative strategies
in feature engineering, extracting richer and more repre-
sentative features. For example, instead of merely imputing
missing values, we use advanced techniques such as KNN
imputation and robust outlier detection using the Isola-
tion Forest method. This is followed by normalization and
conversion into image format, ensuring that the dataset is
optimal for model input and does not compromise detection
efficacy. Subsequent to data preprocessing, we employ the
MobileNetV3 model for training and evaluating the dataset.
MobileNetV3 preserves model accuracy while significantly
reducing computational and parameter overhead, making
it suitable for practical deployment in resource-constrained
vehicular environments. In contrast, most of the models pro-
posed in the experiments using ensemble learning techniques
such as random forests and XGBoost require a lot of com-
putational resources and memory, making them less suitable
for real-time vehicle applications. MobileNetV3 lightweight
architecture, incorporating Depthwise Separable Convolu-
tions and Squeeze-and-Excitation (SE) modules, allows it to
perform efficiently with minimal resource consumption.
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FIGURE 3. Proposed architectural model for vehicle intrusion detection systems.

To ensure the rigor of experimental results and the effi-
ciency of the experimental process, the model undergoes
spatial feature extraction, hyperparameter optimization, and
five-fold cross-validation prior to final evaluation. These
steps guarantee the model’s accuracy and practicality, cul-
minating in optimal experimental outcomes. For example,
unlike the traditional models that may skip cross-validation
due to computational constraints, our approach ensures robust
model validation, enhancing reliability and performance
metrics.

Our model framework surpasses traditional approaches
in several aspects, particularly in preprocessing sophistica-
tion and computational efficiency. However, it is essential to
acknowledge that while MobileNetV3 significantly reduces
overhead, it may still face limitations in environments with
extremely constrained resources. Future work could focus on
further optimizing the model for such scenarios.

B. DATA PREPROCESSING
During efficient data analysis and model training, the data
preprocessing stage plays a crucial role. This is especially
true when employing advanced models like MobileNetV3,
making this step particularly pivotal. The MobileNetV3
model, as a leading convolutional neural network (CNN), has
demonstrated remarkable effectiveness in the field of image
processing. The excellence of CNNs in image processing pri-
marily lies in their ability to effectively identify and process
spatial hierarchical structures within image data. Considering
this, we have decided to convert the dataset into image format

to better leverage the capabilities of the MobileNetV3 model.
The dataset concerning both internal and external vehicle
intrusions essentially comprises structured tabular data, ren-
dering the conversion process into image data viable and
expedient. This transformation involves several pivotal steps.
Initially, we need to load the entire network dataset. Sub-

sequently, filtration and cleansing are conducted to ensure
the quality and consistency of the data. Subsequently, the
dataset undergoes refinement through sampling and fea-
ture extraction processes, aiming to encapsulate solely the
most pertinent information essential for model training. The
ultimate step involves normalization, an imperative process
aimed at ensuring data consistency across diverse ranges and
scales. Via this series of detailed and thorough preprocess-
ing steps, we have laid a solid groundwork for subsequent
machine learning model training, guaranteeing that the data
is in an optimal state prior to being fed into the MobileNetV3
model.

1) CAR-HACKING DATASET
Within this study, the dataset employed for internal vehicle
analysis is the Car-Hacking dataset, curated by capturing
CAN traffic through the OBD-II port during occurrences
of CAN attacks [29]. This dataset is tailored specifically
for the exploration of vehicle network security. It provides
data extracted from the Controller Area Network (CAN) bus
of contemporary automobiles or alternative vehicle commu-
nication interfaces. The Car-Hacking dataset encompasses
a spectrum of attacks on vehicular networks, including
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but not limited to: Distributed Denial of Service (DoS)
attacks, fuzzing attacks, and deception attacks [30]. The
plethora of attack types embodied in the dataset renders
it an invaluable resource for researching vehicular net-
work security, especially in the development of advanced
systems tailored for the detection and mitigation of such
attacks.

The primary features of the Car-Hacking dataset include
CAN identifiers (IDs) and the 8-bit data fields of CAN traf-
fic packets (DATA[0]-DATA [7]) [31], [32]. The meticulous
documentation of these characteristics not only unveils the
attributes of the attack process but also furnishes critical data
for analyzing patterns of aggressive behavior. The dataset
encompasses five labeled categories: ‘Normal’, ‘RAM’,
’Gear ’, ’DoS ’, and ‘Fuzzy’. The distribution of each labeled
dataset is illustrated in Table 1 as follows. Evidently, during
the normal operation of vehicles, the quantity of normal data
significantly surpasses that of anomalous data. Furthermore,
given the vast amount of data, the inevitable presence of some
outliers is unavoidable. Therefore, in the data preprocessing
phase, we implemented filtering and cleaning of the data to
avoid biases during the training process, which could lead to
overfitting phenomena.

TABLE 1. Distribution of the Car-Hacking label dataset.

