2394

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

UltraFuzz: Towards Resource-Saving in
Distributed Fuzzing

Xu Zhou", Pengfei Wang

, Chenyifan Liu, Tai Yue™, Yingying Liu, Congxi Song

, Kai Lu,

Qidi Yin, and Xu Han

Abstract—Recent research has sought to improve fuzzing performance via parallel computing. However, researchers focus on
improving efficiency while ignoring the increasing cost of testing resources. Parallel fuzzing in the distributed environment amplifies the
resource-wasting problem caused by the random nature of fuzzing. In the parallel mode, owing to the lack of an appropriate task
dispatching scheme and timely fuzzing status synchronization among different fuzzing instances, task conflicts and workload imbalance
occur, making the resource-wasting problem severe. In this paper, we design UltraFuzz, a fuzzer for resource-saving in distributed
fuzzing. Based on centralized dynamic scheduling, UltraFuzz can dispatch tasks and schedule power globally and reasonably to avoid
resource-wasting. Besides, UltraFuzz can elastically allocate computing power for fuzzing and seed evaluation, thereby avoiding the
potential bottleneck of seed evaluation that blocks the fuzzing process. UltraFuzz was evaluated using real-world programs, and the
results show that with the same testing resource, UltraFuzz outperforms state-of-the-art tools, such as AFL, AFL-P, PAFL, and EnFuzz.
Most importantly, the experiment reveals certain results that seem counter-intuitive, namely that parallel fuzzing can achieve “super-linear
acceleration” when compared with single-core fuzzing. We conduct additional experiments to reveal the deep reasons behind this
phenomenon and dig deep into the inherent advantages of parallel fuzzing over serial fuzzing, including the global optimization of seed
energy scheduling and the escape of local optimal seed. Additionally, 24 real-world vulnerabilities were discovered using UltraFuzz.

Index Terms—parallel fuzzing, distributed fuzzing, resource saving in fuzzing, super-linear acceleration

1 INTRODUCTION

OFTWARE vulnerabilities are significant threats to informa-

tion systems. Security analysts leverage a huge amount of
resources at discovering software vulnerabilities, a process
that is usually resource-hungry, time-consuming, and labor-
intensive. Among the various techniques available, fuzzing is
effective and has been widely used to test multi-threaded pro-
grams [1], [2], [3], libraries [4], kernel [5], [6], protocols [7], [8],
and smart contracts [9], [10]. Fuzzing usually generates mas-
sive random test cases to run the target program and monitors
running crashes to report vulnerabilities. To thoroughly test a
program, countless test cases are generated and the program
is executed repeatedly [11], [12]. However, due to the random-
ness of fuzzing, large numbers of redundant test cases exer-
cise the same path, wasting testing resources. As a result, this
process is very time consuming, and usually costs many hours

o The authors are with the National University of Defense Technology, Chang-
sha 410073, China. E-mail: {zhouxu, pfwang, yuetail7, kailu, yingidi}
@nudt.edu.cn, {2060909445, 1670176167 }@qq.com, 15273112081@163.com,
congxil994@sohu.com.

Manuscript received 25 November 2021; revised 26 September 2022; accepted
26 October 2022. Date of publication 4 November 2022; date of current version
18 April 2023.

This work was supported in part by the National University of Defense Tech-
nology Research Project under Grants ZK20-17 and ZK20-09, in part by the
National Natural Science Foundation China under Grants 62272472,
61902412, and 61902416, and in part by the HUNAN Province Natural Sci-
ence Foundation under Grants 2021]]40692 and, 2019]]50729.
(Corresponding author: Pengfei Wang.)

Recommended for acceptance by L. Mariani.

This article has supplementary downloadable material available at https://doi.
0rg/10.1109/TSE.2022.3219520, provided by the authors.

Digital Object Identifier no. 10.1109/TSE.2022.3219520

of computation, even days or months. Therefore, fuzzing
requires noticeable efficiency improvement to make the pro-
cess of vulnerability detection more timely. Most research
thus far has sought to improve fuzzing performance by
designing novel algorithms. These algorithms improve per-
formance by optimizing the core mechanism of fuzzing,
including seed generation [13], [14], [15], [16], mutation strat-
egy [16], [17], [18], [19], seed prioritization [14], [20], [21], etc.
However, the extent to which algorithms can improve effi-
ciency is limited. On average, prevalent AFL-based fuzzers,
such as Fairfuzz [22], AFLFast.new [23], and Fidgety AFL [24]),
only increase efficiency by around 15% when compared with
original AFL. Another research direction to increase fuzzing
efficiency is utilizing parallel computing resources to process
fuzzing workloads concurrently. Since fuzzing workloads do
not have much data dependency, we can foresee a great effi-
ciency increase during parallel fuzzing. In an ideal situation,
performance could be improved 100% simply by doubling
computing capacity. However, most researchers focus on
improving efficiency to save time but ignore the increasing
cost of testing resources. Take Google’s OSS-Fuzz project as
an example, it leverages more than 25,000 machines that pro-
cess an average of ten trillion test inputs a day. As a result, it
has found 16,000 bugs in Chrome and 11,000 bugs in over 160
projects in two years [25]. Though effective, such huge-scale
fuzzing is extremely resource-consuming. Averagely, to dis-
cover a bug, OSS-Fuzz needs 1.85 machines running for one
year. This is because real-world parallel fuzzing is not simply
a pile-up of computing resources, and parallel fuzzing in a
large-scale distributed environment can amplify the resource-
consuming problem.

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0075-5003
https://orcid.org/0000-0002-0075-5003
https://orcid.org/0000-0002-0075-5003
https://orcid.org/0000-0002-0075-5003
https://orcid.org/0000-0002-0075-5003
https://orcid.org/0000-0003-3408-4153
https://orcid.org/0000-0003-3408-4153
https://orcid.org/0000-0003-3408-4153
https://orcid.org/0000-0003-3408-4153
https://orcid.org/0000-0003-3408-4153
https://orcid.org/0000-0002-7276-8735
https://orcid.org/0000-0002-7276-8735
https://orcid.org/0000-0002-7276-8735
https://orcid.org/0000-0002-7276-8735
https://orcid.org/0000-0002-7276-8735
https://orcid.org/0000-0002-7672-0915
https://orcid.org/0000-0002-7672-0915
https://orcid.org/0000-0002-7672-0915
https://orcid.org/0000-0002-7672-0915
https://orcid.org/0000-0002-7672-0915
mailto:zhouxu@nudt.edu.cn
mailto:pfwang@nudt.edu.cn
mailto:yuetai17@nudt.edu.cn
mailto:kailu@nudt.edu.cn
mailto:yinqidi@nudt.edu.cn
mailto:2060909445@qq.com
mailto:1670176167@qq.com
mailto:15273112081@163.com
mailto:congxi1994@sohu.com
https://doi.org/10.1109/TSE.2022.3219520
https://doi.org/10.1109/TSE.2022.3219520

ZHOU ET AL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING

We summarize three situations that can cause resource-
wasting in distributed fuzzing. (1) Owing to the absence of
global scheduling and timely update of fuzzing status (e.g.,
seeds and coverage) among the working nodes, different
fuzzing instances may mutate the same seed and generate
redundant test cases that execute the same path, causing task
conflicts and wasting testing resources. This is the root cause
of resource wasting. (2) To reduce task conflicts, new seeds
generated by different fuzzing instances should be evaluated
and de-duplicated. However, such a seed evaluation process
can become a bottleneck when huge numbers of new seeds
are generated dramatically by multiple fuzzing instances, and
the inappropriate computing power allocation between fuzz
testing and seed evaluation can either restrict the fuzzing pro-
cess or waste the resource. (3) When each computing core has
unequal computing capability or the number of computing
cores dynamically changes, inflexible task scheduling can
cause workload imbalance, which also leads to resource-wast-
ing. Moreover, in 2020, Bohme et al. [25] proposed an empiri-
cal law in fuzzing, which was that “given the same non-
deterministic fuzzer, finding linearly more bugs in the same time
requires exponentially more machines.” This law implies that the
huge consumption of computing resources has restricted the
scalability of distributed fuzzing like a wall, which demands a
prompt solution.

In this article, we focus on the resource-wasting problem
in distributed fuzzing and optimize the fuzzing process
towards not only efficiency but also resource-saving. To
solve the task conflict problem caused by redundant test
cases, we propose to use a centralized dynamic scheduling
scheme to evaluate seeds and dispatch tasks in a centralized
manner. We separate scheduling from fuzzing and collect
the new seeds from all the fuzzing instances to filter out
duplicates and prioritize them based on their evaluation.
We regard parallel fuzzing as the global optimization of
seed selection, energy scheduling, fuzzing status synchroni-
zation, and task dispatching among all the working nodes.
To improve synchronization efficiency, we use a hierarchi-
cal scheme based on fuzzing information characteristics,
which achieves instant synchronization. For the seed evalu-
ation requirement caused by the dramatic increase of new
seeds, we classify the roles of working nodes into evaluating
instances and fuzzing instances. Evaluating instances filter
out redundant test cases, while the fuzzing instances run
the tests. An elastic computing power allocation scheme is
adopted to handle the dramatic increase of seed evaluation
requests, which can adaptively coordinate the two groups
of instances and achieves a global optimization of resource
allocation. Finally, for the workload imbalance caused by
dynamic computing power change, we dispatch fuzzing
tasks with a dynamic on-demand scheme, which can adap-
tively fit the computing capability of fuzzing instances and
is compatible with environmental change. In summary, we
make the following contributions:

We Conduct the First Research on Resource-Saving in Distrib-
uted Fuzzing. Though improves efficiency, distributed envi-
ronment amplifies the resource-wasting problem of fuzzing.
We summarize three situations in distributed fuzzing that can
cause resource-wasting and propose novel approaches to
solve these problems. Based on a dynamic centralized task
scheduling scheme, our approach can achieve instant fuzzing

2395

status synchronization, global energy scheduling, and elastic
computing resource allocation, which can reduce resource
wasting by avoiding problems such as task conflicts, work-
load imbalance, and potential bottlenecks of seed evaluation.
We Implement Our Design and Evaluate it in Large-Scale
Experiments. We implement a tool called UltraFuzz and con-
duct experiments on 16 real-world programs with comput-
ing cores ranging from 8 to 128. The scale of our
experiments is more than 6,186 CPU days. Results show
that UltraFuzz outperforms state-of-the-art tools like AFL,
AFL-P, PAFL, and EnFuzz in aspects of branch coverage,
path coverage, and the number of test cases. The synchroni-
zation overhead is about 1.26%. UltraFuzz also found 24
vulnerabilities in them. UltraFuzz has been made publicly
available online' to encourage and support future research.
We Observe Counter-Intuitive “Super-Linear Acceleration”.
Intuitively speaking, parallel fuzzing should only achieve sub-
linear acceleration. For example, for parallel fuzzing with four
nodes in one hour and fuzzing with one node in four hours,
the former should perform less well, owing to the cost of syn-
chronization and task dispatching. However, our experiments
show a different result. We conduct additional experiments to
reveal the deep reasons behind this phenomenon and dig
deep into the inherent advantages of parallel fuzzing over
serial fuzzing, including the global optimization of seed
energy scheduling and the escape of local optimal seed.

2 BACKGROUND

2.1 American Fuzzy Lop

AFL (American fuzzy lop) [26] is a widely used coverage-
based greybox fuzzer, and many state-of-the-art greybox
fuzzers [20], [27], [28], [29] are built on top of it. AFL uses
lightweight instrumentation to capture basic block transi-
tions and gain coverage information during run-time. Com-
pared to other instrumented fuzzers, AFL has a modest
performance overhead, and we determined to base our
design on AFL.

AFL leverages the edge-coverage information to select
seeds. It maintains a seed queue and mutates the seed to
generate testcases. If a testcase exercises a new path, it is
added to the queue as a new seed. In addition to covering a
new branch, when a seed is smaller and executes quicker
with respect to previous test cases that hit a given branch, it
is also labeled as favored and prioritized. AFL uses a bitmap
with edges as keys and top-rated seeds as values to main-
tain the best performance seeds for each edge. It selects
favored seeds from the top-rated queue and gives them
more fuzzing chances (i.e., energy) than the non-favored
ones. AFL assigns energy to the seeds according to the per-
formance score of each seed, which is based on coverage
(prioritizing inputs that cover new paths), execution time
(prioritizing inputs that execute faster), and discovery time
(prioritizing inputs discovered later). In particular, if a test
case exercises a new path, AFL will double the energy
assigned to it. Fuzzing tasks are handled by AFL in the
form of a selected seed and its assigned energy.

The seed selection strategy and energy schedule algo-
rithm play important roles in improving the efficiency of

1. https:/ / gitlink.org.cn/hunter-2018 / Ultrafuzz.git

https://gitlink.org.cn/hunter-2018/Ultrafuzz.git

2396

fuzzing. Some works [20], [27] have proved that selecting
the seeds exercising rare paths and focusing on them can
generate more test cases to trigger new states than focusing
on seeds exercising high-frequency paths. They also pointed
out that an efficient schedule algorithm is based on the eval-
uation of each seed, which is determined by the information
of coverage and seeds (e.g., the execution speed). However,
in distributed fuzzing, the way to optimize the scheduling
algorithm is different from single-core running. Compared
to fuzzing with a single core, such information can’t be
shared timely in distributed fuzzing. Thus, it is crucial to
building an efficient mechanism of information synchroni-
zation to support the global seed selection and energy
schedule in distributed fuzzing.

2.2 Parallel Fuzzing

Parallel fuzzing first evolves from a naive method, i.e., the
parallel mode of AFL (i.e., AFL-P), which simply runs mul-
tiple fuzzer instances with the same target simultaneously.
Each instance of AFL binds a core and periodically re-scans
the top-level sync directory for any test cases found in other
instances. Multi-core parallel fuzzing represents the evolution
of the naive method. However, the parallelism at this stage
is limited by intra-machine. Distributed fuzzing [30], [31]
extends intra-machine parallelism to multiple machines
connected by a network, allowing using more computing
resources. Then, the researcher takes a step further by shar-
ing seeds between fuzzer instances. In this mode, the pro-
gram starts to schedule tasks between fuzzing instances to
alleviate task conflicts [32], [33]. To optimize parallel fuzz-
ing towards resource-saving, we still need to overcome the
following technical challenges.

