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Command-line options (e.g., -l, -F, -R for ls) given to a command-line program can signi!cantly alternate the behaviors of
the program. Thus, fuzzing not only !le input but also program options can improve test coverage and bug detection. In this
paper, we propose ZigZagFuzz which achieves higher test coverage and detects more bugs than the state-of-the-art fuzzers by
separately mutating program options and !le inputs in an iterative/interleaving manner. ZigZagFuzz applies the following
three core ideas. First, to utilize di"erent characteristics of the program option domain and the !le input domain, ZigZagFuzz
separates phases of mutating program options from ones of mutating !le inputs and performs two distinct mutation strategies
on the two di"erent domains. Second, to reach deep segments of a target program that are accessed through an interleaving
sequence of program option checks and !le inputs checks, ZigZagFuzz continuously interleaves phases of mutating program
options with phases of mutating !le inputs. Finally, to improve fuzzing performance further, ZigZagFuzz periodically shrinks
input corpus by removing similar test inputs based on their function coverage.

The experiment results on the 20 real-world programs show that ZigZagFuzz improves test coverage and detects 1.9 to
10.6 times more bugs than the state-of-the-art fuzzers that mutate program options such as AFL++-argv, AFL++-all, Eclipser,
CarpetFuzz, Con!gFuzz, and POWER. We have reported the new bugs detected by ZigZagFuzz, and the original developers
con!rmed our bug reports.
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1 INTRODUCTION
Most programs can be con!gured for various purposes and the con!guration of a program can largely a"ect the
behaviors of it. For example, programs with command-line interface have dozens of command-line options to
alternate the operations of programs (e.g., ls has more than 50 program options including -a, -F, -l, -n, and
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-R 1). In other words, program options play a crucial role in determining a target program’s execution paths. Thus,
when we fuzz a program with command-line interface, our bug detection results can vary signi!cantly depending
on which program options are applied during fuzzing. For example, 36 functions of xmllint (an xml !le parsing
tool) in libxml2 cannot be reached at all unless one of –xinclude, –noxincludenode, and –nofixup-base-uris
options is given.

Although a program option con!guration (i.e., a list of program options given to a target program such as “-a
-l -R” for ls) is important for fuzzing, most fuzzing papers utilized only a single program option con!guration in
their fuzzing experiments. According to the survey of the recently published 102 fuzzing papers (see Section 2.1
for the details), 73.5% of the fuzzing papers did not provide information on the program option con!gurations in
the papers. Thus, there exists large room to improve fuzzing e"ectiveness by systematically utilizing various
program option con!gurations.

In this paper, we propose a novel fuzzing technique ZigZagFuzz that detects more bugs than the state-of-the-art
fuzzers by separately fuzzing !le input (FI) and program option input (POI) in an iterative/interleaving manner.
Three core ideas of ZigZagFuzz are as follows (the motivations for the ideas are illustrated through a concrete
example in Section 2):

• Di"erent mutation strategies for di"erent input domains (i.e., POIs and FIs):
To utilize di"erent characteristics of the POI domain and the FI domain, ZigZagFuzz separates phases of
mutating POIs from ones of mutating FIs. In other words, in contrast to the fuzzers that mutate only !le
inputs of a target program, ZigZagFuzz considers that a target program has two di"erent input domains to
explore (i.e., POI domain and FI domain), and it applies two distinct mutation strategies to them for high bug
detection ability (see Section 3.4 and Section 3.5).

• Iterative/interleaving phases of mutating POI with ones of mutating FI:
To penetrate the deeper segments of a target program, which are accessed via a methodical sequence of
alternating checks between Program Options Inputs (POI) and File Inputs (FI), ZigZagFuzz employs a
strategy of seamlessly interleaving two distinct mutation phases. This iterative and interleaved approach
ensures thorough exploration and testing of the program’s functionalities, optimizing the fuzzing process
for e#cacy and depth. We discuss the importance of this nature with a motivating example in Section 2.

• Domain-wise corpus shrinking by reducing redundant POIs and FIs
To enhance fuzzing performance further, ZigZagFuzz periodically reduces redundant POI corpus and FI
corpus separately. Unlike conventional corpus shrinking methods, the proposed approach independently
reduces POIs and FIs, and then retains only a small set of seed inputs containing unique POIs and FIs
according to their function coverage achievements (see Section 3.6).

The experiment results on the 20 real-world programs show that ZigZagFuzz improves test coverage and
detects signi!cantly more (1.9 to 10.6 times more) bugs than the state-of-the-art fuzzers that fuzz program options
such as AFL++-argv, Con!gFuzz, Eclipser, CarpetFuzz, and POWER (see Section 5.1). Furthermore, we have
reported the new bugs detected by ZigZagFuzz and the original developers con!rmed most of our bug reports.

The main contributions of this paper are as follows:

• ZigZagFuzz is the !rst fuzzer that can detect signi!cantly more bugs than the state-of-the-art fuzzers by
separately mutating program options and !le inputs in an iterative/interleaving manner (see Section 3).

• We have performed a series of experiments where we have empirically evaluated ZigZagFuzz and the other
cutting-edge fuzzers that mutate program options (i.e., AFL++-argv, Eclipser, CarpetFuzz, Con!gFuzz, and

1See http://linuxcommand.org/lc3_man_pages/ls1.html

, Vol. 1, No. 1, Article . Publication date: September 2024.

http://linuxcommand.org/lc3_man_pages/ls1.html


ZigZagFuzz: Interleaved Fuzzing of Program Options and Files • 3

POWER) and demonstrated that ZigZagFuzz detects signi!cantly more (1.9 to 10.6 times more) unique
bugs than the cutting-edge fuzzers (Section 5).

• We have reported 61 new bugs detected by ZigZagFuzz to the original developers of the target subject
programs to improve the quality of the open source subject programs. 2

The remaining sections of this paper are as follows. Section 2 shows a motivating example for the design of
ZigZagFuzz. Section 3 explains the details of ZigZagFuzz. Section 4 describes the experiment setup and Section 5
shows the experiment results and answers our research questions. Section 6 discusses our survey of POI use in
fuzzing research and the bene!ts of ZigZagFuzz through concrete case studies. Section 7 compares ZigZagFuzz
with related work. Section 8 concludes this paper and proposes future work.

2 MOTIVATION
2.1 Survey of Program Option Input (POI) Use in Fuzzing Research
Although POI can largely a"ect program behaviors, fuzzing researchers do not pay enough attention to fuzz POI.
To !nd out how fuzzing papers explicitly utilize POI in their experiments, we have surveyed 102 fuzzing papers
that (1) were published from 2015 to 2023 at top conferences and journals in software engineering and security,
and (2) targeted command-line interface programs.

From the survey, we have observed that
(1) Only six papers [3, 7, 15, 38, 42, 48] directly mutate option con!gurations in their experiments.

(2) Only 21 papers specify the program option con!gurations used in their experiments (e.g., [4, 10, 22, 25, 33,
37, 45, 46]).