2) CICIDS-2017 DATASET
For external network intrusions targeting vehicles, we employ
the CICIDS-2017 dataset, a network traffic dataset developed
by the Canadian Institute for Cybersecurity and Intelligent
Cities Laboratory (CIC). The dataset includes a variety of
real-world attack types such as DDoS (Distributed Denial
of Service), DoS (Denial of Service), Web attacks, and
information leaks. The CICIDS-2017 dataset encompasses
diverse network traffic characteristics, including source IP,
destination IP, transport layer protocol, flow duration, and
the number and size of packets [33], [34], [35]. These
features are utilized to train machine learning models to
distinguish between normal and anomalous traffic. Although
the CICIDS-2017 dataset was initially conceived for con-
ventional network settings, it covers an extensive array of
network attack types that are critically pertinent to threats that
vehicular communication networks might confront. More-
over, numerous cybersecurity strategies and methodologies
devised for Ethernet settings are transferable to alternative
arenas, including vehicular networks. Vehicular networks,
especially the telematics systems in contemporary vehicles,

depend profoundly on the robustness and security of network
operations. The cyber attacks emulated in the CICIDS-2017
dataset, such as DoS and DDoS, resemble potential cyber
threats these systems could face. By leveraging this dataset,
researchers can evaluate the efficacy of extant network intru-
sion detection systems against vehicular network security
threats, and refine and enhance these systems for the unique
communication environments of vehicles. This dataset com-
prises data labeled with 12 different categories, distributed as
depicted in Table 2. Analogous to the Car-Hacking dataset,
the prevalence of normal data samples substantially outnum-
bers that of anomalous data, necessitating similar approaches
in dataset preprocessing.

TABLE 2. Distribution of the CICIDS-2017 label dataset.

3) DATA FILTERING
Initially, we introduced an intrusion detection system (IDS)
paradigm that commenced processing the dataset. Specif-
ically for the Car-Hacking dataset, given the substantially
greater volume of normative data compared to anomalous
data within the automotive network data, we implemented
filtration and stratification strategies. We preserved the quan-
tities of samples labeled with ‘Fuzzy’, ‘RPM’, ‘Gear’, ‘DoS’,
and analogous designations to ensure these pivotal anomaly
types were adequately represented. Furthermore, to tackle
the problem of data imbalance, we executed a 50% without-
replacement stochastic sampling of the normative data sam-
ples marked ‘Normal’. In the instance of the CICIDS-2017
dataset, pronounced imbalance was discernible among the
datasets. Hence, we conducted stochastic sampling of the
‘BENIGN’, ‘DoS Hulk’, ‘PortScan’, ‘DDoS’ designations
according to their respective proportions, whereas the remain-
der of the dataset remained unaltered. This approach aimed
to equilibrate the proportion of samples within the dataset,
thereby augmenting the efficacy and precision of model
training. Following these procedures, we amalgamated the
sampled data with the unsampled samples and arranged them
by their indices. This process ensured the coherence and
integrity of the dataset.
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4) ISOLATED FOREST OUTLIER PROCESSING
Artificial intelligence algorithms frequently entail the manip-
ulation of extensive datasets that contain both pertinent and
superfluous data. Given the occurrence of anomalies within
these datasets, the Isolation Forest technique is utilized for
anomaly mitigation. Should an aberrant field be identified,
it is consequently eliminated. This technique, being unsu-
pervised, necessitates the exclusion of the label column.
The Isolation Forest is executed by arbitrarily selecting an
attribute and a random division value for that attribute, with
the division rule of the stochastic decision trees formulable as
follows.

f (x) =
{
q, if xq < p
¬q, otherwise

(1)

Herein, q signifies the attribute, p denotes the partition
point, and xq is the valuation of data point x with respect to
attribute q.

Regarding the calculation of anomaly scores, the more
rapid isolation of a data point (namely, the more abbreviated
the path length), the elevated the anomaly score becomes. Iso-
lation forests ascertain the anomaly score based on the mean
path length of the data points, as depicted in the subsequent
equation.

S(x, n) = 2→ E(h(x))
C(n) (2)

C(n) = 2 · H (n→1)→2(n→1)
n

(3)

Among these terms: E(h(x)) signifies the mean path length
for the data point x, C(n) represents the anticipated value of
the mean path length, and H(i) is designated as the harmonic
number, delineated as H(i) = ln(i) + 0.5772156649. In this
context, n refers to the total sample count within the dataset,
and the path length h(x) describes the sequence of edges
encountered from the root node to the leaf node where x
resides.

In deploying the Isolation Forest algorithm, we orches-
trated a framework consisting of 100 decision trees to forge
a model architecture tailored for anomaly detection. Con-
currently, the contamination factor was established at 0.1,
implying that an estimated 10% of the data points within the
dataset are projected to be anomalies. Furthermore, to guar-
antee the reliability and replicability of our experimental
findings, a constant random seed was specified.

With respect to the Car-Hacking dataset, the outcomes
of anomaly detection are illustrated in Figure 4. Initially,
features DATA [5] and DATA [6] demonstrated pronounced
negative correlations, with coefficients of →0.51 and →0.53
respectively. This suggests that elevated values of these
attributes significantly increase the likelihood of the data
points being classified as anomalous by the model. The
CAN ID presented a negative correlation coefficient of
→0.24, which, although more subdued, still indicates a
certain proficiency in detecting anomalies when CAN ID
values are elevated. This might suggest that CAN ID could

serve as a supportive characteristic in identifying anomalous
conditions. Other attributes like DATA[0], DATA [2], and
DATA [3] exhibited correlation coefficients ranging from
→0.42 to →0.37, indicating mild to moderate negative cor-
relations. Features DATA [1], DATA [4], and DATA [7],
with correlation coefficients close to zero at 0.20, 0.34, and
→0.10, respectively, suggest a negligible impact in anomaly
detection.

FIGURE 4. Results of anomaly detection in the Car-Hacking dataset.