(1) Task Conflicts. In parallel fuzzing, owing to the
absence of global scheduling and timely update of fuzzing
information among the instances, different fuzzing instan-
ces may mutate the same seeds or generate redundant test
cases that execute the same path, causing task conflicts,
which will lead to a severe waste of testing resources.
Though some tools, such as P-fuzz [32] and PAFL [33], try
to synchronize fuzzing information among fuzzing instan-
ces, a centralized scheduling scheme is still required to opti-
mize parallel fuzzing from a global perspective.

(2) Synchronization Overhead. In parallel fuzzing, various
fuzzing information can be shared among fuzzing instances
to increase performance, such as seeds, coverage, hangs, and
crashes. However, the synchronization overhead inevitably
deducts the performance, and such deduction becomes
more severe as instances increase. Thus, what information to
share and how to share it is critical, especially in a distrib-
uted environment. To alleviate performance deduction and
improve resource efficiency, some approaches [30], [31],
[32], [34] adopt periodical synchronization to achieve a
tradeoff between effectiveness and efficiency. However,
timely updating of fuzzing status is critical to avoid task
conflict.

(3) Computing Power Allocation. When dispatching fuzz-
ing tasks to different fuzzing instances, computing power
allocation is another challenge. For example, AFL-P and
PAFL [33] are only designed for intra-machine multi-core
parallel fuzzing, which assumes the computing capability

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

-next

current pointer

o0 O
Prioritized seed
queue

global bitmap

request queue

seeds NeW seeds&
4; szzing status

Evaluating-group Fuzzing-group

Fuzzing |[Fuzzing |[Fuzzing Fuzzing

[EvaluatingJ ___{Evaluating = |Uinstance J(_instance J|_instance instance
instance instance)| ¢/ local local local local
bitma bitma| bitma bitma
seed seed seed seed

cache cache cache cache

Fig. 1. Overview of centralized dynamic scheduling.

of all cores is equal and assigns equal workloads to each
core. However, for a distributed fuzzing environment, each
computing core might have a different computing capabil-
ity and the number of computing cores might dynamically
change, such a static strategy might aggravate workload
imbalance and waste resources. Besides, with the increasing
of fuzzing instances, large bunches of new seeds can over-
burden the system, and the seed evaluation (de-duplication)
becomes a bottleneck that needs a dynamical re-allocation
of the computing power.

In this paper, we propose to solve the task conflict problem
via a centralized dynamic scheduling scheme. By separating
scheduling from fuzzing, centralized dynamic scheduling
can select seeds and schedule power from a global perspec-
tive. To improve synchronization efficiency, we use a hierar-
chical scheme based on fuzzing information characteristics,
which achieves instant synchronization. For the workload
imbalance caused by dynamic computing power change, we
dispatch fuzzing tasks with a dynamic on-demand scheme.
Finally, an elastic computing power allocation scheme is
adopted to handle the dramatic increase of seed evaluation
requests, which can adaptively coordinate the two groups of
instances and achieve global optimization of resource
allocation.

3 DESIGN

3.1 Centralized Dynamic Scheduling

We propose to use centralized dynamic scheduling to opti-
mize distributed fuzzing globally from aspects of seed selec-
tion, energy scheduling, fuzzing status synchronization, and
task dispatching. As Fig. 1 shows, the fuzzing architecture
consists of four components: a scheduler, a database, the fuzzing
instances, and the evaluating instances. Among the computing
nodes that make up the distributed system, one is selected as
the main node, and the rest are working nodes that are used to
conduct fuzzing or to evaluate the seeds.

On the main node, a scheduler is designed for scheduling
seed evaluation, prioritizing the seeds in a queue, process-
ing requests from the fuzzing instances, and dispatching
fuzzing tasks. A fuzzing task contains two kinds of informa-
tion: the index of the seed (i.e., the hash value) and an inte-
ger indicating how many times the seed should mutate (i.e.,
the energy). Meanwhile, a database is deployed on the main
node to store and share fuzzing data (e.g., seeds, fuzzing

ZHOU ET AL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING

status, and coverage). Each fuzzing instance connects to the
database to synchronize fuzzing information and seeds. The
synchronization scheme will be introduced in Section 3.3.

For a working node, it can either works as a fuzzing
instance or an evaluating instance. A fuzzing instance is
responsible for running test cases and mutating seeds. It
downloads task seeds assigned by the scheduler from the
database and uploads new seeds to the database. The major-
ity of computing cores are used to run fuzzing instances. An
evaluating instance works to filter out the duplicate seeds
and the fuzzing instances download unique ones. Both the
evaluating instances and the fuzzing instances are con-
nected to the scheduler and the database. The scheduler dis-
patches evaluating tasks to evaluating instances and fuzzing
tasks to fuzzing instances. Given the fact that the number of
new seeds can change dramatically, the role of evaluating
instances and fuzzing instances can dynamically switch
based on the requirements of the evaluating tasks, which
alleviates potential over-burdening of seed evaluation and
achieve the best performance possible. This scheme will be
introduced in Section 3.4.

From the perspective of the scheduler, each time a fuzz-
ing instance discovers a new seed, it will be stored in the
database and evaluated by the evaluating instance. Then,
the scheduler sorts seeds in a seed queue based on the dis-
covered time and dispatch fuzzing tasks according to their
fuzzing status (i.e., how important a seed is and how
many times it has been fuzzed). Since this work concen-
trates on optimizing the architecture of distributed fuzzing,
we carry over the original seed selection scheme of AFL.
Namely, we favor seeds that are small in size and execute
fast. When traversing the seed queue, such favored seeds
will have a higher probability to be selected for further
mutation. Similarly, we inherit the power scheduling of
AFL, the mutation chances are determined by the product
of some parameters in AFL, including execution_time,
bitmap_size, handicap, and depth.

This centralized dynamic scheduling separates schedul-
ing from fuzzing, which can select seeds and schedule
power from a global perspective, alleviating the problem of
resource-wasting caused by task conflicts, and extending
intra-machine parallel fuzzing to inter-machine in a distrib-
uted environment.

3.2 On-Demand Task Dispatching

In our design, fuzzing tasks are dispatched via a dynamic
on-demand scheme. Each fuzzing instance makes a request
to the scheduler for a fuzzing task as soon as it is free. The
scheduler stores the requests in a queue based on the
request time. Then it selects the seed with the highest prior-
ity and responds to the front fuzzing request in the request
queue with a task specification. Only when a fuzzing task is
requested, will the seed be selected and the power is calcu-
lated and assigned by the scheduler. A fuzzing instance will
request a new task when the current task is about to finish,
namely when the last execution of the current seed begins.
Once a new task is assigned, the fuzz instance continues to
finish the current task and then switches to the new task.
Thus, for some cases, the waiting time between task-dis-
patching can be saved, which is more efficient. Under this

2397

Evaluating Scheduler] ‘Fuzzing
instances atabas instances

__start: upload _ download:

i initial seeds — 1~ ~"seeds&fuzzing--->———
° status prioritize
2 seeds
2 ...request:task ___|
Qo
c
el response: task__,|
% __.update: seeds

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N

@ lexecution
ISP P oxecutr)
< ~-evaluated fuzzing status

___upload:

-- -- >
evaluated-seed

---download--------- prioritize
seeds

----request-----------
----- response--------

- > -
execution
- upload:----------enpre oo

seeds to be
" evaluated
---upload: RS

evaluated-seed

Fig. 2. Procedure of centralized dynamic scheduling.

scheme, workloads are balanced automatically and impor-
tant tasks would be done first. Such dynamic task dispatch-
ing is flexible and compatible with testing environment
change. For example, if we increase or decrease the test
machines, the dynamic task dispatching scheme can adjust
to the new machines automatically and dispatch tasks
according to the new machine number.

The task dispatching is handled by the scheduler in the
main node. As Fig. 2 shows, the whole process starts with
the scheduler downloading seeds from the database and
prioritizing them in a seed queue. Then the idle fuzzing
instances request fuzzing tasks from the scheduler, and the
scheduler responds to the sorted request with a task specifi-
cation, including the seed index and the number of muta-
tions (i.e., energy). With the seed index, the fuzzing instance
downloads the seed from the database and conducts the
fuzzing tests. When a test reveals a new seed, the fuzzing
instance will upload it to the database. Meanwhile, the
scheduler arranges evaluating instances according to the
number of seeds to be evaluated. Evaluating instances
download seeds from the database to filter out duplicates
and remove them from the database.

3.3 Instant Hierarchical Synchronization
In parallel fuzzing, fuzzing status synchronization among
different fuzzing instances has always been a challenge.
Efficient fuzzing status synchronization can reduce runtime
overhead and assist global scheduling to save computing
resources. Our design uses a database instead of a file sys-
tem to synchronize fuzzing information. This is because
file-based synchronization does not scale well in an inter-
machine mode [35]. We mainly synchronize three kinds of
fuzzing information: seeds, fuzzing status, and coverage infor-
mation. We propose a hierarchical fuzzing status synchroni-
zation scheme according to the characteristics of each
information type, whilst also ensuring performance is not
compromised.

Fuzzing Status Direct Sharing. Fuzzing status determines
the priority of a seed and how many times it should be
fuzzed. It is evaluated mainly by the number of times it has

2398

been fuzzed, including the depth - the generation of the seed
from the initial seed, handicap - fuzzing cycles the queue has
been done, and bitmap_size - the number of seeds” bits used
for mutation. Although fuzzing status is stored in the data-
base alongside the seeds, it is much different from seeds. The
size of a seed is usually several KB or more, while the size of a
fuzzing status is much smaller. Seeds are used by fuzzing
instances and can be updated incrementally, while only the
scheduler uses fuzzing status. While seeds are constant once
they are written in the database, fuzzing status is updated
each time the seed is fuzzed, which is much more frequent.
For data as lightweight and frequently used as this, it is practi-
cal to share directly through the database. Thus we separate
the use of fuzzing status from the corresponding seeds. The
scheduler dispatches tasks based on fuzzing status instead of
real seeds. It only maintains a lightweight queue to prioritize
the seeds, which will greatly reduce the scheduler’s network
pressure when dispatching fuzzing tasks.

Seed Caching. Since the seeds are relatively heavy-weight
and constant, we reduce the seed synchronization overhead
via a local cache. We generate a hash value and use it as an
index to identify the seed in the database. Then, we main-
tain a local cache of seeds in the memory of each fuzzing
instance. As each fuzzing instance has a seed assigned to it
explicitly, when scheduling a task, only the cache miss-hit
seeds are retrieved from the database, and the cache hit
seeds avoid the seed copy and improve efficiency. Specifi-
cally, we modify the functions to read and write seeds in
AFL to redirect the seed’s access. First, the local map will be
referred to and the seed is only downloaded from the data-
base when it does not exist in the local map. Similarly, the
seed writer will upload the seed to the database and main-
tain a copy on the local map at the same time. We abandon
the seed queue for local seeds in each fuzzing instance and
move the scheduling scheme to the scheduler.

Coverage Broadcast. In AFL, coverage information is mani-
fested by a bitmap compressed as high-density raw data
(e.g., the 64 KB bitmap in AFL). We do not share coverage
information directly among all the fuzzing instances
because it changes rapidly and frequently. For example,
AFL may alter the bitmap on each execution of a test case. It
is easy to cause conflicts when multiple instances update
coverage information simultaneously. To alleviate such con-
flicts, we synchronize coverage information in a centralized
manner with two steps. We maintain a global bitmap at the
main node to receive coverage change from the local instan-
ces and broadcast the new coverage information back to
them. Each time a local instance incurs a bitmap change,
instead of synchronizing with all the instances, it only noti-
fies the global bitmap. After the global bitmap has been
updated, it broadcasts this update to all the local instances.
Then, the instances copy the global bitmap to local to finish
the update. Notably, when multiple instances update the
global bitmap concurrently, the updates are at the byte
level. Though there still is a lock/unlock behavior, it avoids
locking /unlocking the whole bitmap (64 kb) and can signifi-
cantly lower the chances of bitmap update conflict. Thus, it
avoids performance deduction. Since concurrent reading of
the global bitmap does not have conflicts, the broadcast pro-
cess is fast and efficient.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Instant Synchronization. Unlike the periodical synchroni-
zation used in previous work [30], [31], [32], [34], [36], our
approach achieves instant synchronization. Every time a
new seed is discovered and uploaded to the database, along
with its fuzzing status, both are instantly accessible to all
the fuzzing instances. Every time the global bitmap cover-
age is updated, the local bitmaps in the fuzzing instances
are synchronized accordingly once the undertaking fuzzing
tasks are finished.

3.4 Elastic Seed Evaluation Computing Power
Allocation

In a distributed fuzzing environment, different fuzzing
instances can generate duplicate seeds simultaneously, such
duplicate seeds include identical seeds and seeds execute
the same path. Duplicate seeds lead to redundant execution
and waste of testing resources. Thus, we evaluate the new
seeds to filter out the duplicates every time new seeds are
generated. However, when many new seeds need evaluat-
ing, centralized task scheduling can represent a bottleneck
that places a heavy burden on seed evaluation. Besides, the
number of new seeds is not well-distributed. The new seeds
can flood into the scheduler within a short interval while
remaining at a low volume for the rest of the time.