(3) 11 papers [1, 6, 9, 16, 23, 26, 29, 30, 41, 43, 50] do not specify the program option con!gurations (but
implicitly expose their program option con!gurations through publicly available experiment data)

(4) 64 papers do not specify the program option con!gurations used (e.g., [8, 12, 13, 20, 24, 40, 49]).
In summary, 73.5% (=(11+64)/102) of the recently published fuzzing papers do not provide information on

the program option con!gurations used. Moreover, most of the above papers use only one program option
con!guration for their experiments. We share the complete list of the surveyed papers on our paper web page
(https://sites.google.com/view/zigzagfuzz).

2.2 Motivating Crash Example
Figure 1-(a) shows a buggy code example of dwarfdump ver.0.5.0. To trigger a use-after-free crash at Line 12 in the
buggy code, a program execution must satisfy the seven branch conditions in a row (i.e., the branch conditions in
Lines 2, 3, 4, 5, 7, 9, and 10). These branch conditions can be classi!ed into Program Option Input (POI)-dependent
ones (marked as P→ at the end of the line) or File Input (FI)-dependent ones (marked as F→) depending on whether
variables involved in the branch conditions have data-dependency on POI or FI.

In this example, argv and glflags at Line 2, glflags.gf_1 and glflags.gf_2 at Line 5, and glflags.
gf_eh_frame_flag at Line 9 (colored in blue) are POI-dependent because these are data-dependent to argv. On
the other hand, ftype at Lines 3 and 4 and dobj at Lines 7 and 10 (colored in green) are FI-dependent because
their values are de!ned by !le read operations (e.g., open_detect_dwarf_obj at Line 3).

2We reported 61 out of the 85 bugs detected by ZigZagFuzz. To reduce the original developer’s burden to review many bug reports, we
reported the bugs that can be replicated on the latest development version.
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Fig. 1. (a) Simplified crashing buggy code in dwarfdump ver.0.5.0 that contains combination of POI dependent branches
(marked as P→) and FI dependent branches (marked as F→). (b) An example diagram that shows interleaving behavior of
ZigZagFuzz.

To trigger a crash at Line 12, a test input must satisfy the following POI-dependent and FI-dependent branch
conditions in Lines 1-10 in the following order:
(1) POI-dependent branch P1→ (Line 2): The given POI should be valid (i.e., process_args should be able to

parse the given POI). For example, each word in the POI should start with ‘-’; the program terminates
otherwise. process_args sets global $ag values (glflags) based on the given POI.

(2) FI-dependent branches F1→ and F2→ (Lines 3 and 4): The FI should contain the magic bytes to satisfy
complicated checks in open_detect_dwarf_obj at Line 3. For example, the function has eight bytes long
magic byte checks with multiple nested if/switch statements. Also, open_detect_dwarf_obj assigns a
value to ftype based on the FI content. To satisfy the branch condition on ftype at Line 4, the FI should
have proper data.

(3) POI-dependent branch P2→ (Line 5): The value of glflags (which is dependent on the POI) should be set
properly, so that it can satisfy the branch condition at Line 5.

(4) FI-dependent branch F3→ (Line 7): The program reads the FI content and converts it to an internal data
object (dobj). The FI content should be valid to satisfy complicated conditions in dwarf_init_path_dl.
The internal data object represents complex debug information for an ELF object !le. It is 9,664 bytes long
and contains 83 di"erent !elds. During the conversion process, the function performs several sanity checks
on the !elds of the converted data object. For example, it checks if the number of the ELF sections written
in the FI matches the actual number of the ELF sections converted into the object.
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(5) POI-dependent branch P3→ (Line 9): The branch condition is dependent on gflags.gf_eh_fram_flag
which is dependent on the POI.

(6) FI-dependent branch F4→ (Line 10): The program reads and checks the object dobj which is dependent on
the FI.

As we have seen in the code example, the POI-dependent branches (i.e., Lines 2, 5, and 9) are interleaved
with FI-dependent branches (i.e., Lines 3, 4, 7, and 10) to the crashing line (Line 12). To satisfy this interleaving
sequence of the POI-dependent branches with the FI-dependent branch conditions, a fuzzer should solve several
challenges described in Section 2.3.

2.3 Challenges and Solutions
The buggy code example of dwarfdump shown in Figure 1 illustrates why ZigZagFuzz alternates the POI and
FI mutation phases to satisfy complex path conditions. The buggy code example shows three challenges of a
mutation-based evolutionary fuzzer to trigger the crash at Line 12 (Section 2.2 explains the example in detail):

(1) Both POI-dependent and FI-dependent branches can be included in a path to a crash location. Thus, a
fuzzer should mutate not only FI, but also POI e"ectively and e#ciently.

(2) Since a pre-condition of a POI-dependent branch may rely on FI-dependent variables (and vice versa) like
the interleaved sequence of the POI-dependent branches with the FI-dependent branches in Figure 1-(a),
mutating both POI and FI at the same time may easily break the pre-condition and become ine"ective.

(3) A branch condition often involves a complicated condition check which can be satis!ed only after a fuzzer
spends a long time generating a test input that satis!es multiple sub-conditions (e.g., to satisfy a branch
condition at Line 3 in Figure 1-(a), a fuzzer should generate a test input that satis!es the complicated
condition checks in open_detect_dwarf_obj).

Thus, a fuzzer should provide the following solutions to overcome the above challenges as shown in Figure 1-(b):

(1) A fuzzer should perform not only FI mutations, but also POI mutations to satisfy POI-dependent and
FI-dependent branch conditions (see Section 3.1).

(2) A fuzzer should separate POI mutations from FI mutations. In other words, to satisfy a POI-dependent
branch condition, it should !rst satisfy a FI-dependent pre-condition of the POI-dependent branch by
mutating FI. Then, it should mutate POI without mutating FI to avoid violating the pre-condition of the
POI-dependent branch (and vice versa for FI-dependent branches) (see Section 3.3).

(3) A fuzzer should assign enough time and resource budget to each POI mutation and FI mutation to generate
a test input that satis!es complicated branch conditions (e.g., ones in open_and_detect_dwarf_obj and
dwarf_init_path_dl) (see Section 3.3).

(4) A fuzzer should manage the seed corpus to maintain a high diversity of POIs and FIs separately, in order to
prevent speci!c POIs or FIs from dominating the seed corpus and limiting exploration of di"erent program
execution scenarios (see Section 3.6).

To address the aforementioned challenges, ZigZagFuzz alternatively repeats POI mutations and FI mutations in
an iterative/interleaving manner and periodically performs corpus shrinking, as suggested in the above solutions.