For the CICIDS-2017 dataset, owing to its considerable
assortment of feature columns, it was subjected to dimen-
sionality reduction via Principal Component Analysis (PCA).
The detection outcomes are exhibited in Figure 5, where the
gradation of colors denotes the anomaly scores associated
with the data points. As delineated by the adjacent color
legend, hues approaching red reflect elevated anomaly scores,
whereas those nearing blue represent diminished scores.
Consequently, after an exhaustive assessment of all feature
columns for anomalies, data points deemed outliers based
on the predictive labels of the model were excised from the
dataset. This phase is pivotal for purifying the data and bol-
stering the precision of the experiments. This preprocessing
of data secures the efficacy of model training and subse-
quent analytical evaluations, furnishing a more robust and
dependable groundwork for the comprehensive analysis and
elucidation of the data.

5) SMOTE OVERSAMPLING
In addressing the problem of outliers, we eliminated a mul-
titude of data points that were extraneous to the experiment,
which led to a disparity in the distribution of category labels
across the dataset. To counteract the likelihood of overfitting
within our intrusion detection model and to augment the pre-
cision of the Intrusion Detection System (IDS), we adopted a
strategy of oversampling to equilibrate the data. We specif-
ically implemented the SMOTE algorithm, as delineated
by the ensuing formula. Within the Car-Hacking dataset,
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a considerable variance was noted in the number of samples
labeled ‘Fuzzy’ relative to other categories. To rectify this
imbalance, we applied oversampling to the ‘Fuzzy’ labeled
data, raising its count to align with the mean sample sizes of
the ‘RPM’, ‘Gear’, and ‘DoS’ categories. For the CICIDS-
2017 dataset, we similarly escalated the numbers of ‘Web
Attack’, ‘Infiltration’, ‘Bot’, ‘DoS slowloris’, ‘SSH-Patator’,
‘DoS GoldenEye’, ‘FTP-Patator’, and ‘DoS Slowhttptest’
to correspond with the average figures of ‘PortScan’, ‘DoS
Hulk’, and ‘DDoS’. This methodology not only harmonizes
the proportions of categories but also amplifies the model’s
capacity to generalize, thus enhancing its robustness in the
face of novel attacks. Following this resampling, an equi-
librium was achieved across the datasets, ensuring that the
IDS sustains elevated levels of detection accuracy in diverse
contexts.

xnew = xi + rand(0, 1) ↑ (xnn → xi) (4)

Herein, xi represents each sample from the minority class,
xnn denotes the nearest neighbor sample, xnew symbolizes the
newly synthesized sample, and rand(0,1) is a random number
drawn from a uniform distribution.

FIGURE 5. Results of anomaly detection in the CICIDS-2017 dataset.

6) RANDOM FOREST FEATURE SELECTION
To augment the detection efficiency and precision of the
model, feature selection is implemented on the dataset,
isolating attributes whose importance scores surpass a pre-
determined threshold. These attributes are considered pivotal
to the model’s predictive efficacy. This method facilitates the
identification and preservation of the most critical features
for the prediction endeavor, whilst discarding those of lesser
significance. Themodel utilizes a random forest classifier and
conducts feature selection through the computation of Gini
impurity, which quantifies the importance of features within
the trees, as delineated by the subsequent formula.

Imp(Xj,T ) =
∑

t↓T ωI (t,Xj) (5)

Within this framework, ωI(t,Xj) represents the decrement
in impurity of feature Xj before and after the split at node t.
Subsequently, by summing across all trees and computing the
average, one obtains the aggregate importance of feature Xj:

Imp(Xj) = 1
M

∑M

i=1
Imp(Xj,Ti) (6)

Features from the Car-Hacking dataset are selected pred-
icated on their significance, preserving only those with a
significance value greater than 0.05, as delineated in Figure 6.

FIGURE 6. The quantitative assessment of feature significance within the
Car-Hacking dataset.

7) TRANSFORM THE IMAGE
In the realm of image manipulation, normalization con-
stitutes an essential pre-processing step that enhances the
performance of algorithms by standardizing the range of
pixel values. Typically, pixel values span the [0,255] range;
however, employing a quantile-based normalization method
proves to be an effective means of data standardization. This
method is particularly adept at recalibrating the data to be
more centrally aligned with the median, assuming a Gaus-
sian distribution. Consequently, it diminishes the influence
of outliers and bolsters the robustness of the dataset. The
mathematical formulation of the quantile transformation is
delineated below.

x ↔
ij = Fj(xij) → Fj(ql)

Fj(qu) → Fj(ql)
(7)

Within this schema, each feature within the dataset is char-
acterized by its cumulative distribution function (CDF). The
expressions ql and qu signify the lower and upper quantiles,
respectively, while Fj(ql) and F(qu) represent the values of
the cumulative distribution function associated with these
quantiles, respectively.
In the course of preparing the training data for the

MobileNetV3 model, we executed a series of meticulous data
preprocessing protocols. These encompassed data sampling,
outlier rectification, normalization, and feature enhancement.
Subsequently, the network traffic data samples from our
dataset were converted into images of 224 ↑ 224↑3 for-
mat. This image configurations effectively harnesses the
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FIGURE 7. Representative image samples of various attack types in Car-Hacking datasets.

FIGURE 8. Representative image samples of various attack types in CICIDS-2017 datasets.

architectural features of MobileNetV3, ensuring appropriate
input. Illustrative image samples representing various types
of attacks from the Car-Hacking dataset are depicted in
Figure 7, whereas Figure 8 displays similar samples from
the CICIDS-2017 dataset. Through the examination of these
detailed image attributes, the MobileNetV3 model achieves
heightened precision in identifying and distinguishing among
various network attacks, thereby serving a crucial role in
security defense in real-world applications.