Algorithm 1. Elastic Seed Evaluation Computing Power
Allocation

updates «— 0
threshold «— 1000
seeds_to_evaluate «— 0
while True do
if receive new_seed from fuzzing instances then
updates «— updates + 1 / / increase 1 for each new seed.
seeds_to_evaluate «— seeds_to_evaluate + 1
end if
if updates >threshold then
eval_instance_num «— [seeds_to_evaluate/evaluate_speed)
unique_rate — total_evaluated_seeds/unique_seeds_num
if eval_instance_num > unique_rate/2 then
eval_instance_num «— [unique_rate/2]
end if
if eval_instance_num < 2 then
eval_instance_num «— 2
end if
for 0<i< eval_instance_num do
instancelt]. flag <" evaluate”
end for
for eval_instance_num <1< total_instance_num do
instanceli]. flag <" fuzz’
end for
if seeds_to_evaluate > evaluate_speedxeval_instance_num
then
threshold « threshold/2
else
threshold «— threshold = 2
end if
updates «— 0
end if
end while

ZHOU ET AL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING

To alleviate such limitations, we propose shifting some of
the seed evaluation work from the scheduler to professional
evaluating instances, and such evaluation instances are elas-
tically adjusted according to the number of seeds to be eval-
uated. The elasticity of evaluating instances contributes to
handling the dramatic increase of seed evaluation requests,
which can adaptively coordinate the two groups of instan-
ces and achieves a global optimization of resource
allocation.

Whenever a fuzzing instance uploads new seeds to the
database, the scheduler will receive an “update” signal,
causing it to initiate an evaluating thread to de-duplicate
seeds, which it terminates when there are no new seeds left.
However, when too many new seeds flood into the sched-
uler, the scheduler will alleviate the over-burden by shifting
some fuzzing instances to temporarily evaluate these new
seeds by dynamically converting them to evaluation instan-
ces. The invocation of such an elastically evaluation expand-
ing scheme depends on the number of unevaluated seeds in
the scheduler. The scheduler checks the number of unevalu-
ated seeds at intervals and adjusts the number of evaluating
instances. A threshold is used to control the interval. Intui-
tively, a lower threshold will invoke the adjustment easily
and frequently, which will waste computing resources. In
comparison, a higher threshold will cause new seeds to
heap up and depress the overall performance. We empiri-
cally set the initial threshold as 1,000, which means the
scheduler rechecks the number of seeds to be evaluated and
adjusts the evaluating instances every time the scheduler
has received 1,000 “update” signals.

As Algorithm 1 shows, the number of evaluating instances
to be expanded eval_instance_num is estimated by the
number of seeds_to_evaluate divided by the evalua-
te_speed. evaluate_speed is a dynamic statistical value
based on the average number of seeds that have been evalu-
ated in a second. We use unique_rate as an estimation of
the previous de-duplication performance to expect how
many duplicate seeds would be removed, which can help
to adjust the number of evaluating instances. Variable
unique_rate is also used as a heuristic threshold to restrict
the number of evaluating instances. Based on our observation,
to use resource efficiently, eval_instance_num should not
be greater than unique_rate/2. Otherwise, the evaluating
instances would be overplus. For each evaluating instance
that has been expanded, the flag is changed from “fuzz” to
“evaluate,” indicating that the instance would request seeds
from seeds_to_evaluate to evaluate rather prioriti-
zed_seed_queue to fuzz. Notably, the instance will wait for
completing the current fuzzing (or evaluating) task before
role switching. If the new seeds received in seeds_to_e-
valuate exceeds the threshold, the instances would be
reallocated. Variable threshold is used to adaptively con-
trol the frequency we re-allocate the instances. Initially, the
instances are re-allocated every 1,000 updates (i.e., 1,000 new
seeds received). When there are too many seeds to evaluate,
we should shorten the frequency by setting threshold to
threshold/2, so that the evaluating instances would be
allocated in time. Otherwise, threshold is doubled.

We conduct de-duplication in three steps. First, we use
the hash value of seeds to remove identical seeds. Second,
we use the execution path checksum to identify different

2399

seeds that exercise the same path. Finally, for seeds that exe-
cute the same path but have different checksums, we use
the bitmap to compare the coverage. Though this situation
is counter-intuitive, our experiments show that the check-
sum in AFL is environment-dependent. Seeds that execute
the same path would have different checksums on different
machines. For such seeds, based on the comparison of the
bitmaps, we discard new seeds that do not extend coverage
and keep the rest. In our approach, the first two steps are
simple and suitable for most cases, while the third step is
expensive but can refine de-duplication at a deeper level.

4 IMPLEMENTATION

Based on the design of centralized dynamic scheduling, we
implement a distributed fuzzing tool called UltraFuzz.
UltraFuzz was built on top of AFL (version 2.52b) by adding
3,500 lines of C code. The scheduler, which also controls
instances to alter between fuzzing and evaluating, is imple-
mented in the C language. It communicates with instances
based on TCP, which is realized by the socket and directs
instances to perform either fuzzing or evaluating tasks.
Since the socket communication based on TCP is blocking,
we use select (an interface of a system call) to handle the con-
current requests from multi-instances, which performs bet-
ter in current processing with non-blocking. The database is
built on MongoDB, which is used to store seeds and their
fuzzing status. All of the other parts, including the sched-
uler, fuzzing instances, and evaluating instances, use [lib-
mongoc to interact with the database. The fuzzing instances
are implemented based on AFL. The evaluating instance is
self-implemented via C language. UltraFuzz has been made
publicly available online” to encourage and support future
research.

5 EVALUATION

In this section, we evaluate UltraFuzz with real-world
experiments, aiming to answer the following research ques-
tions: (1) Whether the techniques adopted in UltraFuzz are
effective in resource-saving? (2) What can we benefit from
resource-saving in distributed fuzzing?

Target Programs. We used 16 widely adopted real-world
programs to run the tests, as shown in Table 1. To facilitate
the comparison of different tools in large-scale parallel fuzz-
ing before coverage saturation occurs, we only select pro-
grams that are relatively large. For programs from the
Google Fuzzer-test-suite, we use the initial seeds from
the test suite as the initial seeds. For the rest programs, we
use seeds in the testcase directory provided by AFL as
the initial seeds.

Compared Tools. To thoroughly evaluate the performance
of UltraFuzz, we choose to compare UltraFuzz with AFL,
PAFL, EnFuzz, and AFL-P. We select AFL as the baseline.
For tools that do not support the inter-machine mode, such
as AFL-P, PAFL, and EnFuzz, we virtually expand the
experiment scale by extending the test time. We propose a
criterion called computing resource, which is the product of
computing cores and testing hours. We define one unit of

2. https:// gitlink.org.cn/hunter-2018 /Ultrafuzz.git

https://gitlink.org.cn/hunter-2018/Ultrafuzz.git

2400 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023
TABLE 1 TABLE 2

The Configuration of Programs Under Test Computing Resource Distribution
Subjects Version Format Size LoC Tools 8units 16 units 32 units 64 units 128 units
boringssl @@ 2016-02-12 lib 6.8M 0.3k AFL Imlc8h 1mlcl6 h 1m1c32h Imlc64 h 1mlcl128h
freetype @@ 2017 font 6.3M 0.5k AFL-P 1m8clh Iml6clh 1ml6c2h 1ml6c4h 1m16c8h
libcxx @@ 2017-01-27 lib 19M 50k PAFL 1m8clh 1mléclh 1ml6c2h Iml6cdh 1ml6c8h
libxml @@ libxml2-v2.9.2 xml 12M 15.7k EnFuzz 1m8clh Iml6clh 1ml16c2h 1ml6c4h 1m16c8h
re2 @@ 2014-12-09 lib 5.6M 0.9k UltraFuzz 1m8clh 1ml6clh 2ml16clh 4ml6clh 8ml6clh
libarch @@ libarch 2017-01-04 text 3.7 M 3.0k
size @@ Binutils-2.34 elf 10M 7.9k e.g., 4m16c¢1h means using 4 machines with each 16 cores running for 8 hours.
readelf -a @@ Binutils-2.34 elf 5.4 M20.5k
objdump -d @@ Binutils-2.34 elf 16M 5.4k 5.1 Effectiveness of Resource-Saving
.anC(inV 'Yélg@ -fnull L1bav—126.?i Itnpf 17711\1\//[[4213112 Given the same units of computing resources, intuitively,
infotocap ncurses-6. ext 1. . - e T
pdftotext @@ /dev,/null xpdf-4.02 pdf 7.9M 0.9k a resource-saving fuzzer consur?es less resources in find
tiff2bw @@ /dev/null tiff-4.1 HEE 2.6 M 05k ing a new path and thus has larger coverage. Here we
ffmpeg -i @@ ffmpeg-4.1.3 mp4 41M 4.9k use two criteria to evaluate the effectiveness of resource-
gnuplot @@ gnuplot-5.5 text 85M 1.0k saving. Except for the classical coverage metric, we also
tcpdump -nr @@ tcpdump-4.9.3 pcap 6.3 M 2.6k define path cost as a metric to measure the resource effi-

computing resource as a core multiplied by an hour. In this
way, for tools that do not support inter-machine mode, such
as AFL, when the requested testing cores are beyond a sin-
gle machine, we extend the fuzzing time to compensate for
the cores. For example, a 128-core 1-hour test can be equally
replaced by a 16-core machine running for 8 hours. To fairly
evaluate the influence caused by inter-machine communica-
tion, we also include the machine number when physically
expanding the experiment scale. Namely, the machine num-
ber should be the experiment scale divided by 16 (for a 32-
core machine, we only use half the cores to avoid potential
resource interference). For example, for testing that requires
128 cores, we use 8 machines with each machine contribut-
ing 16 cores. Specifically, the tests of UltraFuzz are physi-
cally expanded on machines with 16 cores occupied, and
the tests of the rest tools are virtually expanded.

Configuration. We use UltraFuzz, PAFL, EnFuzz, and
AFL-P to fuzz each program for 8, 16, 32, 64, and 128 units
of computing resources, respectively. Each experiment is
repeated 10 times to reduce randomness. Particularly, we
select the single mode of AFL to run for 8, 16, 32, 64, and
128 hours as the baseline. The campaigns distribution are
listed in Table 2. To clarify, though UltraFuzz runs tests only
for one hour, it uses many cores running concurrently to share
the task and shorten the time. The real test time should multiply
the number of cores to measure the capacity of work. Besides, the
baseline tests can validate the tests. Our experiments were con-
ducted on eight machines of Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10 GHz with 32 cores, running a 64-bit CentOS
Linux release 7.7.1908 (Core). It is worth mentioning that, to
avoid the potential computing resource interference within a
machine [25], for each machine, we only use half of the cores (i.e.,
16) for fuzzing and leave the rest unoccupied. Thus, the experi-
ment scale is also the time of the machines. Moreover, when the
experiment scale is beyond 16, we can guarantee that the
testing environment is inter-machine and equally distrib-
uted. No experiment is running concurrently. We eliminate
the unnecessary processes in the background of each
machine to keep the machine usage stay as equal as possi-
ble. Notably, the total time of our experiments is more than
6,186 CPU days.

ciency of the fuzzer.

5.1.1 Coverage

By saving computing resources, a fuzzer can run more tests
and potentially enlarge code coverage. To avoid the potential
influence caused by order-dependent of path coverage in
AFL implementation [22], we use branch coverage as the
main criterion to measure the performance of these fuzzers.
However, we also provide the path coverage results in the
Appendix, available online, (Fig. 7) for reference, which is
consistent with branch coverage results.

Fig. 3 plots the average branch coverage discovered
by these tools throughout 10 runs with different comput-
ing resources. We can see that the branch coverage
reached by each tool rises as computing resources
increase on most programs. Among these tools, Ultra-
Fuzz reaches the highest branch coverage in most (10/
16) programs, outperforming the other four tools. In par-
ticular, when compared with the baseline AFL-single,
UltraFuzz performs better on 14 programs with the same
computing resources, such as freetype, libcxx, size and
readelf. However, the other four tools do not reach a
higher branch coverage than that of AFL-single. AFL-sin-
gle discovers more branches than PAFL and AFL-P on
almost all programs using the same computing resour-
ces. Compared with EnFuzz, AFL-single achieves similar
performance on these programs.

Notable is, PAFL and EnFuzz have the advantage over
UltraFuzz in two aspects. First, PAFL and EnFuzz optimize
the scheduling algorithm or mutation strategy, which
makes them more efficient than UltraFuzz in schedule and
mutation. Second, though based on an equal computing
resource comparison, PAFL and EnFuzz run with fewer
cores but more time than UltraFuzz due to the intra-
machine limitation, which alleviates the overhead of large-
scale parallelism. From this result, we infer the reason that
UltraFuzz outperforms the other tools lies in the optimiza-
tion of the parallel architecture.

Furthermore, following the guidance of [37], we con-
ducted statistical analysis to measure the gap in perfor-
mance between different tools by calculating p-values about
branch coverage. Considering the randomness of fuzzing,

ZHOU ET AL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING

(B)frectype

2401

(d)libxmi

Fig. 3. Comparison of branch coverage reached by different tools with the same computing resources.

we conduct the two independent-sample t-test to analyze
the results. Specifically, by Kolmogorov-Smirnov (K-S) test,
we first confirmed that almost every group of the numbers
of branches in repeated testing is normally distributed.
Then we utilized the Levene test to confirm that the varian-
ces of different groups are very close. Based on these steps,
we assume that each group of data is normally distributed
with the approximate variance, then we conducted the two
independent-sample t-test to calculate the p-value.

As Table 5 lists, p1, p2, p3, and py represent those differen-
ces between the performances of UltraFuzz and AFL, PAFL,
EnFuzz, and AFL-P, respectively. From the results, for
branch coverage, we can conclude that UltraFuzz outper-
forms PAFL and AFL-P significantly as p; and p, are smaller
than 10~ on most programs. Compared to EnFuzz and
AFL, UltraFuzz performs better on many programs (e.g.,
libarch, objdump, ffmpeg and tcpdump) with that p; and p, are
smaller than 10~2. Moreover, we also calculate the standard
deviations and 95% confidence intervals of branch coverage
reached by UltraFuzz during 10 repeated tests, which are
listed in Table 4. From Table 4, the standard deviations of
coverage reached by UltraFuzz with 128 units of computing
resource on most (11/16) programs are less than 400. Partic-
ularly, on the programs where the average branches cov-
ered by UltraFuzz are no more than 10,000 (e.g., boringssl,
libcxx, objdump, pdftotext), UltraFuzz performs steadily with
the small standard deviations and short confidence inter-
vals. In conclusion, UltraFuzz outperforms the other four
tools in branch coverage and performs steadily with 128
units of computing resource on most programs.