, Vol. 1, No. 1, Article . Publication date: September 2024.
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Fig. 2. Overall process of ZigZagFuzz

3 ZIGZAGFUZZ
Figure 2 shows the process of ZigZagFuzz. ZigZagFuzz considers a test input (𝐿, 𝑀 ) as a pair of a program option
input 𝐿 and a !le input 𝑀 . ZigZagFuzz starts with a set of initial test inputs (e.g., (𝐿1, 𝑀1), (𝐿2, 𝑀2) in the Figure 2).
ZigZagFuzz repeats the following three tasks as shown in Figure 2:
(1) Phase of mutating program option input (POI) (Section 3.4):

ZigZagFuzz mutates POIs (e.g., 𝐿1, 𝐿2) by applying both structural mutation [31] and random byte-level 3
mutation. Structural mutation aims to generate valid/meaningful POIs while byte-level mutation targets to
generate diverse exceptional POIs.

(2) Phase of mutating !le input (FI) (Section 3.5):
ZigZagFuzz mutates FIs through random byte-level mutation (e.g., bit$ip, byte$ip, arithmetic, havoc, splice,
etc.) as other fuzzers like AFL++ do.

(3) Domain-wise corpus shrinking (Section 3.6):
To further improve fuzzing performance, ZigZagFuzz periodically decreases the redundancy in both the
POI corpus and the FI corpus separately. Unlike traditional methods of corpus reduction, this approach
individually shrinks POIs and FIs, subsequently preserving a compact set of test inputs that contains distinct
POIs and FIs based on their functional coverage.

3.1 Overall Process of ZigZagFuzz
Algorithm 1 explains the overall process of ZigZagFuzz. First, ZigZagFuzz receives the following items to start
fuzzing (see the inputs of Algorithm 1):

• A target program 𝑁 .
• A set of initial test inputs 𝑂0, each of which consists of an initial POI and an initial FI.
• A set of program option keywords (i.e., keyword dictionary) 𝑃𝑁𝑂𝐿 that are semi-automatically extracted
from manual pages and usage messages of a target program 𝑁 (see Section 3.2).

Next, ZigZagFuzz initializes the following data (Lines 1-4 of Algorithm 1):
• 𝑂 → is a set of all generated test inputs (i.e., output of fuzzing).

3More precisely, bit-byte-word-dword level
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Algorithm 1: Overall process of ZigZagFuzz
Input: 𝑁 : a test subject program

𝑂0 : a set of initial test inputs for 𝑁
𝑃𝑁𝑂𝐿 : a set of program option keywords of 𝑁

Output: 𝑂 → : a set of all generated test inputs
1 𝑂 → ↑ ↓
2 𝑄𝑅𝑅𝑆𝑇 ↑ ↓
3 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 ↑ ↓
4 𝑍𝑎𝑅𝑊𝑌𝑏 ↑ 𝑅𝑐𝑑𝑒𝑏 𝑐𝑋𝑑
5 foreach (𝐿, 𝑀 ) ↔ 𝑂0 do
6 R!"T#$%(𝑁 , 𝐿 , 𝑀 , 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅)
7 end
8 while G&’()&T*+#’!%() do
9 while POI_P,)$#(𝑓𝑀) do
10 (𝐿, 𝑀 ) ↑ SelectSeed(𝑄𝑅𝑅𝑆𝑇, 𝑍𝑎𝑅𝑊𝑌𝑏)
11 𝐿 → ↑M!%)%#POI(𝐿 , 𝑃𝑁𝑂𝐿)
12 R!"T#$%(𝑁 , 𝐿 →, 𝑀 , 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅)
13 end
14 while FI_P,)$#(𝑓𝑀) do
15 (𝐿, 𝑀 ) ↑ SelectSeed(𝑄𝑅𝑅𝑆𝑇, 𝑍𝑎𝑅𝑊𝑌𝑏)
16 𝑀 → ↑ MutateFI(𝑀 )
17 R!"T#$%(𝑁 , 𝐿 , 𝑀 →, 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅)
18 end
19 𝑄𝑅𝑅𝑆𝑇 ↑ S,-*".C’-/!$(𝑄𝑅𝑅𝑆𝑇 , 𝑍𝑎𝑅𝑊𝑌𝑏)
20 end
21 return T’

22 Function R!"T#$%(𝑁 , 𝐿 , 𝑀 , 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅):
23 𝑈𝐿𝑉𝑅𝑊𝑅𝑆 ↑ Execute(𝑁 , 𝐿 , 𝑀 )
24 if 𝑈𝐿𝑉𝑅𝑊𝑅𝑆 ⊋ 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 then
25 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 ↑ 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 ↗𝑈𝐿𝑉𝑅𝑊𝑅𝑆
26 𝑄𝑅𝑅𝑆𝑇 ↑ 𝑄𝑅𝑅𝑆𝑇 ↗ {(𝐿, 𝑀 )}
27 𝑂 → ↑ 𝑂 → ↗ {(𝐿, 𝑀 )}
28 𝑍𝑎𝑅𝑊𝑌𝑏 (𝐿, 𝑀 ) ↑ CalEnergy(𝐿, 𝑀 )
29 end
30 End Function

• 𝑄𝑅𝑅𝑆𝑇 is the test input corpus that will be mutated to generate diverse test inputs.
• 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 contains coverage achieved by generated test inputs.
• 𝑍𝑎𝑅𝑊𝑌𝑏 is a map that records assigned energy for each test input (including both FI and POI), which is the
same to that of AFL++ [11]. It is used to prioritize test inputs through the power scheduling algorithm and
to select test inputs at the corpus shrinking stage.
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01: $ ./ffmpeg -help
02: ffmpeg version N-109669-g9a180f60a9
03: Hyper fast Audio and Video encoder
04: usage: ffmpeg [options] [[infile options] -i infile]... [outfile options] outfile...
05: ...
06: mpeg1video encoder AVOptions:
07: -drop_frame_timecode <boolean> Timecode is in drop frame format. (default false)
08: -b_strategy <int> I/P/B-frames (from 0 to 2) (default 0)
09: -b_sensitivity <int> Adjust sensitivity (from 1 to INT_MAX) (default 40)

Fig. 3. A simplified usage message example of ffmpeg

Then, ZigZagFuzz executes and evaluates all given initial test inputs in 𝑂0 (Lines 5-7). When it executes each
test input (𝐿, 𝑀 ), it records the coverage of the execution in 𝑈𝐿𝑉𝑅𝑊𝑅𝑆 . If an execution of a test input (𝐿, 𝑀 ) covers
a new element, ZigZagFuzz updates 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 (Line 25) and adds (𝐿, 𝑀 ) to 𝑄𝑅𝑅𝑆𝑇 so that it can be mutated later
(Line 26). It also puts (𝐿, 𝑀 ) into the output corpus 𝑂 → (Line 27) and calculates the energy score of (𝐿, 𝑀 ) (Line 28).

After executing and evaluating 𝑂0, ZigZagFuzz repeats the three tasks (POI mutation phase, FI mutation
phase, and domain-wise corpus shrinking) in an iterative/interleaving manner until the global timeout is reached
(Lines 8-20) (see Section 3.3).