C. THE PROPOSED INTRUSION DETECTION MODEL
In the pivotal phase of data preprocessing, all images undergo
a transformation to conform to the 224 ↑ 224↑3 standard,
a requirement tailored to align with the input criteria of
the MobileNetV3 model. This critical formatting endeavor
is indispensable for the model’s efficacy as it guarantees
data uniformity and facilitates efficient information extrac-
tion from the images. Following this transformation, the
preprocessed images are introduced into the intricately engi-
neered MobileNetV3 model for comprehensive training and
validation. Celebrated for its computational efficiency and
precision, MobileNetV3 is exceptionally adept for appli-
cations on mobile and edge devices. Within the model’s
framework, depicted in Figure 9, the initial phase concen-
trates on spatial feature extraction through a synergistic
operation of residual connections and dual convolutional

layers. Subsequent to each convolutional layer, batch nor-
malization and ReLU activation functions are employed to
enhance the capture of spatial patterns at the early model
stages. These initial features are then refined in successive
stages through a sequence of inverted residual blocks, facil-
itating intricate feature transformations. The strategic use of
residual connections not only amplifies the network’s training
efficiency but also bolsters the model’s ability to generalize.
Following the intricate processing by the inverted residual
blocks, the model advances to the classification phase. This
final stage employs global average pooling, additional con-
volutional layers, and fully connected layers, culminating
in the generation of classification outcomes via the out-
put layer. This carefully orchestrated structural amalgam
endows MobileNetV3 with the dual benefits of lightness and
formidable processing capacity and accuracy.
In the reverse residual block of MobileNetV3, an intri-

cately configurations sequence of strata is utilized to enhance
network efficacy: an expansion layer, a depthwise separable
convolution layer, an attention mechanism layer, and a pro-
jection layer. The intricate operational flow of these strata,
along with the internal functional management, is depicted
in Figures 10 and 11. Notably, an initial evaluation of the
input and output channel counts is conducted to ascertain
their equivalence. Should they coincide, the expansion layer
is bypassed, and the input is seamlessly transitioned to
the depthwise separable convolution layer for refinement.
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FIGURE 9. The network architecture of MobileNetV3 model.

Contrarily, if a disparity exists, the input undergoes mod-
ulation in the expansion layer to align the channel counts,
thus ensuring parity between the input and output channel
numbers. The expansion layer employs 1 ↑ 1 convolutional
kernels and ReLU6 activation functions initially to amplify
the channel count of featuremaps. This strategy is designed to
enrich the detailed feature information available for the ensu-
ing depthwise separable convolution layer while maintaining
the dimensional congruence of the block’s input and output.

The depthwise separable convolution layer, an efficacious
strategy in convolution operations, substantially reduces both
the parameter count and computational overhead while sus-
taining superior performance. This method is eminently
suitable for streamlined network designs and deployment
on mobile platforms. The procedure is bifurcated into two
integral stages: depthwise convolution and pointwise con-
volution. Initially, depthwise convolution is implemented,
subsequently followed by pointwise convolution. During
depthwise convolution, designated Bottlenecks execute con-
volution operations independently on each channel of the
input feature map, utilizing individual filters per channel.
This approach primarily facilitates the extraction of features
within singular channels, rather than across all channels
concurrently. The Bottleneck configurations might include a
single filter, the application of attention mechanisms, types
of activation functions, and stride specifications. Follow-
ing the completion of depthwise convolution, the phase of
pointwise convolution initiates. This stage employs 1 ↑ 1
filters to manipulate the output from the depthwise con-
volution. In contrast to depthwise convolution that focuses
on intra-channel feature extraction, pointwise convolution
aims to amalgamate features inter-channel. Through linear
combinations of features across various channels, this stage
effectively consolidates the spatial attributes extracted during
depthwise convolution into a unified feature representation,
thereby enhancing the model’s expressive power. Within the

entire inverted residual block structure, if both the input and
output feature map dimensions remain unchanged and the
stride for depthwise separable convolution is set at 1, a skip
connection strategy is implemented; if not, the utilization of
skip connections is precluded.
The merit of this staged processing technique resides in its

pronounced reduction of parameter quantities and computa-
tional demands. In depthwise convolution, the application of
filters individually within each channel substantially curtails
the parameter count; following this, the pointwise convolu-
tion effectuates the amalgamation of features across various
channels whereas preserving computational efficiency. This
confluence of procedures establishes depthwise separable
convolution as both efficacious and formidable, particularly
apt for environments with limited resources. Throughout
this process, the deployment of activation functions (such as
ReLU or Hardswish) and, when employed, attention mech-
anisms, significantly bolsters the network’s capability for
nonlinear processing and the judicious distribution of fea-
ture importance. Additionally, each convolutional stage may
incorporate normalization techniques, like batch normaliza-
tion, which contribute to the training stability and efficiency
of the network.

FIGURE 10. Inverted residual network of MobileNetV3.