5.1.2 Path Cost

We define path cost as the number of generated test cases
that divides the number of discovered paths in the cam-
paign, which means the average number of test cases

consumed on finding each path. Path cost can roughly
reflect the quality of the test cases and the resource effi-
ciency of the fuzzer.

Path cost is calculated on all 16 test programs. To save
space, we use Fig. 4 to show their average values. The path
cost of each tool rises as computing resources increase. AFL-P
has the highest path cost because the poor synchronization
scheme in AFL-P makes it produce large numbers of redun-
dant test cases and thus has low resource efficiency. UltraFuzz
has the lowest path cost, which is lower than the baseline
AFL-single. We also provide the result of path cost regarding
each test program in the Appendix, available in the online
supplemental material, (Fig. 8), which is consistent with the
above description. Among these tools, AFL-P has the highest
path cost in most (13/16) programs. UltraFuzz achieves the
lowest path cost in 6 out of 16 programs, which is similar to
the baseline AFL-single but better than the other tools.

Therefore, we can conclude that, by adopting the resource-
saving techniques, UltraFuzz has better resource efficiency
and averagely consumes fewer test cases to find a new path in
contrast to other tools. Consequently, UltraFuzz outperforms
the other tools on both path coverage and branch coverage.

5.2 Super-Linear Performance Acceleration

As for the performance of acceleration, we conduct a close
comparison between UltraFuzz and AFL-single on branch
coverage. We calculate the improved ratio of the branch
coverage reached by UltraFuzz and that reached by AFL-
single. As the left side of each column in Table 3 shows,
UltraFuzz achieves higher branch coverage than AFL-single
on most programs from 8 units to 128 units. Moreover, as
computing resources increase, the average speedup of
UltraFuzz to AFL-single increases from 0.99x to 1.06x. It is
noteworthy that when measured with path coverage, the
superiority persists, which is even better, ranging from
1.03x to 1.19x (Table 14). Namely, we had an empirical

2402 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

TABLE 3
Branch Coverage / Test Cases Increment of UltraFuzz Compared to Baseline With Same Computing Resources
Program 8 units 16 units 32 units 64 units 128 units
Branch coverage/ Branch coverage/ Branch coverage/ Branch coverage/ Branch coverage/
Test cases Test cases Test cases Test cases Test cases
boringssl 2,502(1.01x) / 2,509(1.01x)/ 2,551(0.99x)/ 2,557(0.98x)/ 2,595(0.98x)/
30.8M(1.23x) 50.7M(1.09x) 44.3M(0.44x) 75.6M(0.38x) 121.0M(0.33x)
freetype 10,368(1.03x)/ 10,646(1.01x)/ 12,293(1.03x)/ 13,905(1.07x)/ 14,923(1.05x)/
23.1M(1.06x) 36.4M(0.86x) 100.4M(1.22x) 190.6M(1.17x) 345.4M(1.08x)
libexx 6,616(1.07x)/ 6,572(1.04x)/ 6,698(1.03x)/ 6,837(1.03x)/ 6,938(1.04x)/
45.6M(1.56x) 42.0M(0.95x) 53.4M(0.79x) 73.1M(0.59x) 126.9M(0.60x)
libxml 6,469(1.05x)/ 6,788(0.93x)/ 8,216(1.04x)/ 8,313(1.02x)/ 8,921(1.09x)/
30.3M(1.01x) 44.9M(0.78x) 103.4M(1.18x) 165.9M(1.34x) 256.8M(1.85x)
re2 6,095(0.99x)/ 6,138(0.99x)/ 6,098(0.98x) / 6,098(0.97x)/ 6,194(0.99x)/
19.6M(0.55x) 24.8M(0.41x) 37.3M(0.28x) 50.8M(0.17x) 73.1M(0.22x)
libarch 4,204(0.93x)/ 5,193(1.07x)/ 5,570(1.10x)/ 5,970(1.16x)/ 6,481(1.25x)/
19.1M(1.01x) 44.8M(1.42x) 78.5M(1.45x) 157.4M(1.64x) 278.8M(2.62x)
size 3,713(1.05x)/ 3,951(1.06x)/ 4,152(1.05x)/ 4,293(1.04x) / 4,382(1.06x) /
27.2M(1.03x) 45.1M(0.95x) 97.9M(1.11x) 161.4M(0.98x) 242.1M(1.31x)
readelf 6,004(1.00x)/ 6,961(0.93x)/ 9,707(1.02x)/ 10,931(1.06x)/ 11,265(1.08x)/
31.5M(0.78x) 58.1M(0.77x) 143.7M(1.01x) 246.5M(0.95x) 357.8M(1.35x)
objdump 5,759(1.11x)/ 6,373(1.03x)/ 7,594(1.07x)/ 8,060(1.06x)/ 8,360(1.07x)/
24.7M(1.10x) 40.1M(0.96x) 95.6M(1.19x) 170.7M(1.20x) 242 9M(1.10x)
avconv 15,255(0.86x)/ 18,714(1.02x)/ 18,912(0.99x)/ 20,461(1.03x) / 20,714(1.02x) /
2.0M(0.90x) 6.7M(1.63x) 10.3M(1.28x) 22.6M(1.42x) 33.5M(1.64x)
infotocap 2,667(0.90x) / 3,251(1.03x)/ 3,544(1.06x)/ 3,582(1.06x)/ 3,609(1.05x)/
12.1M(1.21x) 21.1M(1.26x) 38.4M(1.52x) 67.2M(1.61x) 97.6M(2.08x)
pdftotext 1,844(1.00x)/ 1,855(1.00x)/ 1,861(1.01x)/ 1,869(1.01x)/ 1,867(1.01x)/
6.1M(0.81x) 11.1M(0.91x) 22.8M(1.30x) 44 1M(1.66x) 82.1M(1.86x)
tiff2bw 4,796(0.92x) / 5,213(0.94x)/ 5,704(1.02x)/ 5,816(1.02x)/ 5,860(1.02x)/
38.1M(0.78x) 60.8M(0.69x) 115.8M(0.78x) 181.2M(0.84x) 252.4M(0.92x)
ffmpeg 15,000(1.02x)/ 17,096(1.07x)/ 18,604(1.05x)/ 19,935(1.05x)/ 21,240(1.04x) /
6.7M(0.92x) 14.8M(1.09x) 29.5M(1.12x) 61.4M(1.20x) 112.1M(1.39x)
gnuplot 9,205(0.75x)/ 10,716(0.68x)/ 14,110(0.71x)/ 20,043(0.86x) / 25,740(1.07x) /
13.1M(0.77x) 27.2M(0.88x) 62.2M(1.15x) 110.1M(1.32x) 184.4M(1.91x)
tepdump 7,219(1.15x)/ 9,805(1.20x)/ 10,942(1.07x)/ 11,882(1.05x)/ 12,483(1.1x)/
36.6M(1.39x) 76.3M(1.53x) 115.0M(1.25x) 175.2M(1.18x) 294.8M(1.86x)
Average 0.99x / 1.01x 1.00x / 1.01x 1.01x / 1.07x 1.03x / 1.1x 1.06x / 1.38x

B/T means the branch coverage/number of test cases generated by UltraFuzz. And the value in bracket represents the corresponding increment of UltraFuzz com-

pared to AFL.

observation: In the experiments, UltraFuzz on n cores for 1 h
performs better than AFL on 1 core for n hours, and this
improvement increases with the number of cores. For short,
we call this phenomenon “super-linear acceleration”.

We give a fine-grained classification of the parallel fuzz-
ing acceleration as follows.

o Linear acceleration: The result of AFL-single using 1
core to run for n hours equals a fuzzer using n cores
running for 1 h. This is an ideal situation of parallel
fuzzing which excludes the overhead of parallelism
and the affection of fuzzing status synchronization.

e Sub-linear acceleration: The result of AFL-single using
one core to run for n hours is better than a fuzzer
using n cores running for 1 h. This is a typical situa-
tion, and a known example is the parallel mode of
AFL (i.e., AFL-P).

o Super-linear acceleration: The result of AFL-single
using one core to run for n hours is worse than a fuz-
zer using n cores running for 1 h. An example is
UltraFuzz.

Generally speaking, if we only expand AFL to a parallel

mode without optimizing its scheduling, theoretically, the

parallel mode will not perform as well as AFL-single with the
same computing resources. The reason is that parallelism
always introduces additional overhead, such as by seeds syn-
chronization and task dispatching. Hence, with the same com-
puting resources, the proportion used on fuzzing seeds in
parallel mode is less than those in AFL-single. As a result, the
test cases produced by AFL’s parallel mode should be less
than those produced by extending the execution time of AFL-
single. Based on this assumption, we analyzed the average
number of test cases generated by UltraFuzz and AFL-single,
as listed on the right side of each column in Table 3. However,
the results show that, on average, UltraFuzz generates the
same or more test cases than AFL single with the same com-
puting resources, which is not consistent with our original
inference. We argue the main reason behind this result is the
high resource efficiency of UltraFuzz. UltraFuzz consumes
fewer resources in generating each valid test case. To dig into
the deep reason, we propose the following explanations.

5.2.1 Branch Coverage for 24 Hours

To further analyze the super-linear acceleration, we com-
pared UltraFuzz with AFL for physical scaling across

ZHOU ET AL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING 2403
TABLE 4
The Standard Deviations and 95% Confidence Intervals of Branch Coverage Reached by UltraFuzz

Program 8 units 16 units 32 units 64 units 128 units

Deviation/Interval Deviation/Interval Deviation/Interval Deviation/Interval Deviation/Interval
boringssl 78.63 / 2,348-2,656 56.1 / 2,399-2,619 53.89 / 2,445-2,656 47.71 / 2,464-2,651 46.6 / 2,503-2,686
freetype 205.88 / 9,965-10,772 138.47 / 10,375-10,918 160.36 / 11,978-12,607 101.98 / 13,705-14,105 160.17 / 14,609-15,237
libexx 148.67 / 6,325-6,907 113.03 / 6,350-6,794 154.37 / 6,395-7,000 150.54 / 6,542-7,132 71.66 / 6,798-7,079
libxml 82.78 / 6,307-6,631 215.07 / 6,366-7,209 532.65 / 7,172-9,260 686.27 / 6,968-9,658 426.43 / 8,085-9,757
re2 79.05 / 5,940-6,250 66.33 / 6,008-6,268 78.82 / 5,943-6,252 97.13 / 5,907-6,288 47.15 / 6,101-6,286
libarch 251.7 / 3,710-4,697 427.78 / 4,355-6,032 659.24 / 4,278-6,862 870.31 / 4,265-7,676 561.63 / 5,380-7,582
size 110.83 / 3,496-3,931 142.45 / 3,671-4,230 113.74 / 3,930-4,375 166.38 / 3,967-4,619 144.11 / 4,100-4,665
readelf 270.34 / 5475-6,534 445.27 / 6,088-7,833 257.63 / 9,202-10,212 557.6 / 9,838-12,024 322.19 / 10,633-11,896
objdump 171.44 / 5423-6,095 296.93 / 5,791-6,955 172.44 / 7,256-7,932 192.71 / 7,682-8,437 169.32 / 8,029-8,692
avconv 35.15 / 15,186-15,324 452.95 / 17,826-19,601 436.43 / 18,057-19,768 218.28 / 20,033-20,889 160.7 / 20,399-21,029
infotocap 341.25/1,999-3,336 207.21 / 2,845-3,657 83.3 / 3,380-3,707 73.51 / 3,438-3,726 378.88 / 2,867-4,352
pdftotext 34.33 / 1,776-1,911 6.84 / 1,841-1,868 8.0 / 1,846-1,877 42 /1,861-1,877 3.53 / 1,860-1,874
tiff2bw 213.62 / 4,377-5,215 356.58 / 4,514-5,912 83.27 / 5,541-5,868 86.66 / 5,647-5,986 89.43 / 5,685-6,036
ffmpeg 219.62 / 14,569-15,430 461.28 / 16,192-18,000 398.98 / 17,822-19,386 272.01 / 19,402-20,468 400.29 / 20,455-22,025

gnuplot 393.9 / 8,433-9,977

tecpdump 339.79 / 6,554-7,885 245.8 / 9,323-10,287

422.27 / 9,889-11,544 1235.13 / 11,690-16,531
492.32 / 9,977-11,907

1567.88 / 16,970-23,116 760.88 / 24,248-27,231
378.15 / 11,141-12,623 665.16 / 11,179-13,786

machines (8, 16, 32, and 64 cores, respectively). We run each
campaign 10 times for 24 hours to account for the potential
difference at the beginning of the campaign. AFL instances
run for the same time (24 h) across machines but are unsyn-
chronized, where coverage is measured across all corpora.
As Table 6 lists, compared to AFL, UltraFuzz’s branch cov-
erage increments range from 0.79x to 1.78x., and UltraFuzz
outperforms AFL for most of the cases (45/64). Averagely,
the increments for 8, 16, 32, and 64 cores are 1.07x, 1.10x,
1.10x, and 1.14x, respectively. Moreover, the results also
imply that the acceleration gets obvious as the number of
cores increases. More specifically, for the group of 8 cores,
UltraFuzz outperforms AFL on 10 out of the 16 cases with
an average increment of 1.07x. However, for the 64-core
group, UltraFuzz outperforms AFL in 13 cases with an aver-
age increment of 1.14x. The other two groups (i.e, 16 and 32)
are in the middle. In summary, UltraFuzz still outperforms
AFL and the super-linear acceleration phenomenon persists
even when the testing time is extended to 24 hours.