3.2 Construction of Option Keyword Dictionary
A program with a command-line interface (CLI) usually has an option (e.g., –help) to print usage messages
and guide how to execute the program. We create an option keyword dictionary (i.e., 𝑃𝑁𝑂𝐿 in Algorithm 1) by
extracting option keywords from these messages. As an example, Figure 3 shows a simpli!ed usage message of
ffmpeg, from which we can extract option keywords by parsing each line starting with ‘-’ (Lines 7-9). In this
example, we extract -drop_frame_timecode, -b_strategy, and -b_sensitivity as option keywords by using
a python script that creates an option keyword dictionary as follows:
(1) From the lines starting with ‘-’ in the help (or usage) messages (e.g., “-drop_frame_timecode" in Figure 3),

the script extracts and adds the !rst word of each line of the help message to the option keyword dictionary.
(2) If the !rst word (i.e., an option keyword) is followed by a parameter type (e.g., <boolean>, <int>), pre-

de!ned values of the type are attached with the option keyword (e.g., false or true for <boolean> and 0,
1, or 100 for <int>) in the dictionary such as “-drop_frame_timecode false“, “-drop_frame_timecode
true“, “-b_strategy 0”, “-b_strategy 1”, and “-b_strategy 100”. 4

3.3 Iterative/Interleaving Phases of POI Mutations with FI Mutations
ZigZagFuzz repeats the POI mutation phase, the FI mutation phase, and domain-wise corpus shrinking in an
iterative/interleaving manner to resolve the challenges described in Section 2.3. As described in Algorithm 1 in
Section 3.1, POI mutation and FI mutation are strictly separated in the timeline (Lines 9-18).
First, ZigZagFuzz starts with the POI mutation phase (Lines 9-13) (see Section 3.4). It repeats the following

tasks until a given time 𝑓𝑀 is reached:
• selecting a test input (based on the power scheduling algorithm (Line 10)

4 We slightly modi!ed the script for a program whose help message structure is di"erent from the above example (e.g., a program which uses
INT instead of <int> in its help message).
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• mutating the POI of the test input (Line 11)
• evaluating the new test input with the new POI by measuring coverage of the input (Line 12).

Next, ZigZagFuzz changes the phase to the FI mutation phase (see Section 3.5). ZigZagFuzz mutates FIs similar
to the POI mutation phase (Lines 14-18). After the FI mutation phase is completed, the domain-wise corpus
shrinking (see Section 3.6) selects test inputs to pass to the POI mutation phase (Line 19).

Thus, POI mutation focuses on generating test inputs that satisfy a POI-dependent branch condition without
breaking any pre-condition of the POI-dependent branch which may be dependent on FI (and vice versa for FI
mutation).
For example, as shown in the example of Figure 1, ZigZagFuzz repeats POI mutation phases and FI mutation

phases to penetrate to complex interleaved pre-conditions of deep segments of programs. Suppose that we have a
test input that can reach Line 10, but the test input can not satisfy the condition F4→ in the Line 10. To trigger
a crash in Line 12, a fuzzer should mutate only the FI of the test input but not the POI of the test input. This
is because mutating the POI of the test input will break the pre-condition of the branch condition and a new
test input obtained by mutating the POI might not even reach Line 12. (i.e. mutating the POI may break the
POI-dependant pre-conditions P1→, P2→, and P3→). This is why ZigZagFuzz uses iterative and interleaved fuzzing of
POI mutations and FI mutations for high bug detection e"ectiveness.

3.4 Program Option Input Mutation Phase
Algorithm 2 explains how it mutates a given POI 𝐿 . ZigZagFuzz mutates POI in two ways: structural mutation
and byte-level mutation. Structural mutation considers a POI as a list of words and mutates the list by randomly
inserting, removing, or replacing a word in the list. (e.g., the structural mutation mutates “-a 100 -d” to “-a 100
-d -f” by adding one word “-f”). Byte-level mutation considers a POI (including option arguments) as a string
and mutates the string randomly (e.g., the byte-level mutation mutates “-a 100 -d” to “-ab 21a -de”). ZigZagFuzz
randomly applies mutations of both types to POI (See Section 5.4) with probability 50% each (Line 2). We select
this probability value (i.e., 50%) based on our exploratory study.

The left part of Figure 2 shows how POI mutation phase operates. In this example, it receives an initial corpus
𝑂0 (={(𝐿1, 𝑀1), (𝐿2, 𝑀2)}) and generates two test inputs ((𝐿11, 𝑀1) and (𝐿21, 𝑀2)) from 𝑂0; (𝐿11, 𝑀1) is generated by
mutating 𝐿1 of (𝐿1, 𝑀1), and(𝐿21, 𝑀2) is generated by mutating 𝐿2 of (𝐿2, 𝑀2).
3.4.1 Structural Mutation on POI. Structural mutation considers a POI as a list of words and focuses on generating
valid/meaningful POIs. The else branch of the Algorithm 2 (Lines 6-26) shows how ZigZagFuzz applies structural
mutation to POI. First, ZigZagFuzz splits a given POI 𝐿 into a list of optionwords opt_list (Line 7). Then, ZigZagFuzz
applies a random number (e.g. between one and 32) of structural mutations on 𝐿𝑑𝑒_𝑔𝑕𝑇𝑒 . There are three structural
mutation operators: insertion, deletion, and replacement. The insertion operator inserts a random option keyword
in a dictionary 𝑃𝑁𝑂𝐿 at a random location of the list (Lines 10-14). The deletion operator removes a random
word in the list (Lines 15-18). The replacement operator replaces a random word in the list with a random option
keyword in 𝑃𝑁𝑂𝐿 (Lines 19-23). Lastly, ZigZagFuzz concatenates the option words in the list to generate a new
POI 𝐿 → (Line 26).

For an example of POI "-a 100 -d -e", the three structural mutation operators work as follows:
(1) The insertion operator inserts a random word from the dictionary in a random place. One example output

is “-a 100 -d -f -e”, which has added an option ‘-f’.
(2) The removal operator deletes a random word from the POI. One example output is “-a 100 -d”, which has

removed an option ‘-e’.
(3) The replacement operator replaces a random word in the POI with another random word in the dictionary.

One example output is “-a 100 -g -e”, which has replaced the option ‘-d’ with ‘-g’. Another example output
is “-a -e -d -e”, which has replaced the option argument ‘100’ with ‘-e’.
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Algorithm 2: Mutation of Program Option Input
Input: 𝐿 : a given POI to mutate

𝑃𝑁𝑂𝐿 : command-line keywords of the subject program 𝑁
Output: 𝐿 → : a new generated POI.