The deployment of the Squeeze-and-Excitation (SE) atten-
tion architecture transpires subsequent to the deep convolu-
tional layers, facilitated by configurations variables within
the inverted residual structures. The quintessential role of
the SE attention framework is to dynamically modulate the
weight distribution across diverse regions of the feature
maps, thereby amplifying the model’s proficiency in appre-
hending pivotal information. Its architecture is depicted in
Figure 12. This framework encompasses two crucial con-
stituents: Squeeze and Excitation. Initiated by the Squeeze
component, the process commences with average pooling
applied to the input feature maps, effectuating spatial con-
densation of each channel to formulate a comprehensive
feature representation. Thereafter, the Excitation compo-
nent assimilates these condensed features and subjects them
to two sequential convolutional layers. The initial convo-
lutional stratum utilizes a 1 ↑ 1 convolutional kernel in
conjunction with the ReLU activation mechanism, serving to
diminish the parameter count while integrating non-linearity;
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FIGURE 11. Internal function processing of MobileNetV3 reverse residual block.

FIGURE 12. The execution process of the SE attention mechanism.

the succeeding convolutional stratum similarly employs a
1 ↑ 1 kernel, it is combined with a Hard-sigmoid activation
mechanism, intended to produce attention weights for each
channel.

Employing this sophisticated architecture, the SE attention
mechanism meticulously calculates the importance coeffi-
cients for each channel. These coefficients are subsequently
employed to modulate the original feature map channels,
thereby recalibrating the feature maps to accentuate more
critical channels and attenuate the less significant ones. This
refined feature representation ensures that the model’s output
is more attuned to information that is essential for the defini-
tive task, significantly enhancing the model’s overall efficacy
and efficiency.

In conclusion, the inverted residual architecture typically
incorporates a projection layer designed to recalibrate the
feature map dimensions to conform to the desired output
specifications. This layer employs a 1 ↑ 1 convolutional
operation, adjusting the channel count to satisfy the model’s
output criteria. Subsequent to the phase of feature extraction,
the architecture applies a global average pooling to the feature
maps via an adaptive average pooling layer, compressing
the spatial dimensions to a singular unit. Classification is
then executed through a classifier, which comprises a linear
fully connected layer coupled with an activation function.
A Dropout layer precedes the ultimate fully connected layer
to curtail overfitting. The output from this final layer is pro-
cessed through a Softmax function, resulting in a probability
distribution across the categories. The model identifies and

selects the category with the highest likelihood as the defini-
tive classification outcome.

IV. EXPERIMENTAL OUTCOMES AND PERFORMANCE

EVALUATION

In our study, the programming was conducted using the
Python language, employing a suite of specialized libraries
including TensorFlow, NumPy, Hyperopt, Matplotlib, Scikit-
learn, and Pandas. These libraries offer a comprehensive
range of functionalities that support various stages from
data processing and model training to results visualization.
Moreover, our experiments utilized an Intel XEON Gold
6226R CPU, accompanied by 32GB of memory, an NVIDIA
RTX 3090 GPU, and a 1.92TB SATA solid-state drive (SSD).
Such hardware configurations provided robust support for our
research, ensuring efficiency and stability in computational
tasks.

A. ASSESSMENT CRITERIA
To ascertain the interoperability between the proposed
Intrusion Detection System (IDS) framework and the
MobileNetV3 architecture, and to obviate performance detri-
ments stemming from unsuitable hyperparameter tuning,
we utilized the Tree-structured Parzen Estimator (TPE) for
the refinement of hyperparameters. TPE stands out as an
efficacious strategy for the optimization of hyperparame-
ters, simultaneously minimizing computational expenditures
and safeguarding precision. We delineated a hyperparameter
exploration domain encompassing pivotal parameters such
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as batch size, iteration frequency, and learning rate. In the
realm of data management, to avert the risk of overfitting
within our experimental outcomes, we segmented the training
dataset following an 80%-20% distribution, thereby consti-
tuting an 80% training subset and a 20% testing subset.
Furthermore, we established a threshold of five iterations,
termed ‘patience’, as a parameter for prematurely ceas-
ing training. Within the TPE methodology, the election of
hyperparameters pivots on the computation of probability
ratios. This algorithm meticulously evaluates the efficacy
of diverse hyperparameter amalgamations and revises the
probabilistic model in light of these evaluations, thus steering
the subsequent hyperparameter explorations. This approach
allows TPE to adeptly pinpoint and select the most advan-
tageous hyperparameter configurations, thereby augmenting
the model’s comprehensive efficacy. The formula for calcu-
lating the probability ratio in the TPE framework is presented
herewith.

r(x) = P(x|y = L)
P(x|y = H )

(8)

Herein, r(x) denotes the relative likelihood of a new
configuration x between good and poor configurations, char-
acterized by the PDF of the good configuration (P(x | y =
L), where LL signifies lower loss) and the PDF of the poor
configuration (P(x | y = H ), where H indicates higher loss).

Upon securing the optimal hyperparameter ensemble,
to circumvent the perils of overfitting and guarantee that
the model refined through hyperparameter optimization
manifests commendable generalizability across diverse data
distributions, quintuple cross-validation is leveraged to assess
the efficacy of the optimal hyperparameter configuration.
In each cycle of this process, 80% of the pristine training
dataset is allocated for model training, whereas the residual
20% serves the purpose of model validation. The evaluation
outcomes are quantitatively assessed utilizing metrics such as
accuracy, precision, recall, and F1 score, with their respective
computation methods delineated subsequently.