TABLE 5
The P-Value Results of UltraFuzz Regarding Branch Coverage

Program p;(&AFL) p (&PAFL) ps;(&EnFuzz) ps(&AFL-P)
boringssl 2.1x107' 3.0x10™" 25%107' 6.6%1073
freetype 1.6%x107'1 23x107° 2.0x107° 4.9%1072
libexx 35%107% 35%107° 501073 5.6 1072
libxml 3.9%1072 64%1072 9.1%107° 3.8%10712
re2 22x107% 14%102 20x10°% 2.8x107!
libarch 8.9%107° 1.7%«1077 28%1072 1.9x%107°
size 1.9%107% 1.1%10° 6.0x107! 53x107°
readelf 1.9%107! 43%107'" 14%10° 1.8%107'8
objdump 57x107% 2.6x107" 43x107* 2.6x1074
avconv. 2.9%107! 64%107%2 7.1%107' 4.3%107°
infotocap 2.8%107! 1.6x1073 14x%107' 5.9%107*
pdftotext 2.3x107* 2.2x%107° 59%1071 1.9%107!
tiff2bw 5.6x107> 2.9x107° 2.7x107 1.2%1077
ffmpeg 1.9%1073 19x107° 29x1072 3.7%107!6
gnuplot 5.1%1072 4.4x107'% 22%107!2 1.5%107'
tepdump 1.6%1072 51%107" 27%1072 2.6% 10"

5.2.2 Number of Completed FuzzingTasks

We also compare AFL and UltraFuzz using the number of
fuzzing tasks completed. The experiments were conducted
with 8, 16, 32, and 64 cores, running for 24 hours, respectively.
As Table 7 shows, in general, UltraFuzz outperforms AFL on
most (46/64) of the cases, with the highest increment of 11.40x
(tifftobw). It is worth noting that, with the number of cores
increasing, the averaged task increments are getting large
accordingly, ranging from 1.60x to 3.70x. We can conclude
from the result that UltraFuzz has a higher efficiency than
AFL because UltraFuzz can complete more tasks than AFL at
the same time. A reason behind this is that, in the single-core
fuzzing process of AFL, different fuzzing instances can
repeatedly get blocked by the same slow inputs, while in
UltraFuzz, such low-quality seeds are removed immediately
before affecting other instances. More importantly, the effi-
ciency advantage of UltraFuzz is getting obvious with the
increase of the core. This is because based on the efficient seed
and coverage information synchronization, UltraFuzz can
execute more high-quality and fast seeds. In summary, Ultra-
Fuzz outperforms AFL in terms of completed tasks, and the
super-linear acceleration is also reflected in the increments.

100000,

e—e UltraFuzz
e o AFL-single .
e o PAFL ’
o - EnFuzz

80000 o o ARl

60000

7 .
Q
o
<
©
o
40000
20000+
0 ‘ ‘ ‘ ‘
8 16 32 64 128
Computation resource/cores*hours
Fig. 4. Comparison of different tools on average path cost.

2404 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023
TABLE 6
Branch Coverage Increment of UltraFuzz Compared to AFL Running for 24 Hours

Program 8 cores 16 cores 32 cores 64 cores

AFL / UltraFuzz AFL / UltraFuzz AFL / UltraFuzz AFL / UltraFuzz
boringssl 2,828 / 2,657 (0.94x) 2,747 /2,958 (1.08x) 3,132 / 2,661 (0.85x) 3,078 /2,872 (0.93x)
freetype 11,722 / 13,762 (1.17x) 12,010 / 16,312 (1.36x) 12,146 / 16,485 (1.36x) 12,870 / 16,638 (1.29x)
libexx 7,085 / 7,194 (1.02x) 7,220 / 7,367 (1.02x) 7,269 / 7,400 (1.02x) 7,341 /7,407 (1.01x)
libxml 9,576 /8,361 (0.87x) 9,964 /8,633 (0.87x) 10,042/8,783 (0.87x) 10,598 / 9,832 (0.93x)
re2 6,313 / 6,218 (0.98x) 6,344 / 6,260 (0.99x) 6,352 / 6,272 (0.99x) 6,371 / 6,286 (0.99x)
libarch 6,575 / 5,505 (0.84x) 6,794 / 6,193 (0.91x) 7,616 / 7,002 (0.92x) 7,700 / 7,942 (1.03x)
size 4,336 / 4,724 (1.09x) 4,407 / 4,881 (1.11x) 4,476 / 4,979 (1.11x) 4,692 / 5,034 (1.07x)
readelf 9,584 / 11,338 (1.18x) 9,908 / 12,089(1.22x) 9,808 / 12,276 (1.25x) 10,523 / 12,385 (1.18x)
objdump 7,736 / 8,471 (1.10x) 7,902 / 8,661 (1.10x) 7,935 / 8,788 (1.11x) 8,123 / 8,878 (1.10x)
avconv 20,298 / 22,328 (1.10x) 21,092 / 25,384 (1.20x) 21,738 / 26,624 (1.22x) 22,811 / 31,034 (1.36x)
infotocap 3,353 / 3,654 (1.09x) 3,641 / 3,725 (1.02x) 3,727 / 3,750 (1.01x) 3,714 / 3,766 (1.01x)
pdftotext 1,857 / 1,866 (1.00x) 1,862 / 1,870 (1.00x) 1,867 /1,874 (1.00x) 1,871 / 2,013 (1.08x)
tiff2bw 5,786 / 6,170 (1.07x) 5,988 / 6,361 (1.06x) 6,078 / 6,557 (1.08x) 6,058 / 6,792 (1.12x)
ffmpeg 18,080 / 22,650 (1.25x) 19,049 / 25,613 (1.34x) 19,358 / 27,597 (1.43x) 19,269 / 34,214 (1.78x)
gnuplot 23,817 / 18,829 (0.79x) 26,747 / 24,602 (0.92x) 27,205 / 30,855 (1.13x) 28,461 / 33,498 (1.18x)
tepdump 8,015 /13,529 (1.69x) 10,079 / 14,259 (1.41x) 12,271 / 15,569 (1.27x) 14,865 / 16,936 (1.14x)
Average increase 1.07x 1.10x 1.10x 1.14x

The value in bracket represents the corresponding increment of UltraFuzz compared to AFL.

5.2.3 Explanation

Explanation 1: Global Energy Scheduling Optimization. Accord-
ing to AFL’s design, when it tests a seed with the random
strategy and finds a new path, the energy (i.e., the number
of mutation chances) assigned to this seed will be doubled.
Though UltraFuzz does not optimize the scheduling algo-
rithm at the code level (ie. the energy assignation and
mutation strategy of UltraFuzz are the same as those in
AFL), the parallel mechanism of UltraFuzz allows it to test
different seeds at the same time. Since these seeds are
selected and marked as favored by the scheduler when
UltraFuzz finds new paths during fuzzing these seeds, the
energy assigned to these seeds will be doubled, which can
promote the generation of more test cases. For example, for
favored seeds s; and s,, assigning energy e; and e, to them,
they may discover the same path p; with generating test
case s3. AFL-single selects seeds in order, by fuzzing s, after
s1. Once s; has discovered path p; and doubled the energy,
when s, discovers path p; again, the energy is not doubled
again. So, the total energy assigned to these two seeds in
AFL-single is (e; * 2+ e3). In contrast, UltraFuzz can test
these two seeds concurrently. When UltraFuzz mutates s;
and s; in different fuzzing instances to generate test cases
and both discover path p;, the energy allocated to both s;
and s, will be doubled. Thus, the total energy assigned to
these two seeds in UltraFuzz is (e; x 2 + ey * 2), which is
more than that in AFL-single. In other words, using the paral-
lel mechanism, UltraFuzz can optimize global enerqy scheduling
by giving favored seeds more energy.

To verify this explanation, we analyzed the distribution
of energy allocation in UltraFuzz and AFL-single during
fuzzing readelf with 32 units of computing resources. We
recorded the energy assigned to each seed and the times of
doubling energy for each seed during the random strategy.
Fig. 5 shows the energy distribution and the doubling
energy times of UltraFuzz and AFL-single. From Fig. 5a, we
can see that both AFL-single and UltraFuzz allocate much
energy to seeds whose serial numbers are closer to 0. The

reason is that these seeds are regarded as favored and their
performance scores are higher than other seeds, which
means these seeds are more likely to discover new paths
and branches. For these high-quality seeds, particularly
those with serial numbers less than 500, UltraFuzz allocates
much more energy to them than AFL-single, which
improves the efficiency of energy utilization and makes
UltraFuzz reach a higher path coverage than AFL-single in
readelf. Moreover, from Fig. 5b, the times of doubling the
energy when fuzzing readelf for many seeds in UltraFuzz
were more than those in AFL-single, particularly for the
seeds whose serial numbers are less than 100. The total dou-
bling times for UltraFuzz were 3x greater than those of
AFL-single, which were 1,501 and 544, respectively. This is
consistent with our explanation. This demonstrates that
UltraFuzz assigns more energy to seeds with a high proba-
bility of finding new paths and branches than AFL-single.

To further validate how much such global energy optimi-
zation affects the result, we close the double energy scheme
of UltraFuzz and ran an additional experiment. Results
show that 5.3% (513/9,707) patch coverage and 4.2% (357/
8,514) branch coverage are reduced. This implies that global
energy optimization is only part of the reason for super-lin-
ear acceleration. In summary, parallel mechanisms can help
optimize AFL’s energy scheduling from a global perspec-
tive, but not the only reason.

Explanation 2: Escape the Local Optimal Seed. Most of the
feedback-driven fuzzers are based on ad-hoc algorithms.
The fuzzing process can start from a random initial seed
and use a search-based strategy to alternatively approach
the optimal solution. However, this procedure inevitably
gets stuck in a local optimal seed and repeats redundant
work. In serial fuzzing, we chose the best seed each time,
which is similar to a depth-first search strategy. However,
for parallel fuzzing with task distribution, different fuzzing
instances can fuzz different seeds simultaneously, which is
like a width-first search strategy. In such a parallel situation,
a fuzzing instance that jumps out of the local optimal seed

ZHOU ETAL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING 2405
TABLE 7
Number of Tasks Completed by UltraFuzz Compared to AFL Running for 24 Hours

Program 8 cores 16 cores 32 cores 64 cores

AFL / UltraFuzz AFL / UltraFuzz AFL / UltraFuzz AFL / UltraFuzz
boringssl 175,090 / 128,416 (0.73x) 247,020 / 417,671 (1.69x) 551,606 / 1,426,948 (2.59x) 643,018 / 2,102,387 (3.27x)
freetype 2,523 / 1,476 (0.59x) 5,082 / 25,585 (5.03x) 8,358 / 60,510 (7.24x) 15,842 / 119,622 (7.55x)
libexx 62,282 / 77,781 (1.25x) 141,466 / 277,750 (1.96x) 307,524 / 444,015 (1.44x) 474,077 / 863,904 (1.82x)
libxml 9,578 / 5,897 (0.62x) 21,290 / 16,929 (0.80x) 34,806 / 30,056 (0.86x) 63,689 / 61,297 (0.96x)
re2 179,255 / 364,646 (2.03x) 393,940 / 1,377,637 (3.50x) 520,728/2,218,812 (4.26x) 1,163,060 / 5,198,349 (4.47x)
libarch 8,275 / 3,399 (0.41x) 16,016 / 15,193 (0.95x) 32,112 / 36,711 (1.14x) 64,384 / 89,128 (1.38x)
size 27,408 / 45,894 (1.67x) 45,291 / 122,013 (2.69x) 67,599 / 519,371 (7.68x) 109,878 / 1,054,117 (9.59x)
readelf 13,271 / 7,639 (0.58x) 25,455 / 37,881 (1.49x) 42,722 / 79,609 (1.86x) 88,223 / 137,259 (1.56x)
objdump 9,123 / 14,387 (1.58x) 18,670 / 402,39 (2.16x) 32,557 / 56,377 (1.73x) 58,498 / 78,909 (1.35x)
avconv 136 / 141 (1.04x) 252 / 622 (2.47x) 536 / 1,400 (2.61x) 1,151 / 2,167 (1.88x)
infotocap 2,951 / 1,084 (0.37x) 6,523 / 1,500 (0.23x) 12,199 / 2,842 (0.23x) 22,079 / 7,000 (0.32x)
pdftotext 2,504 / 5,243 (2.09x) 4,703 / 16,239 (3.45x) 7,546 / 28,625 (3.79x) 16,830 / 153,019 (9.09x)
tiff2bw 12,31 / 57,484 (4.67x) 25,126 / 114,491 (4.56x) 41,772 / 476,314 (11.40x) 80,309 / 505,215 (6.29x)
ffmpeg 648 / 646 (1.00x) 1,417 / 1,588 (1.12x) 2,578 / 2,340 (0.91x) 3,826 / 5,093 (1.33x)
gnuplot 29,095 / 3,275 (0.11x) 58,072 / 6,573 (0.11x) 88,557 / 22,159 (0.25x) 173,029 / 62,203 (0.36x)
tepdump 14,463 / 99,652 (6.89x) 28,762 / 204,787 (7.12x) 80,374 / 613,256 (7.63x) 102,871 / 823,313 (8.00x)
Average increase 1.60x 2.46x 3.48x 3.70x

The value in bracket represents the corresponding increment of UltraFuzz compared to AFL.

can notify the rest by instantly synchronizing the fuzzing
status. In this way, fuzzing instances can escape local opti-
mal seeds more easily to explore more seeds.