1 Function M!%)%#POI(𝐿 , 𝑃𝑁𝑂𝐿 ):
2 if Rand({0, 1})== 0 then
3 // Byte-level mutation on POI
4 𝐿 → ↑ ByteLevelMut(𝐿)
5 else
6 // Structural mutation on POI
7 𝐿𝑑𝑒_𝑔𝑕𝑇𝑒 ↑ Split(𝐿)
8 for 𝑕 ↑ 0 to Rand({1, 2, 3, · · · , 32}) do
9 switch G#%R)"0M!%O/() do
10 case 𝑖𝑎𝑇𝑅𝑊𝑒𝑕𝐿𝑎 do
11 𝐿𝑑𝑒𝑁𝑂𝑃 ↑ Rand(𝑃𝑁𝑂𝐿)
12 𝑑𝐿𝑇 ↑ Rand({0, 1, 2, ..., |𝐿𝑑𝑒_𝑔𝑕𝑇𝑒 | + 1})
13 InsertAt(𝐿𝑑𝑒_𝑔𝑕𝑇𝑒 , 𝑑𝐿𝑇 , 𝐿𝑑𝑒𝑁𝑂𝑃)
14 end
15 case 𝑗𝑅𝑔𝑅𝑒𝑕𝐿𝑎 do
16 𝑑𝐿𝑇 ↑ Rand({0, 1, 2, ..., |𝐿𝑑𝑒_𝑔𝑕𝑇𝑒 |})
17 RemoveAt(𝐿𝑑𝑒_𝑔𝑕𝑇𝑒 , 𝑑𝐿𝑇)
18 end
19 case 𝑘𝑅𝑑𝑔𝑋𝑙𝑅𝑐𝑅𝑎𝑒 do
20 𝐿𝑑𝑒𝑁𝑂𝑃 ↑ Rand(𝑃𝑁𝑂𝐿)
21 𝑑𝐿𝑇 ↑ Rand({0, 1, 2, ..., |𝐿𝑑𝑒_𝑔𝑕𝑇𝑒 |})
22 Replace(𝐿𝑑𝑒_𝑔𝑕𝑇𝑒 , 𝑑𝐿𝑇 , 𝐿𝑑𝑒𝑁𝑂𝑃)
23 end
24 end
25 end
26 𝐿 → ↑ Concat(𝐿𝑑𝑒_𝑔𝑕𝑇𝑒)
27 end
28 return 𝐿 →

29 End Function

3.4.2 Byte-level Mutation on POI. Byte-level mutation considers a POI as a string and mutates the string randomly
(Line 3-4 in Algorithm 2). Thus, it is likely to generate broken POIs that violate the constraints of POI. These
invalid POIs can detect crashes that occur only in exceptional executions caused by invalid POIs.
Also, this byte-level mutation can contribute to generating diverse option arguments with in!nite domains.

Some options in POIs take an integer or a string value as an argument. For example, in Figure 3, -b_sensitivity
option in Line 9 takes a string that represents a positive integer value as an argument. While structural mutation
can insert only pre-de!ned strings in the dictionary, byte-level mutation has more chances to generate strings
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that represent diverse integers including exceptional ones such as negative numbers or a huge number larger
than INT_MAX.

3.5 File Input Mutation Phase
After generating diverse POIs in the POI mutation phase, ZigZagFuzz generates diverse FIs through random
mutation like other fuzzers (e.g., AFL++).
The center part of Figure 2 shows a process of the FI mutation phase. It receives the test inputs generated

by the preceding POI mutation phase (e.g., (𝐿1, 𝑀1), (𝐿11, 𝑀1), (𝐿2, 𝑀2), (𝐿21, 𝑀2)). Then, it generates more test inputs
(e.g., (𝐿1, 𝑀11), (𝐿11, 𝑀12), (𝐿2, 𝑀21) and (𝐿21, 𝑀22)) by mutating the FIs of the given test inputs.

3.6 Domain-wise Corpus Shrinking
After each FI mutation phase, ZigZagFuzz removes test inputs with redundant POI and FI combinations from the
seed corpus. ZigZagFuzz tries to retain a test input only if both of its components are unique. To this end, the
domain-wise corpus shrinking algorithm performs POI reduction and FI reduction independently, and selects a
test input whose both components are unique. ZigZagFuzz determines two POIs 𝐿1 and 𝐿2 are similar to each
other if two test inputs with the two POIs (e.g., (𝐿1, 𝑀1) and (𝐿2, 𝑀2)) cover almost same set of functions. For each
POI, ZigZagFuzz measures the function coverage of the POI (i.e., the set of functions covered by the test inputs
containing the POI). Likewise, ZigZagFuzz determines which FIs are similar.

Algorithm 3 shows how the domain-wise corpus shrinking works. The inputs of the algorithm are a test input
corpus𝑂 , 𝑍𝑎𝑅𝑊𝑌𝑏, and𝑈𝐿𝑉 .𝑂 contains test inputs generated in the mutation phases. 𝑍𝑎𝑅𝑊𝑌𝑏 is a map that records
assigned energy score for each test input.𝑈𝐿𝑉 is a map that records function coverage of each test input (𝐿, 𝑀 ) ↔ 𝑂 .
The domain-wise corpus shrinking operates as follows:

(1) Initialization (Lines 2-5)
𝑃 is a set of POIs in 𝑂 . 𝑚 is a set of FIs in 𝑂 . 𝑈𝐿𝑉𝐿𝑄𝑅 is a map that records the set of covered functions of
each POI in 𝑃 . Similarly, 𝑈𝐿𝑉𝑆𝑅 is a map that saves the set of covered functions of each FI in 𝑚 .

(2) Coverage processing (Lines 6-10)
ZigZagFuzz calculates function coverage of each POI and each FI. A POI’s function coverage is de!ned
as the set of functions covered by the test inputs consisting of the POI and all associated FIs, as speci!ed
in De!nition 1 (similarly for the function coverage of FIs as speci!ed in De!nition 2). While iterating
each test input (𝐿, 𝑀 ) in 𝑂 , ZigZagFuzz takes a list of covered functions 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 that are covered by (𝐿, 𝑀 )
(Line 7). 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 is aggregated to the function coverage of each POI (Line 8) and each FI (Line 9).

D#1*"*%*’" 1. For a POI 𝐿 in a test input (𝐿, 𝑀 ) ↔ 𝑂 , the function coverage 𝑈𝐿𝑉𝐿𝑄𝑅 of 𝐿 is de!ned as:

𝑈𝐿𝑉𝐿𝑄𝑅 [𝐿] = {𝑀 𝑛𝑎𝑙 | 𝑀 𝑛𝑎𝑙 ↔ 𝑈𝐿𝑉 [(𝐿, 𝑀 )] for all 𝑀 such that (𝐿, 𝑀 ) ↔ 𝑂 }

D#1*"*%*’" 2. For a FI 𝑀 in a test input (𝐿, 𝑀 ) ↔ 𝑂 , the function coverage 𝑈𝐿𝑉𝑆𝑅 of 𝑀 is de!ned as:

𝑈𝐿𝑉𝑆𝑅 [𝑀 ] = {𝑀 𝑛𝑎𝑙 | 𝑀 𝑛𝑎𝑙 ↔ 𝑈𝐿𝑉 [(𝐿, 𝑀 )] for all 𝐿 such that (𝐿, 𝑀 ) ↔ 𝑂 }

(3) Clustering (Lines 11-12)
ZigZagFuzz clusters POIs (and similarly FIs) based on Jaccard distance metric 𝑗𝑕𝑇𝑒 𝑇 [36] which is de!ned
in De!nition 3.