Accuracy = TN + TP
TN + TP+ FN + FP

(9)

Precision = TP
TP+ FP

(10)

Recall = TP
TP+ FN

(11)

F1 = 2TP
2TP+ FN + FP

(12)

In this context, TP signifies the number of true positives,
i.e., cases that are positive and accurately identified as such.
FN represents false negatives, instances in which positive
cases are incorrectly labeled as negative. FP pertains to false
positives, denoting instances where negatives are wrongly
classified as positives, while TN refers to true negatives,
the correct identification of negative instances. Accuracy,
precision, recall, and the F1 score are pivotal indices for
evaluating the efficacy of classification models, mirroring

the predictive strength of a model across varied dimensions.
Accuracy is the ratio of correct predictions (regardless of
class) to the total predictions made, ideally suited to datasets
with uniform distributions. Precision, however, concentrates
on the ratio of true positives within the subset predicted
as positive. This index is especially vital in environments
where the consequences of erroneously classifying a negative
as a positive are substantial. In contrast, recall assesses the
ratio of actual positives that are correctly detected by the
model, essential in situations where failing to detect a pos-
itive has significant repercussions. The F1 score, a harmonic
mean of precision and recall, integrates both measures and
is particularly advantageous for datasets with skewed dis-
tributions. Together, these indices aim to thoroughly assess
model performance, ensuring the model’s effectiveness in
fulfilling specific operational requirements. They provide
a comprehensive, multi-dimensional framework for perfor-
mance evaluation, facilitating amore profound understanding
and enhancement of classification models.

B. RESULTS AND DISCUSSION
This research endeavors to devise an intrusion detec-
tion system characterized by its high efficiency, precision,
lightweight structure, and ease of deployment, specifically
designed to meet the real-time demands of vehicles and to
shield their operation from a variety of malicious traffic
intrusions. Accordingly, model training and evaluation were
conducted using the Car-Hacking and CICIDS-2017 datasets,
with a subsequent multifaceted analysis of the experimental
outcomes.
Initially, concerning the dataset pertaining to internal vehi-

cle attacks, after the exclusion of outliers, it was observed
that there was a disparity in data volume between the datasets
(with the ‘Normal’ and ‘Fuzzy’ labels undergoing outlier
removal, and ‘Fuzzy’ category containing more outliers,
whereas ‘Normal’ less). To rectify this imbalance and to
augment the precision of the intrusion detection system, the
Synthetic Minority Over-sampling Technique (SMOTE) was
utilized to equilibrate the distribution of classes within the
dataset. The distribution of classes after this adjustment,
as illustrated in Table 3, not only enhanced the quality of
data but also facilitated themodel’s capability and accuracy in
processing imbalanced data. Through this methodology, this
research aspires to boost the overall functionality of the intru-
sion detection system, ensuring its capability to effectively
identify and counteract diverse network threats, thus securing
the continuous safe operation of vehicles.
In the realm of the CICIDS-2017 dataset, originally formu-

lated for the identification of network intrusions and irregu-
larities, its encompassing array of attack scenarios combined
with genuine traffic attributes render it suitable for integration
into our external vehicle intrusion detection frameworks. Fol-
lowing an initial phase of outlier curation, data categorized
under the ‘Heartbleed’ label type was entirely expunged,
along with a reduction observed in other labeled datasets.
Subsequently, we employed the SMOTE (Synthetic Minority
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TABLE 3. Distribution information of Categories after Processing the
Car-Hacking dataset.

Over-sampling Technique) algorithm to preprocess the data,
with the objective of harmonizing the distribution of diverse
categories within the dataset. The distribution of categories
post-preprocessing is delineated in Table 4 (owing to the
extensive array of data categories, in this table, DDoS, DoS
GoldenEye, DoS Hulk, DoS Slowloris, DoS Slowhttptest,
and Heartbleed have been amalgamated under the DoS label
data; similarly, SSH-Patator and FTP-Patator have been con-
solidated into the Brute-Force label data).

TABLE 4. Distribution information of categories after processing the
CICIDS-2017 dataset.

Owing to the substantial discrepancies between the
Car-Hacking dataset and the CICIDS-2017 dataset, our
approach involved independently training and evaluating
models tailored to each dataset. Following a meticulous
optimization of hyperparameters for these datasets, we ascer-
tained an exemplary configuration of hyperparameters,
delineated in Tables 5 and 6. Thereafter, to validate the
efficacy of these hyperparameters, we implemented a quintu-
ple cross-validation technique within our model framework.
Throughout the quintuple cross-validation process applied to
the Car-Hacking dataset, the model consistently exhibited
stellar performance, achieving perfection with 100% scores
across accuracy, precision, recall, and F1 metrics. Similarly,
for the CICIDS-2017 dataset, the metrics of accuracy, preci-
sion, recall, and F1 all surpassed 99.40%. These outcomes
signify that the model’s performance on the test datasets
during the quintuple cross-validation reached an optimal con-
dition. Collectively, these findings robustly demonstrate our
model’s effectiveness and precision in processing distinct
datasets, particularly after extensive hyperparameter tuning
and repeated validations. The attained precision in predictive

capabilities underscores the model’s robustness and validity
in pertinent computational fields.

TABLE 5. Optimal hyperparameter configuration for the Car-Hacking
dataset.

TABLE 6. Optimal hyperparameter configuration for the CICIDS-2017
dataset.