To verify this explanation, we construct an inherit-relation
graph of the seeds generated during a fuzzing campaign. As
an example, Figs. 6a and 6b show the relation of seeds gener-
ated during fuzzing objdump by AFL and UltraFuzz, respec-
tively. In the graph, each node indicates a seed, and the line
between the two nodes indicates the inherited relationship.
The campaign starts from the initial seeds at the far left of the
graph. To save space, we only keep the seeds that discover
new seeds in the graph, called active seeds, and omit the rest
(i.e., the leaf nodes). From a view of macroscopic, the seeds of
UltraFuzz are distributed in a broader range than that of AFL.
We can observe that UltraFuzz discovered more paths than
AFL, and most of the paths are explored at a deeper level.
Quantitatively, AFL generates 5,828 seeds in total, among

(a)

— UltraFuzz
— AFL-single

1500 2000 2500 3000

The order of seeds

(b)

1000

| 1
. . .
300 400 500
The order of seeds

The times of doubling energy

I I I I]
100 200 600 700 800

o

Fig. 5. The distribution of energy assigned to each seed and the times of
doubling energy in fuzzing readelf. Since lots of seeds are not fuzzed
(i.e., the energy assigned to these seeds is 0), we only focus on the
seeds that have been fuzzed and sort them by the energy assigned to
them.

which 1,450 are active, accounting for 24.9%. For UltraFuzz,
2,183 out of 8,335 are active seeds, which accounts for 26.2%.
Therefore, we can conclude that UltraFuzz can generate more
active seeds that can discover new paths compared to AFL,

§-g-¢°

o
s

Fig. 6. The relationship of seeds generated by AFL and UltraFuzz fuzz-
ing objdump under 128 units computing resource.

e
: ggggséaegooooc
et
- H-
SES #5380
E5S
.
ééS:é"g (@)
= ;
A
58“5! E§§§8000
o °-l 8@80
. =
=4 ;
é! £ e
o - 8 QBG
REE E gggggéﬂ@
ogo" 000
FREE
B

DO D OO ADBAD

2SR

(b)

aw o
o a»

o
8

2406
TABLE 8

The Vulnerabilities Found by These Five Tools
Program Type Position St. Tool
boringssl double-free asnl_lib.c:460 N U
boringssl SEGV asnl_lib.c:459 N Al
size free invalid pointer coffgen.c:1782 F Al
size heap-use-after-free elf.c:2604 F U
size SEGV opncls.c:978 F U
objdump SEGV elf.c:358 S U
infotocap SEGV strchr.S:88 S Al
infotocap heap-buffer-overflow vg replace_malloc.c:307 S U
gnuplot SEGV plot2d.c:2218 W All
gnuplot heap-buffer-overflow cgm.trm:1014 F UA
gnuplot SEGV plot2d.c:1721 S A
gnuplot SEGV graph3d.c:1962 S A
gnuplot SEGV hidden3d.c:1639 S A
gnuplot SEGV iofclose.c:53 S A
gnuplot SEGV plot2d.c:3464 F UA
gnuplot heap-buffer-overflow vg_replace_strmem.c:459 F U
gnuplot heap-buffer-overflow datafile.c:2960 F U
gnuplot heap-use-after-free misc.c:250 F U
gnuplot heap-use-after-free vg_replace_strmem.c:1644 F U
gnuplot global-buffer-overflow set.c:5184 W U
gnuplot double-free graph3d.c:752 W U
gnuplot SEGV tkcanvas.trm:1474 W U
gnuplot SEGV graphics.c:2333 W U
gnuplot SEGV axis.c:2412 W U

INT

In the st. column, “N” indicates the vulnerability has never been reported
before. “F” means the vulnerability has been fixed. “W” means the vendor
wouldn’t fix or accepted it. “S” means the vulnerability has been submitted to
the vendor. In the Tool column, “U,” “A” stand for UltraFuzz, AFL-single,
and “All” means found by all the tools.

which is consistent with our explanation that UltraFuzz can
escape the local optimum trap and explore more paths. In
summary, instant synchronization in parallel fuzzing can help
to fuzz instances get out of the local optimal seed faster and
improve the performance, but it is not the only reason, either.

These two Explanations can also explain why UltraFuzz
can produce more test cases than AFL-single in Table 3. Rea-
son 1: AFL-based fuzzers prioritize seeds that are short in
size and execute fast. According to Explanation 1, high-
quality seeds (i.e., seeds that execute fast) will be preferred
and given more energy by UltraFuzz once they discover
new paths. Thus, UltraFuzz will have more fast seeds
mutated, and consequently, produce more test cases (which
are also fast) than AFL in the given time. Reason 2: AFL-sin-
gle with virtual scaling might get stuck when a seed is very
slow, while UltraFuzz with physical scaling will only have
one instance get stuck, the other can proceed as usual. This
reason is similar to Explanation 2.

5.3 Exposed Vulnerabilities

As listed in Table 8, these tools detected 24 vulnerabilities
in total. UltraFuzz found 20 of them, more than the other
five tools. In Google fuzzer-test-suite, UltraFuzz found two
vulnerabilities in boringssl, which were not reported by
Google fuzzer-test-suite before. Particularly, the double-
free vulnerability in boringssl is only detected by UltraFuzz.
In addition to Google fuzzer-test-suite, these tools detected
22 vulnerabilities in other real-world programs in total.
Among them, UltraFuzz discovered 18 vulnerabilities.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

UltraFuzz finds three vulnerabilities in size. One is a
heap-use-after-free vulnerability, which is triggered by the
bfd_section_from_shdr function. One is triggered by the
_bfd_coff_free_symbols function when attempting to free an
invalid pointer. The other is a segmentation fault in _objal-
loc_alloc, which was only detected by UltraFuzz. We have
submitted these vulnerabilities to their vendors and the
three vulnerabilities found in size have been acknowl-
edged. For gnuplot, UltraFuzz found twelve vulnerabilities
and six of them have been acknowledged, with detecting
nine vulnerabilities. Compared to UltraFuzz, AFL detected
seven vulnerabilities, less than UltraFuzz. Finally, the vul-
nerabilities found by UltraFuzz, AFL, PAFL, EnFuzz, and
AFL-P in these programs are 20, 10, 4, 4, and 4, respec-
tively. In conclusion, UltraFuzz outperforms other tools in
finding vulnerabilities.

5.4 Performance Overhead
5.4.1 Comparison With AFL-P in 128 Units Computing
Resources

To calculate the performance overhead of UltraFuzz, we
classify the states of each working core into the fuzzing
state and the non-fuzzing state. In the fuzzing state, the
core is conducting a fuzzing task, while in the non-fuzz-
ing state, the core may be requesting a new task, evalu-
ating new seeds, communicating with the scheduler, or
synchronizing with the database. Thus, we define the
performance overhead of the system as the summation of
time durations that the working cores are non-fuzzing. We
use t and n to represent the testing time and working
core number, respectively. Then, we use t; to represent
the time duration that the i’ core is on the fuzzing state.
It is easy and accurate to measure the time that a core is
undertaking a fuzzing task. On this basis, the global per-
formance overhead of UltraFuzz can be calculated as

n—1
0= (1-=- L) x 100%. Notably, the scheduler is
always in a non-fuzzing state. Thus, the core that the
scheduler resides incurs a constant overhead, which
should be included. We only measure the fuzzing state
time of the rest n — 1 cores of UltraFuzz.

Since the synchronization overhead increases with the par-
allel scale, we use an experiment configuration of 128 units of
computing resources to test the maximum overhead available.
Thus, the overall testing time is 128*3600 seconds. Then, the
temporal summation of all the 127 working cores in the fuzzing
state was recorded to calculate the overhead. As Table 9 shows,
the overhead of UltraFuzz on 9/16 programs is under 1%. On
average, the overhead is 1.26%, which is acceptable for a paral-
lel fuzzer with 128 cores. As a comparison, we also record the
overhead of AFL-P. AFL-P does not synchronize much infor-
mation and does not support inter-machine mode. As a result,
UltraFuzz (1.26%) has a lower overhead than AFL-P (1.42%)
with 128 units of computing resources. We infer the low over-
head also contributes to the super-linear performance accelera-
tion we have discussed in Section 5.2.

Intuitively, the performance overhead should increase as
the parallel scale increases. This is because inter-machine
communication can aggravate the system overhead. How-
ever, in reality, as Table 10 shows, the performance over-
head of UltraFuzz decreases as the parallel scale increases.

ZHOU ET AL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING

TABLE 9
Overhead of UltraFuzz and AFL-P in 128 Units Computing
Resources
Program UltraFuzz AFL-P
Time(s) Percent Time(s) Percent
boringssl 10,178 2.21% 519 0.11%
freetype 3,808 0.83% 2,307 0.5%
libexx 8,650 1.88% 2,875 0.62%
libxml 4,298 0.93% 1,428 0.31%
re2 18,609 4.04% 3,669 0.8%
libarch 4,825 1.05% 1,387 0.3%
size 4,105 0.89% 2,535 0.55%
readelf 3,775 0.82% 26,783 5.81%
objdump 3,806 0.83% 20,514 4.45%
avconv 3,788 0.82% 3,163 0.69%
infotocap 4,903 1.06% 1,882 0.41%
pdftotext 3,800 0.82% 12,428 2.7%
tiff2bw 3,898 0.85% 18,973 4.12%
ffmpeg 4,304 0.93% 2,190 0.48%
gnuplot 4,953 1.07% 2,153 0.47%
tcpdump 5,573 1.21% 2,072 0.45%
Average 5,829 1.26% 6,555 1.42%
TABLE 10
Average Overhead of UltraFuzz

Overhead 8units 16 units 32 units 64 units 128 units
Time(s) 3,611 3,634 3,668 3,726 5,828
Percentage 12.54% 6.31% 3.18% 1.62% 1.26%

This is explainable because, according to the way we calcu-
late the overhead, the core that the scheduler occupies is
always regarded as being at a non-fuzzing state, incurring
overhead. The more cores we use, the lower percentage of
overhead this core accounts for.

2407

5.4.2 Comparison With AFL on 64 Cores for 24 Hours

In this section, we measure the time spent in AFL and Ultra-
Fuzz in fine granularity. We run both fuzzers with 64 cores for
24 hours. The total testing time is 64 cores * 24 h * 3600 s =
5,529,600 s. For AFL, we measure the time spent on scheduling,
evaluation, and fuzzing, respectively, which are listed as col-
umn 2 - column 4 in Table 11. For UltraFuzz, in addition to
evaluation (column 5) and fuzzing (column 10), we further dis-
tinguish the time spent on downloading and uploading seeds
(column 6), update seeds and bitmap (column 7), inter-
machine socket communication (column 8), and database-
based synchronization (column 9). The last row of Table 11 rep-
resents the average percentage of the time spent in each cate-
gory. The results can provide a fine-grained resolution of the
overhead of AFL and UltraFuzz. We can see that both AFL and
UltraFuzz spent around 99% of the testing time on fuzzing,
which means the overheads are both around 1%. More specifi-
cally, compared to AFL, the overhead increment of UltraFuzz
isaround 0.2% (i.e., 1.09% - 0.90%), which is acceptable. Among
the overhead of UltraFuzz, seed transfer (0.42%) and data-
based synchronization (0.62%) consume the most time. This is
consistent with our intuition as the seed is relatively large com-
pared with other fuzzing information. Notably, the inter-
machine communication via socket incurs very little overhead,
which is less than 0.01%. In summary, UltraFuzz has high effi-
ciency, and its overhead is close to that of AFL.

5.5 Effectiveness of Seed Caching

To prove the effectiveness of the seed caching mechanism in
UltraFuzz, as Table 12 shows, we recorded the cache hit ratio
(column 2) and the time consumed in downloading seeds
when seed caching is enabled (column 3)/disabled (column
4). The numbers in the brackets represent the corresponding
increments of seed downloading time when seed caching is
disabled compared to enabled. The experiments were con-
ducted with 64 cores running for 24 hours. The hit ratios range
from 0.105 to 0.993 with an average value of 0.617, which

TABLE 11
Overhead of UltraFuzz and AFL With 64 Cores Running for 24 Hours

Program AFL UltraFuzz

Scheduling Evaluation Fuzzing Evaluation Seeds Update Socket Database Fuzzing
boringssl 555 38,288 5,490,526 23 15,753 48 837 13,533 5,499,192
freetype 1,191 73,980 5,454,320 790 17,324 1,282 170 41,343 5,470,617
libexx 2,567 38,778 5,488,106 226 48,642 374 318 41,889 5,438,803
libxml 1,472 75,585 5,452,065 191 2,987 231 112 4,946 5,521,052
re2 1,793 54,871 5,472,745 153 116,437 384 1,879 79,849 5,331,408
libarch 986 37,567 5,490,919 140 4,126 181 63 5,574 5,519,755
size 739 38,596 5,490,126 106 23,862 89 361 18,841 5,486,125
readelf 1,957 48,394 5,479,183 434 14,056 776 167 29,425 5,486,083
objdump 1,160 43,599 5,484,775 256 4,020 206 46 6,797 5,518,046
aveonv 1,957 69,802 5,457,774 5,882 7,963 3,429 130 45422 5,479,453
infotocap 458 31,347 5,497,796 1,701 2,483 154 11 1,072 5,527,703
pdftotext 1,412 22,984 5,505,113 264 1,731 112 73 1,416 5,526,205
tiff2bw 1,179 52,808 5,475,526 119 13,593 121 211 9,613 5,507,194
ffmpeg 538 41,596 5,487,412 4,896 8,613 3,205 167 72,308 5,451,054
gnuplot 4,828 62,942 5,461,823 3,029 15,070 2,609 46 92,810 5,352,737
tcpdump 3,008 37,336 5,489,098 381 72,426 972 271 80,733 5,376,202
Average percentage 0.03% 0.87% 99.10% 0.02% 0.42% 0.02% 0.01% 0.62% 98.89%

2408 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023
TABLE 12 TABLE 13
Effectiveness of Seed Caching Effectiveness of Elasticity Mechanism
Program Hitratio Caching enabled Cache disabled Program Number of Fuzzing Evaluation Time (s)
boringssl 0.993 15,689 78,425 (5.00x) Tasks
freetype 0.444 15,187 87,182 (5.74x) Enable / Disable Enable / Disable
libexx 0.799 48,223 110,458 (2.29x) Elasticity Elasticity
libxml 0.294 2,515 3,999 (1.59%) boringssl 2,102,387 / 1,125994 23/ 24 (1.04x)
re2 0.994 113,827 1,326,020 (11.65x) (0.54%)
libarch 0.580 3,734 16,278 (4.36x) freetype 119,622 / 97,077 (0.81x) 790 / 722 (0.91x)
size 0.975 23,722 305,729 (12.89) Jipexx 863,904 / 748,660 (0.87x) 226 / 319 (1.41x)
readelf 0.545 13,190 197,976 (15.01x) Jibxml 61,297 / 39,828 (0.65x) 191 / 242 (1.27x)
objdump 0.700 3,587 59,675 (16.63x) re2 5,198,349 / 5,669,606 153 / 152 (0.99x)
avconv 0.145 437 12,710 (29.08x) (1.09%)
infotocap 0420 689 21,616 (31.37x) libarch 89,128 / 59,501 (0.67x) 140 / 119 (0.85x)
pdftotext 0.859 1,399 21,847 (1562 gize 1,054,117 /998,718 106 / 109 (1.03x)
tiff2bw 0.989 12,262 569,194 (46.42x) (0.95%)
ffmpeg 0.105 920 14,628 (15.90%) readelf 137,259 / 87,767 (0.64x) 434 / 416 (0.96x)
gnuplot 0.199 11,838 133,095 (11.24x) objdump 78,909 /87,140 (1.10x) 256 / 260 (1.02x)
tcpdump ~ 0.834 71,964 586,704 8159 avconv 2,167 / 2,097 (0.97%) 5,882 / 6,047 (1.03)
Average 0.617 - 14.56x infotocap 7,000 / 6,836 (0.98x) 1,701 / 3,294 (1.94x)
pdftotext 153,019 / 135,092 (0.88x) 264 / 294 (1.11x)
tiff2bw 505,215 / 450,350 (0.89x) 119 / 108 (0.91x)
o . ffmpeg 5,093 / 4,132 (0.81x) 4,896 / 5100 (1.04x)
demonstra.tes that t}.le seed caching is meaningful. The seed gnuplot 62,203 /37.986 (0.61%) 3,029 / 3,005 (0.99%)
downloading time increments range from 1.59x to 46.42x tcpdump 823,313 / 622,250 (0.76x) 381 / 385 (1.01x)
with an average value of 14.56x, which demonstrates the Average 0.83x 1.09x
effectiveness of seed caching. It is worth noting that a high hit increase

ratio (e.g., boringssl) does not necessarily lead to a very high
increment, and a low hit ratio (e.g., ffmpeg and avconv) can
also bring significant increments. In summary, the seed cach-
ing mechanism is effective in shortening the time consumed
in downloading seeds, but its performance is also affected by
the characteristic of the seeds, e.g., the seed size.