D#1*"*%*’" 3. For two lists of functions 𝑚1 and 𝑚2, the Jaccard distance between 𝑚1 and 𝑚2 is de!ned as:

𝑗𝑕𝑇𝑒 𝑇 (𝑚1, 𝑚2) = 1 ↘ |𝑚1 ≃ 𝑚2 |
|𝑚1 ↗ 𝑚2 |
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ZigZagFuzz performs K-Means clustering on POIs (and similarly on FIs) where the distance between
elements 𝐿1 and 𝐿2 is measured by the Jaccard distance metric on their function coverage (𝑈𝐿𝑉𝐿𝑄𝑅 (𝐿1) and
𝑈𝐿𝑉𝐿𝑄𝑅 (𝐿2)). Two POIs with similar function coverage will have a short distance between them and will be
clustered together. The number of clusters is set from prede!ned con!guration values 𝑜𝑈𝑉𝑀 (and similarly
𝑜𝑊 𝑋𝑌𝑂 ).

(4) Selection of POIs (Lines 13-16)
ZigZagFuzz selects a small set of POIs 𝑃 → to represent clusters of POIs. From each cluster, S#&T’/N selects
top-N POIs that have high score. The score of POI is calculated by averaging AFL++ scores of the test inputs
that contain the POI. S#&T’/N utilizes AFL++ score of each test input recorded in 𝑍𝑎𝑅𝑊𝑌𝑏 5. ZigZagFuzz
selects a prede!ned number of elements from each cluster as speci!ed by 𝑝𝑈𝑉𝑀 .

(5) Selection of FIs (Lines 17-20)
ZigZagFuzz does the similar process on FIs; it selects a small set of FIs 𝑚 → from each cluster by calculating
the averaged AFL++ score of test inputs that contain each FI. ZigZagFuzz picks a prede!ned number of
elements from each cluster, as indicated by 𝑝𝑊 𝑋𝑌𝑂 .

(6) Selection of test inputs (Lines 21-26)
ZigZagFuzz selects only test inputs in 𝑂 , each of which contains both selected POI in 𝑃 → and selected FI in
𝑚 →.

The right part of the Figure 2 shows a process of the domain-wise corpus shrinking. In this example, it receives
eight test inputs (𝐿1, 𝑀1), ..., (𝐿21, 𝑀22) passed from the preceding mutation phases and shrinks the test input corpus
to contain only three test inputs (𝐿1, 𝑀1), (𝐿11, 𝑀1), (𝐿21, 𝑀22) as follows. First, ZigZagFuzz generates three POI
clusters {o1}, {o21}, {o11,𝐿2} (and two FI clusters {f1, 𝑀11, 𝑀21}, {𝑀2, 𝑀12, f22}). Then, ZigZagFuzz selects 𝐿1, 𝐿21, and
𝐿11 (shown in a bold font) from each POI cluster (similarly 𝑀1 and 𝑀22 from each FI cluster). Lastly, ZigZagFuzz
selects three test inputs (𝐿1, 𝑀1), (𝐿11, 𝑀1), and (𝐿21, 𝑀22) each of which consists of selected POI and selected FI. This
shrunken corpus will be delivered to the next POI mutation phase.

By clustering POIs and FIs separately, ZigZagFuzz preserves a high diversity of input components (both POIs
and FIs) in a shrunken corpus, preventing the potential bloating of speci!c input components. This dominance of
speci!c POIs or FIs reduces the chances of other POIs being mutated, limiting exploration of various program
option scenarios (similarly, this problem can occur to FIs, too).

For example, suppose that we perform corpus shrinking on a corpus𝑂 = {(𝐿1, 𝑀1), (𝐿1, 𝑀2), ..., (𝐿1, 𝑀100), (𝐿2, 𝑀101),
(𝐿3, 𝑀102), (𝐿4, 𝑀103), (𝐿5, 𝑀104)}. In this corpus, a POI 𝐿1 is associated with many FIs while the other POIs 𝐿2,
𝐿3, 𝐿4, and 𝐿5 are not. 6 Also, suppose that, by separately clustering POIs and FIs, ZigZagFuzz generates POI
clusters {𝐿1,𝐿5}, {𝐿2}, {𝐿3}, and {𝐿4} and selects test inputs containing four POIs 𝐿1, 𝐿2, 𝐿3, and 𝐿4, respec-
tively. In contrast, if we cluster test inputs in 𝑂 without separating POIs and FIs, we might end up with four
clusters like {(𝐿1, 𝑀1), ...(𝐿1, 𝑀25), (𝐿2, 𝑀101), }, {(𝐿1, 𝑀26), ..., (𝐿1, 𝑀50), (𝐿3, 𝑀102)}, {(𝐿1, 𝑀51), ..., (𝐿1, 𝑀75), (𝐿4, 𝑀103)}, and
{(𝐿1, 𝑀76), ..., (𝐿1, 𝑀100), (𝐿5, 𝑀104)} where each cluster contains a high number of test inputs with the dominant POI
𝐿1. This could result in selecting only test inputs with 𝐿1 from each cluster, thereby excluding 𝐿2, 𝐿3, and 𝐿4 which
were selected by ZigZagFuzz. ZigZagFuzz’s domain-wise clustering strategy can prevent this problem and ensure
a more balanced clustering of POIs and FIs.
This domain-wise corpus shrinking algorithm incurs run-time overhead to measure function coverage and

calculating distances between seeds. However, this run-time overhead is negligible because measuring function
coverage incurs much less run-time overhead than path coverage and the distance calculation is simple (the time

5AFL++ calculates each test input’s score based on its execution statistics such as execution speed and the number of covered branches.
6This scenario can occasionally occur due to the domain-wise mutation strategy of ZigZagFuzz. Suppose that a FI mutation phase starts with
a corpus𝑍0 = { (𝑈1, 𝑊1 ), (𝑈2, 𝑊2 ), (𝑈3, 𝑊3 ), (𝑈4, 𝑊4 ), (𝑈5, 𝑊5 ) }} and mutates only (𝑈1, 𝑊1 ) due to the limited time budget of the phase. Then, the
resulting corpus𝑍 will have many test inputs containing 𝑈1.
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Algorithm 3: Domain-wise corpus shrinking
Input: 𝑂 : a set of the test inputs given to the domain-wise corpus shrinking stage

𝑍𝑎𝑅𝑊𝑌𝑏 : a map that records assigned energy score for each test input
𝑈𝐿𝑉 : a map that records function coverage of each test input (𝐿, 𝑀 ) ↔ 𝑂