Upon concluding quintuple cross-validation, we per-
formed a definitive performance evaluation of the model
utilizing optimally adjusted hyperparameters on a designated
test dataset. To avert overfitting, this dataset was not pre-
viously employed in any training evaluations. Pertaining to
the Car-Hacking dataset, the evaluation outcomes regarding
accuracy, loss rates, and confusion matrices are illustrated in
Figures 13 and 14. The confusion matrix reveals an almost
exemplary classification outcome, with each category (Dos,
Fuzzy, Normal, RAM, Gear) exhibiting substantial true pos-
itive values, indicating accurate classifications with virtually
no misclassifications. In the loss and accuracy charts, we wit-
ness a precipitous reduction in test loss to nearly zero after a
single batch, signifying the model’s exemplary performance
on the test data with minimal loss. Concurrently, the accuracy
chart portrays a consistently high accuracy level, remaining
close to 100% throughout the testing phase, thereby affirming
the model’s enduring precision.
Similarly, for the CICIDS-2017 dataset, the assessment of

accuracy, loss rates, and confusion matrices as delineated
in Figures 15 and 16, demonstrates the model’s classifica-
tion effectiveness across various categories (represented from
classes 0 to 11). Despite classification inaccuracies in cate-
gories 3 and 6, the results for the remaining categories were
remarkably superior. Following the initial batches, the loss
trajectory sharply descended, rapidly approaching zero, indi-
cating that the model adeptly generalized the test data with
exceedingly low error rates. The accuracy trajectory shows
a stable performance, with accuracy levels consistently near
100% across most batches, exhibiting minimal deviations.
This high accuracy, complemented by high true positive rates
in the confusion matrix, collectively corroborates the model’s
efficacious processing of the CICIDS-2017 dataset.
Focusing on the Car-Hacking dataset, to underscore the

significance of the proposed research model, this study
not only utilized the introduced model but also juxtaposed
it against a range of foundational deep learning models,
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FIGURE 13. Accuracy and loss metrics of Car-Hacking dataset evaluations.

as delineated in literature [29], [36], [37], [38]. These encom-
pass P-LeNet, DCNN, DivaCAN, LSTM, Autoencoder, Con-
catenated CNN, and InceptionResnet-PSO. The performance
evaluation of these models on the Car-Hacking dataset,
encompassing pivotal metrics such as accuracy, precision,
recall, F1 score, and test time per packet, is documented
in Table 7. The evaluation highlights that the MobileNetV3
model exhibited significant superiority across all evaluation
metrics in comparison to conventional deep learning models
such as P-LeNet, DCNN, and DivaCAN. Notably, preci-
sion surged dramatically from 85.89% to 100% compared to
the DivaCAN model, a substantial enhancement of 14.11%.
The memory footprint was 16MB. Furthermore, compared
to sequence-based models like LSTM and Autoencoder,
especially the LSTM model, which otherwise showcased
commendable performance, the F1 score could be elevated
from 96.82% to 100% with MobileNetV3, showcasing a
stronger generalization capability.

TABLE 7. Evaluation results of the model on the Car-Hacking dataset.

Particularly noteworthy is MobileNetV3’s performance
in terms of test timing, clocking at merely 1 millisecond

per packet. This not only indicates superior efficacy but
also significantly surpasses other models in efficiency. For
instance, although the Concatenated CNN also achieved
100% across several key performance metrics, its test timing
was 3.2 milliseconds—threefold that of MobileNetV3. Even
compared to InceptionResnet-PSO, which exhibited com-
mendable performance across various indicators, its test tim-
ing of 1.3 milliseconds remained inferior to MobileNetV3.
Examining the specifics of the Car-Hacking dataset fur-

ther highlights the proposed intrusion detection model’s
advantages. As shown in Table 8, our experiments, uti-
lizing a reduced volume of data, accomplished flawless
evaluation results across all classification tasks, demon-
strating exceptional performance, which meets the demands
for vehicular lightweighting and efficiency. Specifically, the
model achieved an ideal state of 1.00 in precision, recall, and
F1 score across categories DoS, Fuzzy, Normal, RAM, and
Gear. This result indicates that out of 3222 sample data, the
model accurately identified and classified every case with-
out exception. Moreover, the overall model’s test results on
these 3222 samples demonstrated a perfect accuracy, macro-
average, and weighted average of 1.00, or 100% accuracy
rate, meaning that the model’s predictions were impeccably
accurate across all categories, showcasing high classifica-
tion efficacy. This performance underscores the proposed
MobileNetV3 intrusion detection network framework’s effi-
ciency and reliability in handling large-scale datasets.

TABLE 8. Evaluation results for each label in the Car-Hacking dataset.
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FIGURE 14. Confusion matrix of Car-Hacking dataset evaluation results.

In our exploration of intrusion detection methodolo-
gies, we employed an array of machine learning and deep
learning algorithms on the CICIDS-2017 dataset. These
algorithms, including KNN, DBN, Multi-SVM, PCA-RF,
FS XGBoost, STDeepGraph, and MLP, are cited from
extant scholarly articles [20], [39], [40], [41], [42], [43],
[44]. The assessment outcomes on the CICIDS-2017 dataset
are delineated in Table 9. When assessing the efficacy of
these algorithms, the MobileNetV3 model surpassed others
by achieving the zenith of performance metrics—accuracy,
precision, recall, and F1 score—all peaking at an exceptional
99.76%, thereby demonstrating its pronounced superiority.
Notably, in comparisonwith KNN (uniformly scoring 96.3%)
and DBN (yielding 98.95%, 95.82%, 95.80%, and 95.81%
respectively), MobileNetV3 showcased an enhancement in
metrics by roughly 3% to 4%. Moreover, even juxtaposed
with the notably effective Multi-SVM (98.55%, 98.22%,
98.38%, and 98.3%), PCA-RF (consistently at 99.6%),
FS XGBoost (99.7%, 99.55%, 99.65%, and 99.6%), and
MLP (99.46%, 99.52%, 99.4%, and 99.5%)—all demon-
strating laudable performances—there were minor variances,
such as FS XGBoost’s recall slightly lagging behind its
precision. The uniformity and marginally superior figures
of MobileNetV3 also illustrate its preeminence. Beyond
its numerical supremacy, MobileNetV3 is architecturally
designed as an efficacious deep learning model, leverag-
ing depthwise separable convolutions to substantially cur-
tail computational demands and parameter counts. This
innovative design not only amplifies processing veloc-
ity but also diminishes operational expenditures, rendering
MobileNetV3 particularly apt for deployment in scenarios
that demand swift responsiveness and operational efficiency,
such as in mobile and embedded systems. This technological
advantage endows MobileNetV3 with enhanced adaptability
and elevated utility in practical applications.
The performance indices for a multitude of network attacks