5.6 Effectiveness of the Elasticity Mechanism

To prove the effectiveness of the elasticity mechanism of eval-
uating instances in UltraFuzz, we use the number of com-
pleted fuzzing tasks and the evaluation time as metrics. By
enabling and disabling the elasticity mechanism, we can
show the effectiveness of the elasticity mechanism via the two
metrics. The experiments were conducted with 64 cores run-
ning for 24 hours. As Table 13 shows, when the elasticity
mechanism is disabled, most of the fuzzing tasks completed
(14/16) are reduced, resulting in 0.54 - 0.97 to that when elas-
ticity is enabled. The average decrement of the completed
fuzzing task is 17%. As for the evaluation time, most of the
cases (10/16) are increased, from 1.01x to 1.41x, with an aver-
age increment of 9%. However, the results also show that dis-
abling the elasticity mechanism does not necessarily result in
a decrement in the number of completed fuzzing tasks nor an
increment in the evaluation time. A small portion of the
results is opposed. This is because our algorithm for balancing
the number of fuzzing instances and evaluating instances is
heuristical. We cannot guarantee to have the optimal arrange-
ment for all the programs under test. Nevertheless, the results
prove that the elasticity mechanism is useful in most cases in
improving the efficiency of UltraFuzz.

6 DiscussION

Parallel fuzzing in a distributed environment amplifies the
resource-wasting problem caused by the random nature of
fuzzing. With centralized dynamic scheduling, UltraFuzz can

The value in bracket represents the corresponding increment of UltraFuzz
when elasticity mechanism is disabled compared to enabled.

optimize seed selection, energy scheduling, fuzzing status
synchronization, and task dispatching over all the working
nodes from a global perspective. Based on the techniques
including on-demand task dispatching, hierarchical informa-
tion synchronization, and elastic seed evaluation computing
power allocation, UltraFuzz can filter duplicate (redundant)
seeds and avoid task conflicts, achieve instant synchroniza-
tion, balance workload, elastically allocate computing power,
and be compatible with the dynamic change of computing
capability. All these benefit resource utilization and improve
performance.

Super-Linear Acceleration. In the experiments, we had an
empirical observation that UltraFuzz on n cores for 1 h per-
forms better than AFL-single on 1 core for n hours. We call
it super-linear acceleration. We believe this result is caused
by superimposing reasons. Except for the reason that
resource utilization efficiency is improved in UltraFuzz, we
also propose another two explanations and validate them
with experiments. As we have discussed in Section 5.2, one
is that UltraFuzz can optimize AFL’s energy scheduling
from a global perspective by assigning more energy to seeds
with a high probability of finding new paths. Another
explanation is that the instant synchronization scheme in
UltraFuzz helps the fuzzing instances jump out of the local
optimal seed fast to discover and explore better seeds.
Experiments show that super-linear acceleration does not
exist with classical AFL synchronization (i.e., AFL-P, see
Table 15 in the Appendix), available in the online supple-
mental material, or independently running instances. This
is because a necessary condition of super-linear acceleration
is the instant fuzzing status synchronization among instan-
ces. Without fast and efficient synchronization, seeds cannot

ZHOU ET AL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING

be de-duplicated timely, and fuzzing tasks cannot be dis-
patched reasonably, as a result, task conflicts and redundant
executions would greatly deduct the system efficiency. We
also exclude the possibility that special inputs might block
or slow the execution of AFL-single. We use the same initial
inputs for all the tools we compare. If special inputs slow
AFL-single, then all the tools should outperform AFL-sin-
gle. However, only UltraFuzz has super-linear acceleration
manifested, and the rest tools perform less well as AFL-
single.

However, we don’t think super-linear acceleration is per-
sistent. In a fuzzing process, it is obvious that the coverage
increases actively at the beginning and tends to smooth
when the program has been fuzzed for a long time enough.
This is because, for any program under test, since the pro-
gram size is fixed, a fuzzer is difficult to find new coverage
when a majority of the program has been explored. To sim-
plify this process, we roughly divide the whole fuzzing pro-
cess into two phases: the active phase and the smooth phase,
though without a clear boundary. Most of the optimization
techniques are clearly effective in the active phase. Once
fuzzing enters the smooth phase, the test tends to be satu-
rated as most of the paths have been explored and it is diffi-
cult to see an obvious difference by comparing coverage.
Thus, we think that super-linear acceleration only manifests
obviously at the active phase. Therefore, when setting the
experiment, we always follow two criteria: 1) select rela-
tively large-size programs to extend the active phase; 2)
limit the computing resources (cores and time) to restrict
the test within the active phase. Increasing the testing
resource (time or core) is definitely useful to discover vul-
nerabilities, however, blindly increasing the testing resource
might conceal the difference when comparing the perfor-
mance of different tools. Though UltraFuzz runs tests only
for one hour in our experiment, it leverages a large number
of cores to share the task and shorten the time. The work-
load is divided and dispatched to different instances to fuzz
concurrently. Essentially, parallel fuzzing trades cores for
time. Modern fuzzing evaluation follows the guidance pro-
posed by Klees et al. [37] that a fuzzing campaign should at
least take 24 hours. However, this claim is for single-core
fuzzing. For parallel fuzzing, the real testing time should
multiply the number of cores to measure the capacity of
work. Besides, we have AFL running tests long enough as
the baseline to validate the tests. As for the potential ran-
domness of fuzzing, we choose to reduce such impact by
repeating the experiment instead of lengthening the test
time. We also conduct a statistical significance analysis for
the experiment result.

Though UltraFuzz has high resource utilization effi-
ciency, itself (like all other studied fuzzers) is still subject to
Boehme’s “empirical law of exponential cost”. However,
this study can provide insight and direction to future
research on parallel fuzzing.

Advantages. Beyond the technical advantages over the
state-of-the-art baselines, UltraFuzz can be useful in promot-
ing other variants of fuzzing, such as differential fuzzing [38],
[39], [40], [41] and directed fuzzing [17], [21], [42], [43], [44].
Differential fuzzing detects bugs by providing the same input
to different implementations of the same application and

2409

observing differences in their execution. Differential testing is
well-suited to find semantic or logic bugs that do not exhibit
explicit erroneous behaviors like crashes or assertion failures,
which complements traditional fuzz testing. UltraFuzz can
improve the efficiency of differential fuzzing by running the
executions in parallel. Directed fuzzing focuses on target loca-
tions (e.g., the bug-prone zone) and spends most of its time
budget on reaching these locations without wasting resources
stressing unrelated parts. By giving more mutation chances to
seeds that are closer to the target, directed fuzzing can reach
the target locations gradually. UltraFuzz can help to improve
the efficiency of directed fuzzing by assigning different tar-
gets to different instances and running them in parallel.

Risk Statement. A centralized architecture with a scheduler
has a vulnerable risk. If a failure happens to the scheduler or
itis compromised, the whole system will be unworkable.

Future Work. UltraFuzz is implemented on top of vanilla
AFL, and we focus on improving the performance of fuzzing
by optimizing the parallel scheme, such as the centralized
dynamic scheduling and hierarchical information-sharing.
UltraFuzz can integrate with works from an orthogonal direc-
tion, such as improving execution speed [45], [46], [47], [48],
optimizing mutation strategy [16], [17], [18], [28] and power
scheduling [20], [21], or improving the diversity by taking
advantage of different fuzzers [34], [49]. We leave these as
future work.

7 THREAT TO VALIDATION

(1) The coverage sharing scheme of UltraFuzz might be
affected by extreme situations, such as programs with ran-
domization. In such a case, the same inputs and same pro-
gram may not lead to the same execution trace and thus the
bitmap coverage may be different, too. To reduce such
impact, we repeat each experiment 10 times.

(2) In some experiments, for tools that do not support
inter-machine mode, we virtually expand the experiment
scale by extending the test time. However, such virtual scal-
ing cannot reflect the exact performance in a distributed
environment. In a virtual configuration, the communication
cost among nodes is neglected. Notably, the coverage of vir-
tual scaling is definitely increasing, however, we cannot
guarantee coverage increase when scaling physically. Thus,
virtual scaling by nature has advantages over physical scal-
ing in comparison.

(3) In distributed fuzzing, the configuration of testing
resources can affect performance. Resource interference,
involving CPU, memory, syscall, and file system, plays a
significant role. We have tried to exclude such an effect in
the experiments by leaving half of the cores unoccupied in
each machine. However, unknown interference factors
might still affect the performance.

(4) The characteristic of the program as well as the seed
will also affect the results. For example, the seed size will
greatly affect the performance of the caching scheme.

(5) The length of the fuzzing campaign might affect the
results. We extend additional experiments to 24 hours,
such as Section V.A (2), V.A 4), V.D (2), V.E, and V.F, to
account for the potential difference at the beginning of the
campaign.

2410

8 RELATED WORK

Most research improves fuzzing efficiency by designing
novel algorithms and combining other techniques. AFL-
Fast [50] and Fairfuzz [22] improve fuzzing efficiency by
optimizing seed selection. The former tends to mutate seeds
with low path frequency, and the latter modifies seeds
whose hit count is relatively small. MobFuzz [51] improves
efficiency by multi-objective optimization. EcoFuzz [20]
saves energy by optimizing the power scheduling of fuzz-
ing. AFLGo [21] is directed to bug-prone locations to
improve the probability of triggering bugs. Driller [52], and
QSYM [53] leverage symbolic execution to improve fuzzing
performance. VUZZER [54] and Angora [55] use taint analy-
sis to gather dynamic and static information from target
programs to assist fuzzing. However, the performance of
algorithm optimization is limited.

Fuzzing efficiency can also be improved by increasing
computing resources to parallelize fuzzing tasks. Early in
2010, Xie [56] proposed a parallel framework, which lever-
ages grid computing for large-scale fuzzing. The framework
was implemented by storing fuzzing jobs in a server and
scheduling remote clients to download these jobs. However,
this kind of static scheduling results in an unbalanced parti-
tion of workload, and it only schedules fuzzing tasks to
computing resources without trying to innovate the syn-
chronizing and sharing mechanisms. To parallelize AFL,
AFL-P [26] extends its scalability by utilizing multiple pro-
cesses running fuzzer instances to synchronize seeds
between them. However, the scalability of AFL-P is limited
because it is inaccessible when using computing resources
across machines. Roving [30] and disfuzz [31] addressed
this problem with the help of the client/server structure.
They share new seeds with each computing core within a
fixed time interval, which enhances the scalability but pro-
duces redundant work and task conflicts, leading to a severe
waste of computing resources. Li et al. [57] designed a tree
structure to store coverage information as an alternative to
bitmap. They leverage a polling mechanism to reduce
redundant work and avoid conflicts, but this approach
causes large performance consumption.

Several recent works focus on partitioning fuzzing tasks to
avoid redundant work. In PAFL [33], local guiding informa-
tion from each fuzzer instance is synchronized with global
guiding information. According to the guiding information,
PAFL assigns different task segments divided by grouping
branches to different fuzzer instances. Though PAFL speeds
up the fuzzing process, it cannot run a distributed system
across multiple machines. Another work also called
PAFL [36], collects dynamic execution information and dis-
patches parts of the target programs that have weak relation-
ships, thus reducing redundant work. However, the
disadvantage lies in the difficulty of accurately dividing the
target program into parts. To address the scalability bottle-
necks, Wen et al. [35] designed new operating primitives to
speed up AFL. Although this work improves fuzzing perfor-
mance with underutilized CPU cores, there is still room for
improvement by scheduling fuzzing tasks and extending
multi-core parallelism to distributed parallelism. P-fuzz [32]
leverages the computing resources of distributed systems to
enhance fuzzing efficiency. It alleviates task conflicts in part

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

by adopting database-centric architecture. But imbalances
exist: some seeds are overused, while others are idle.