Output: 𝑂 → : a reduced set of test inputs.
1 Function S,-*".C’-/!$(𝑂 , 𝑍𝑎𝑅𝑊𝑌𝑏):
2 𝑃 ↑ {𝐿 : (𝐿, 𝑀 ) ↔ 𝑂 }
3 𝑚 ↑ {𝑀 : (𝐿, 𝑀 ) ↔ 𝑂 }
4 𝑈𝐿𝑉𝐿𝑄𝑅 ↑ map {(𝐿, ↓) : 𝐿 ↔ 𝑃}
5 𝑈𝐿𝑉𝑆𝑅 ↑ map {(𝑀 , ↓) : 𝑀 ↔ 𝑚 }
6 foreach (𝐿, 𝑀 ) ↔ 𝑂 do
7 𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅 ↑ 𝑈𝐿𝑉 [(𝐿, 𝑀 )]
8 𝑈𝐿𝑉𝐿𝑄𝑅 [𝐿] ↑ 𝑈𝐿𝑉𝐿𝑄𝑅 [𝐿] ↗𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅
9 𝑈𝐿𝑉𝑆𝑅 [𝑀 ] ↑ 𝑈𝐿𝑉𝑆𝑅 [𝑀 ] ↗𝑈𝐿𝑉𝑅𝑊𝑋𝑌𝑅

10 end
11 𝑈𝑔𝑄 ↑ KMeans(𝑃,𝑈𝐿𝑉𝐿𝑄𝑅 ,𝑜𝑈𝑉𝑀 ,𝑗𝑕𝑇𝑒 𝑇 )
12 𝑈𝑔𝑆 ↑ KMeans(𝑚 ,𝑈𝐿𝑉𝑆𝑅 ,𝑜𝑊 𝑋𝑌𝑂 ,𝑗𝑕𝑇𝑒 𝑇 )
13 𝑃 → ↑ ↓
14 foreach 𝑙𝑔 ↔ 𝑈𝑔𝑄 do
15 𝑃 → ↑ 𝑃 →↗ S#&T’/N(𝑙𝑔 , 𝑍𝑎𝑅𝑊𝑌𝑏, 𝑝𝑈𝑉𝑀)
16 end
17 𝑚 → ↑ ↓
18 foreach 𝑙𝑔 ↔ 𝑈𝑔𝑆 do
19 𝑚 → ↑ 𝑚 →↗ S#&T’/N(𝑙𝑔 , 𝑍𝑎𝑅𝑊𝑌𝑏, 𝑝𝑊 𝑋𝑌𝑂)
20 end
21 𝑂 → ↑ ↓
22 foreach (𝐿, 𝑀 ) ↔ 𝑂 do
23 if 𝐿 ↔ 𝑃 → and 𝑀 ↔ 𝑚 → then
24 𝑂 → ↑ 𝑂 → ↗ {(𝐿, 𝑀 )}
25 end
26 end
27 return 𝑂 →

28 End Function

consumed for the domain-wise corpus shrinking is 633.8 seconds on average over 12 hours run in the experiments
in Section 4).

3.7 Implementation
We have implemented ZigZagFuzz based on AFL++-4.05a [11]. The core components of ZigZagFuzz (e.g., auto-
mated program option keyword extraction, program instrumentation for POI mutation, POI mutation strategies,
interleaving scheme, and corpus shrinking) are implemented in an additional 7,000 lines of C and C++ code. The
implementation is publicly available on our paper web page (https://sites.google.com/view/zigzagfuzz).
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4 EXPERIMENT SETUP
To evaluate ZigZagFuzz, we set four research questions with six state-of-the-art fuzzing techniques and four
variants of ZigZagFuzz. The following sections explain the research questions with the experiment setup details
such as target subject programs and measurement. We share all detailed experiment setups on our paper web
page.

4.1 Research!estions
RQ1. How much does ZigZagFuzz outperform the other state-of-the-art program option fuzzers?

To what extent does ZigZagFuzz achieve bug detection and branch coverage, compared to the state-of-the-art
program option fuzzers? Since the previous studies already showed that mutating POI can signi!cantly improve
test coverage and bug detection ability (see Section 7.1), we focus on comparing ZigZagFuzz with the following
six state-of-the-art fuzzers that mutate POI (i.e., not comparing to the fuzzers that do not mutate POI).

• AFL++-argv: AFL++ [11] has a feature called argv-fuzzing which inserts a test driver at the entry point of
the subject program to randomly mutate POI bytes without mutating FI.

• AFL++-all: We implemented a new variant of AFL++-argv (calling it AFL++-all) that mutates both POI and
FI at the same time. After AFL++-all mutates an input byte sequence to generate new byte sequences, it
interprets the !rst 256 bytes of a generated byte sequence as POI and the remaining bytes as FI.

• Eclipser [7]: We selected Eclipser because it supports mutating both POI and FI (we used ‘v1.x’ branch
of Eclipser that can utilize both initial POI and FI).

• CarpetFuzz [38]: CarpetFuzz employs natural language processing (NLP) and pairwise testing techniques to
identify e"ective POIs. It then mutates only FI with the selected POIs. CarpetFuzz introduces an NLP-based
tool that extracts relationships between program options. It begins by !ltering out invalid program option
combinations using the extracted relationships. Subsequently, it prunes out further by applying N-wise
testing technique. In our study, we utilized the POIs previously identi!ed by the authors of CarpetFuzz in
their research paper.

• Con!gFuzz [48]: Con!gFuzz mutates both POI and FI. Based on a manually written program option
grammar, it automatically generates a test driver that can generate a program option con!guration from a
generated byte sequence. Instead of manually writing program option grammars for all 20 target subjects,
which would cost signi!cant human e"ort, we converted the dictionaries of program option keywords for
the 20 target subjects (originally made for ZigZagFuzz) to json !les that Con!gFuzz can accept as program
option grammars.

• POWER [19]: It is a predecessor of ZigZagFuzz. Unlike ZigZagFuzz, POWER does not interleave POI
mutation phases with FI mutation phases. Also, unlike ZigZagFuzz which applies both structural mutation
and byte-level mutation to POI, POWER applies only structural mutation to POI. Another di"erence is that
POWER selects useful POIs based on the expensive function relevance [18] while ZigZagFuzz selects both
POIs and FIs based on their function coverage. These di"erences between POWER and ZigZagFuzz are
described in Section 7.1.1.

RQ2. How much does the interleaving of POI mutation phases with FI mutation phases a"ect the
performance of ZigZagFuzz?