within the CICIDS-2017 dataset are delineated in Table 10,

TABLE 9. Evaluation results of the model on the CICIDS-2017 dataset.

incorporating metrics such as Precision, Recall, F1-score,
and the count of instances (Support) for each attack type.
Predominantly, the model manifests exceptionally elevated
accuracy across a broad spectrum of attack scenarios, achiev-
ing the zenith of perfection with scores of 1.00 in Precision,
Recall, and F1-score across several categories, namely Bot,
DDoS, FTP-Patator, PortScan, SSH-Patator, andWeb Attack,
underscoring its formidable diagnostic prowess. Distinctly,
the model delineates slight variances in managing DoS Gold-
enEye and DoS Hulk attacks. In the case of DoS GoldenEye,
despite a flawless Precision of 1.00, the Recall is marginally
diminished at 0.9681, signifying that a few positive instances
eluded detection, culminating in an F1-score of 0.9838.
In contrast, for the DoS Hulk assault, the Recall achieves a
perfect score of 1.00, indicating comprehensive identification
of all positive instances, albeit the Precision is marginally
reduced to 0.9730, suggestive of the presence of several false
positives.

TABLE 10. Evaluation results for each label in the CICIDS-2017 dataset.

An overarching performance evaluation underscores that
the model’s overall Precision, Recall, and F1-score consis-
tently hover between 0.9954 and 0.9976 across both macro
and weighted averages, further validating the model’s high
efficacy and dependability in the realm ofmulti-class network
attack detection. Additionally, the model’s prowess in accu-
rately identifying BENIGN traffic is markedly pronounced,

VOLUME 12, 2024 106299



S. Wang et al.: Intrusion Detection System for Vehicular Networks Based on MobileNetV3

FIGURE 15. Accuracy and loss metrics of CICIDS-2017 dataset
evaluations.

FIGURE 16. Confusion matrix of CICIDS-2017 dataset evaluation results.

an essential attribute for minimizing false positives in real-
world applications. Collectively, these data not only accen-
tuate the model’s exceptional performance across designated
attack vectors but also illuminate its strategic value within an
integrated network security framework.

Upon meticulous evaluation, the advanced MobileNetV3
architecture not only delivers peak performance in detecting
intrusions within and adjacent to vehicles but also offers
instantaneous feedback while preserving minimal latency.
This is paramount for scenarios that necessitate the rapid
identification and management of threats in vehicular net-
works. Consequently, it is evident that the MobileNetV3
architecture is the superior choice for real-time surveillance
in the realm of automotive network security.

V. CONCLUSION

This investigation is dedicated to devising an efficacious,
precise, compact, and deployable Intrusion Detection System
for vehicular networks, fulfilling the real-time requisites of
contemporary vehicles and shielding them from malevolent
traffic incursions. Pursuant to this goal, we have introduced
an innovative, lightweight detection methodology employ-
ing MobileNetV3, subjected to an extensive experimental
appraisal. Initially, the research meticulously processed the
dataset through techniques such as data filtration, anomaly
management, SMOTE oversampling, and feature selection,
thereby enhancing data integrity to facilitate model train-
ing. The refined data was then input into the MobileNetV3
framework for training and subsequent evaluation. Utiliz-
ing a quintuple cross-validation technique, an exhaustive
evaluation of the model’s performance was executed. The
empirical findings affirm that our intrusion detection frame-
work excels in accuracy, recall, precision, and F1 scores on
the Car-Hacking and CICIDS-2017 datasets, with a modest
footprint of 16MB, demonstrating exceptional efficacy in
vehicular cybersecurity. Most notably, the model’s testing
latency stands at a mere 1 millisecond per packet, vastly sur-
passing the efficiency of alternative deep learning paradigms,
thus highlighting its substantial advantage in operational effi-
ciency. Admittedly, this study has certain limitations. When
faced with highly dynamic and covert malicious traffic, our
model may exhibit errors or fail to detect threats. Future
research could incorporate more advanced deep learning
techniques, such as Variational Autoencoders (VAEs) or Gen-
erative Adversarial Networks (GANs), to further enhance
the model’s capability in identifying more complex attack
patterns. Moreover, despite our comprehensive data prepro-
cessing steps to ensure data quality and structural suitability,
the dataset may still contain biases or incomplete data,
potentially impacting the model’s generalization ability and
practical effectiveness. In real-world environments, data dis-
tribution can vary over time and across different scenarios,
making it imperative to focus on the model’s generalization
capacity. Such research will be instrumental in ensuring that
intrusion detection systems can effectively address the evolv-
ing cybersecurity threats in vehicular networks.
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