Different from the above works, EnFuzz [34] improves
parallel fuzzing from an orthogonal direction. It defines
the diversity of fuzzers and chooses different fuzzers (AFL,
AFLFast, FairFuzz, QSYM) to complement each other.
Enfuzz’s main limitation is scalability. It only supports
sharing guiding information based on the file system, and
coverage information can differ greatly between fuzzers.
Our approach improves fuzzing performance by optimiz-
ing the parallel scheme, and we can share various fuzzing
information across machines. LibAFL [48] improves
fuzzing performance by increasing the execution speed.
Benefits from the optimization at compile-time and the
implementation in Rust, it can keep runtime overhead min-
imal, which reaches 120 k execs/sec in Frida-mode on
a phone. Differently, UltraFuzz focuses on optimizing
the scheme of parallel fuzzing to save resources, which
is an orthogonal direction. However, both works can be
integrated.

9 CONCLUSION

This paper outlines the design and implementation of Ultra-
Fuzz, a fuzzing optimization toward resource-saving in a
distributed environment. UltraFuzz globally optimizes seed
selection, energy scheduling, inter-machine status synchro-
nization, and task dispatch, and thus can overcome
challenges such as task conflicts, workload imbalance, syn-
chronization overhead, and dynamic change of computing
core number. Experiments on real-world programs show
that UltraFuzz outperforms state-of-the-art tools such as
AFL, PAFL, and EnFuzz. We also discovered a counter-
intuitive phenomenon that UltraFuzz can achieve super-lin-
ear acceleration compared to single-core AFL. We proposed
explanations of this phenomenon and validated them with
additional experiments. Finally, 24 real-world vulnerabil-
ities were also discovered.

ACKNOWLEDGMENTS

The authors would like to sincerely thank all the reviewers
for your time and expertise on this paper. Your insightful
comments help us improve this work.

REFERENCES

[11 M. Xy, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data race fuzz-
ing for kernel file systems,” in Proc. IEEE Symp. Security Privacy,
2020, pp. 1643-1660.

[2] N. Vinesh, S. Rawat, H. Bos, C. Giuffrida, and M. Sethumadhavan,
“Confuzz-A concurrency fuzzer,” in Proc. 1st Int. Conf. Sustain.
Technol. Comput. Intell., 2020, pp. 667-691.

[3] D.R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” in Proc. IEEE Symp.
Secur. Privacy, 2019, pp. 754-768.

[4] W. Blair et al., “HotFuzz: Discovering algorithmic denial-of-ser-
vice vulnerabilities through guided micro-fuzzing,” 2020, arXiv:
2002.03416.

[5] D. Song et al., “PeriScope: An effective probing and fuzzing
framework for the hardware-os boundary,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2019, pp.1-15.

[6] K.Kim, D.R. Jeong, C. H. Kim, Y. Jang, L. Shin, and B. Lee, “HFL:
Hybrid fuzzing on the linux kernel,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2020.

ZHOU ET AL.: ULTRAFUZZ: TOWARDS RESOURCE-SAVING IN DISTRIBUTED FUZZING

[7]

(8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

B. Yu, P. Wang, T. Yue, and Y. Tang, “Poster: Fuzzing IoT firm-
ware via multi-stage message generation,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2019, pp. 2525-2527.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-throughput greybox fuzzing of IoT firmware
via augmented process emulation,” in Proc. 28th USENIX Secur.
Symp., 2019, pp. 1099-1114.

B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proc. IEEE[ACM 33rd Int.
Conf. Autom. Softw. Eng., 2018, pp. 259-269.

V. Wiistholz and M. Christakis, “Targeted greybox fuzzing with
static lookahead analysis,” 2019, arXiv:1905.07147.

H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of
the art,” IEEE Trans. Rel., vol. 67, no. 3, pp. 1199-1218, Sep. 2018.
V.]J. M. Manes et al., “Fuzzing: Art, science, and engineering,”
2018, arXiv:1812.00140.

W. Wang, H. Sun, and Q. Zeng, “SeededFuzz: Selecting and gen-
erating seeds for directed fuzzing,” in Proc. IEEE 10th Int. Symp.
Theor. Aspects Softw. Eng., 2016, pp. 49-56.

Z. Wang, B. Liblit, and T. Reps, “TOFU: Target-orienter fuzzer,”
2020, arXiv:2004.14375.

V. Jain, S. Rawat, C. Giuffrida, and H. Bos, “TIFF: Using input
type inference to improve fuzzing,” in Proc. 34th Annu. Comput.
Secur. Appl. Conf., 2018, pp. 505-517.

W. You et al., “ProFuzzer: On-the-fly input type probing for better
zero-day vulnerability discovery,” in Proc. IEEE Symp. Secur. Pri-
vacy, 2019, pp. 769-786.

H. Chen et al., “Hawkeye: Towards a desired directed grey-box
fuzzer,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2018, pp. 2095-2108.

Y. Li et al., “V-Fuzz: Vulnerability-oriented evolutionary fuzzing,”
2019, arXiv:1901.01142.

W. You et al., “SemFuzz: Semantics-based automatic generation of
proof-of-concept exploits,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 2139-2154.

T. Yue et al., “EcoFuzz: Adaptive energy-saving greybox fuzzing
as a variant of the adversarial multi-armed bandit,” in Proc. 29th
USENIX Secur. Symp., 2020, Art. no. 130.

M. Béhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 2329-2344.

C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proc. IEEE/ACM
33rd Int. Conf. Autom. Softw. Eng., 2018, pp. 475-485.

M. Bohme, “Aflfastnew,” 2016. [Online]. Available: https://
groups.google.com/d/msg/afl-users/1PmK]JC-EKZ0/
IbzZRbSAUAAA]

M. Zalewski, “Fidgetyafl,” 2016. [Online]. Available: https://
groups.google.com/d/msg/afl-users/fOPeb62FZUg/
CES5lhznDgA]J/

M. Bohme and B. Falk, “Fuzzing: On the exponential cost of vul-
nerability discovery,” in Proc. 28th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2020, pp. 713-724.

M. Zalewski, “American fuzzy lop,” 2015. [Online]. Available:
http:/ /lcamtuf.coredump.cx/afl/

M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as Markov chain,” IEEE Trans. Softw. Eng.,
vol. 45, no. 5, pp. 489-506, May 2019.

C. Lyu et al, “MOPT: Optimized mutation scheduling for
fuzzers,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 1949-1966.
T. Yue, Y. Tang, B. Yu, P. Wang, and E. Wang, “LearnAFL: Grey-
box fuzzing with knowledge enhancement,” IEEE Access, vol. 7,
pp- 117029-117043, 2019.

Rich6 Butts, “Roving,” 2015. [Online]. Available: https://github.
com/richo/Roving

M. Bogaard, “Disfuzz-afl,” 2015. [Online]. Available: https://
github.com/MartijnB/disfuzz-afl

C. Song, X. Zhou, Q. Yin, X. He, H. Zhang, and K. Lu, “P-fuzz: A
parallel grey-box fuzzing framework,” Appl. Sci., vol. 9, Nov.
2019, Art. no. 5100.

J. Liang, Y. Jiang, Y. Chen, M. Wang, C. Zhou, and J. Sun, “PAFL:
Extend fuzzing optimizations of single mode to industrial parallel
mode,” in Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 2018, pp. 809-814.

Y. Chen et al., “EnFuzz: Ensemble fuzzing with seed synchroniza-
tion among diverse fuzzers,” in Proc. 28th USENIX Conf. Secur.
Symp., 2019, pp. 1967-1983.

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

2411

W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating
primitives to improve fuzzing performance,” in Proc. ACM SIG-
SAC Conf. Comput. Commun. Secur., 2017, pp. 2313-2328.

J. Ye, B. Zhang, R. Li, C. Feng, and C. Tang, “Program state sensi-
tive parallel fuzzing for real world software,” IEEE Access, vol. 7,
pp. 42557-42564, 2019.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2018, pp. 2123-2138.

T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana,
“NEZHA: Efficient domain-independent differential testing,” in
Proc. IEEE Symp. Secur. Privacy, 2017, pp. 615-632.

S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “DIFFUZZ: Differen-
tial fuzzing for side-channel analysis,” in Proc. IEEEJACM 41st Int.
Conf. Softw. Eng., 2019, pp. 176-187.

Y. Noller, C. S. Pasareanu, M. Bohme, Y. Sun, H. L. Nguyen, and
L. Grunske, “HyDiff: Hybrid differential software analysis,” in
Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 1273-1285.

Y. Noller and S. Tizpaz-Niari, “QFuzz: Quantitative fuzzing for
side channels,” in Proc. 30th ACM SIGSOFT Int. Symp. Softw. Test-
ing Anal., 2021, pp. 257-269.

H. Liang, Y. Zhang, Y. Yu, Z. Xie, and L. Jiang, “Sequence cover-
age directed greybox fuzzing,” in Proc. IEEE/ACM 27th Int. Conf.
Prog. Comprehension, 2019, pp. 249-259.

M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, and M. Lemerre,
“Binary-level directed fuzzing for use-after-free vulnerabilities,”
2020, arXiv:2002.10751.

P. Wang, X. Zhou, K. Lu, T. Yue, and Y. Liu, “The progress, chal-
lenges, and perspectives of directed greybox fuzzing,” 2020,
arXiv:2005.11907.

S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-assisted feedback fuzzing for OS kernels,” in
Proc. 26th USENIX Secur. Symp., 2017, pp. 167-182.

G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, “PTfuzz: Guided
fuzzing with processor trace feedback,” IEEE Access, vol. 6,
pp- 37302-37313, 2018.

Y. Chen et al., “PTrix: Efficient hardware-assisted fuzzing for cots
binary,” in Proc. ACM Asia Conf. Comput. Commun. Secur., 2019,
pp. 633-645.

Libafl. 2021. [Online]. Available: https:/ /lib.rs/crates/libafl

E. Giiler et al., “Cupid: Automatic fuzzer selection for collabora-
tive fuzzing,” in Proc. Annu. Comput. Secur. Appl. Conf., 2020,
pp- 360-372.

V. T. Pham and A. Roychoudhury, “Coverage-based greybox
fuzzing as Markov chain,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 1032-1043.

G. Zhang et al., “MobFuzz: Adaptive multi-objective optimization
in gray-box fuzzing,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2022.

N. Stephens et al., “Driller: Augmenting fuzzing through selective
symbolic execution,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2016, pp. 1-16.

L. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical con-
colic execution engine tailored for hybrid fuzzing,” in Proc. 27th
USENIX Secur. Symp., 2018, pp. 745-761.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2017, pp. 1-14.

P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 711-725.

Y. Xie, “Using grid computing for large scale fuzzing,” Ph.D. dis-
sertation, Universidade de Lisboa, Lisbon, Portugal, 2010.
[Online]. Available: http://hdl.handle.net/10451/5610

Y. Li, C. Feng, and C. Tang, “A large-scale parallel fuzzing sys-
tem,” in Proc. 2nd Int. Conf. Adv. Image Process., 2018, pp. 194-197.

Xu Zhou received the BS, MS, and PhD degrees
from the School of Computer Science, National
University of Defense Technology, China, in 2007,

. B 2009, and 2013, respectively. He is now an assis-

tant professor with the School of Computer Sci-

e ence, National University of Defense Technology.

> His research interests include operating system
N and security.

-

https://groups.google.com/d/msg/afl-users/1PmKJC-EKZ0/lbzRb8AuAAAJ
https://groups.google.com/d/msg/afl-users/1PmKJC-EKZ0/lbzRb8AuAAAJ
https://groups.google.com/d/msg/afl-users/1PmKJC-EKZ0/lbzRb8AuAAAJ
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ/
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ/
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ/
http://lcamtuf.coredump.cx/afl/
https://github.com/richo/Roving
https://github.com/richo/Roving
https://github.com/MartijnB/disfuzz-afl
https://github.com/MartijnB/disfuzz-afl
https://lib.rs/crates/libafl
http://hdl.handle.net/10451/5610

2412

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Pengfei Wang received the BS, MS, and PhD
degrees in computer science and technology from
the College of Computer, National University of
Defense Technology, Changsha, in 2011, 2013,
and 2018 respectively. He is now an assistant pro-
fessor with the College of Computer, National Uni-
versity of Defense Technology, Changsha. His
research interests include operating systems and
software testing.

Chenyifan Liu received the BS degree in water
supply and drainage engineering from the Qing-
dao University of Technology, in 2018. He is now
a cyberspace security engineer with the College
of Computer, National University of Defense
Technology. His research interests include soft-
ware vulnerability analysis and software testing.

Tai Yue received the BS degree from the Depart-
ment of Mathematics, Nanjing University, Nanj-
ing, in 2017, and the MS degree from the College
of Computer, National University of Defense
Technology, Changsha, in 2019. He is currently
working toward the PhD degree with the College
of Computer, National University of Defense
Technology, Changsha. His research interests
include operating systems and software security.

Yingying Liu received the BS degree in Internet
of Things from Central South University, Chang-
sha, China, in 2018. She is now a software engi-
neer with the College of Computer Science,
National University of Defense Technology. Her
research interests include software system and
data analysis.

Congxi Song received the BS degree in com-
puter science and technology from Beihang Uni-
versity, Beijing, China, in 2017, and the MS
degree in computer science and technology from
the National University of Defense Technology,
Changsha, China, in 2019. She is currently work-
ing toward the PhD degree in cybersecurity with
the National University of Defense Technology.
Her research interests include software testing
and network protocol.

Kai Lu received the BS and PhD degrees both in
computer science and technology from the College
of Computer, National University of Defense Tech-
nology, Changsha, in 1995 and 1999, respectively.
He is now a professor with the College of Computer,
National University of Defense Technology, Chang-
sha. His research interests include operating sys-
tems, parallel computing, and security.

Qidi Yin received the BS and MS degrees in com-
puter science and technology from the College of
Computer, National University of Defense Technol-
ogy, Changsha, in 2019 and 2022, respectively. He
is now an assistant engineer with the College of
Computer, National University of Defense Technol-
ogy, Changsha. His research interests include
information security and software testing.

Xu Han received the BS degree in software engi-
neering from the College of Information Technol-
ogy, Guilin University of Electronic Technology,
China, in 2017. His research interests include
operating systems and software testing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