To what extent does the interleaving feature of ZigZagFuzz contribute to achieving high bug detection ability
and branch coverage? For RQ3, we developed ZZF𝑁𝑈-𝑋𝑁𝑀 that runs a POI mutation phase for one hour, and then a
FI mutation phase for another hour, and terminates without domain-wise corpus shrinking (which is meaningless
without repeated mutation phases). To focus on the e"ect of the interleaving in ZigZagFuzz, we compared the
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Table 1. Target subjects

Programs Package name Size #Prog. opt. Programs Package name Size #Prog. opt.
and version (LoC) keywords and version (LoC) keywords

avconv libav-12.3 600,955 761 nasm nasm-2.16.01 105,260 218
bison bison-3.8 82,075 51 objdump binutils-2.40 1,255,876 84
cjpeg libjpeg-turbo-

2.1.4
18,594 33 pdftohtml poppler-22.12.0 127,859 26

dwarfdump libdwarf-0.5.0 104,578 103 pdftopng xpdf-4.04 104,472 18
exiv2 exiv2-0.27.6 112,168 76 pspp pspp-1.6.2 209,790 20
ffmpeg "mpeg-N-109669-

g9a180f60a9
1,087,592 1817 readelf binutils-2.40 154,470 98

gm GraphicsMagick-
1.3.40

287,198 757 tiff2pdf libti"-4.5.0 51,294 30

gs ghostscript-10.0.0 1,517,673 350 tiff2ps libti"-4.5.0 42,839 34
jasper jasper-4.0.0 46,331 20 xmllint libxml2-2.10.3 186,900 66
mpg123 mpg123-1.31.2 44,675 122 xmlwf expat-2.5.0 16,721 15

Average 307,866 235.0

performance of ZZF𝑁𝑈-𝑋𝑁𝑀 with ZZF𝑁𝑈-𝑎𝑏𝑐 for two hours (i.e., ZZF𝑁𝑈-𝑎𝑏𝑐 performs POI mutation (30 mins)⇐ FI
mutation (30 mins) ⇐ POI mutation (30 mins) ⇐ FI mutation (30 mins)).

• ZZF𝑁𝑈-𝑋𝑁𝑀 : ZZF𝑁𝑈-𝑋𝑁𝑀 does not repeat mutation phases; it performs a POI mutation phase for the !rst one
hour and an FI mutation phase for the next one hour without the domain-wise corpus shrinking.

• ZZF𝑁𝑈-𝑎𝑏𝑐 : It is the same as ZigZagFuzz except that it skips the corpus shrinking (i.e., ZZF𝑁𝑈-𝑎𝑏𝑐 uses the
entire test input corpus generated from the preceding mutation phases).

RQ3. Howmuch does domain-wise corpus shrinking technique a"ect the performance of ZigZagFuzz?
To what extent does ZigZagFuzz achieve bug detection ability and branch coverage, compared to the variant

of ZigZagFuzz that does not perform the input corpus shrinking? For RQ3, we compare the performance results
of ZigZagFuzz with ZZF𝑁𝑈-𝑎𝑏𝑐 .

RQ4. How much do di"erent mutation schemes to POI a"ect the performance of ZigZagFuzz?
To what extent does ZigZagFuzz achieve bug detection and branch coverage, compared to the variants of

ZigZagFuzz that perform only one mutation scheme on POI? We would like to evaluate the e"ectiveness of
applying both structural mutation and byte-level mutation to POI in ZigZagFuzz. For that purpose, we compare
ZigZagFuzz with the following two variants of ZigZagFuzz:

• ZZF 𝑎𝑀𝑐𝑑𝑒𝑀 : It applies only structural mutation [31] to POI, not byte-level random mutation. Based on
a dictionary of program option keywords for a target program, it makes random combination of the
keywords by randomly inserting one keyword, removing one keyword, or replacing one keyword with
another random keyword.

• ZZF𝑓𝑔𝑀𝑂 : It applies only byte-level mutation to POI (similar to random mutation of FI).

4.2 Fuzzing Subjects
As Con!gFuzz [48] stated, we could not utilize common fuzzing benchmarks such as Google’s FuzzBench [28]
because they are not developed to mutate POI along with FI.
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Instead, we employ the latest versions of the 20 C/C++ open-source real programs which were frequently
tested by other fuzzing papers. The subject details are listed in Table 1. The size of the subjects ranges from
16,721 LoC (i.e., xmlwf) to 1,517,673 LoC (i.e., gs) and the average size is 307,866 LoC. The number of the program
option keywords extracted from the documents including usage messages ranges from 15 (i.e., xmlwf) to 1,817
(i.e., ffmpeg).

4.3 Fuzzing Setup
We execute each studied fuzzing technique for 12 hours (except ZZF𝑁𝑈-𝑋𝑁𝑀 and ZZF𝑁𝑈-𝑎𝑏𝑐 in RQ2), since our
preliminary study has shown that most fuzzing campaigns in the experiments show consistent results within 12
hours. Also, we repeated each experiment run !ve times to mitigate the random variance of fuzzing experiments.
We used a 30-minute timeout (𝑓𝑀 ) for each POI mutation phase and FI mutation phase. All experiments were
performed on a cluster where each machine is equipped with AMD Ryzen 9 5950X (3.4GHz) and 32GB RAM,
running Ubuntu 18.04.6.

4.3.1 Initial Seed Setup. ZigZagFuzz requires both initial POIs and initial FIs. We collected and utilized commonly
used POIs and FIs from the recent fuzzing papers surveyed in Section 2.1. The initial seed setup is publicly available
at our paper web page.

4.3.2 Configuration of Input Corpus Clustering. For the domain-wise input corpus shrinking (Section 3.6), we set
the number of input clusters and the numbers of selected POIs and FIs as follows (obtained from our preliminary
study). We set ZigZagFuzz to make 20 POI clusters and 800 FI clusters and selected top-2 POIs and top-2 FIs from
each cluster (i.e., 𝑜𝑈𝑉𝑀 = 20,𝑜𝑊 𝑋𝑌𝑂 = 800, and 𝑝𝑈𝑉𝑀 = 𝑝𝑊 𝑋𝑌𝑂 = 2 in Algorithm 3). We performed several exploratory
studies with di"erent settings, and we selected the best values we observed.

4.4 Measurement
4.4.1 Branch Coverage. To measure the coverage achievement of each technique, we replayed all generated test
inputs and counted the number of covered branches using gcov. We report the average branch coverage over the
!ve experiment runs.

4.4.2 Unique Bug Detection. To measure bug detection ability of fuzzing techniques, we count the number of
unique bugs found by each technique. First, we applied LLVM AddressSanitizer [35] to collect crashes raised by
generated test inputs for each technique. After that, we identi!ed unique crash bugs based on the collected alarm
messages. Following the most widely used practice [27], we !rst removed the crashes that show the identical
stack trace to each other. Then, we manually identi!ed the crashes whose stack traces are di"erent but are
suspected to share the same root cause, to the best of our ability. We reported the number of unique bugs detected
in any of the !ve fuzzing runs.

4.5 Threats to Validity
External. To our best knowledge, there exist no benchmark programs for the fuzzers that fuzz POI. By selecting
20 diverse popular open source programs that were used to evaluate other recent fuzzers, we believe that this
threat is limited (i.e., our experiment result can be applicable to various programs with program options). Also,
we compared the results obtained from each experiment for 12 hours and this time budget might not be enough
to compare the overall performance of each technique. However, we could observe that 12-hour timeout was
long enough to !nd the consistent results of the studied fuzzing techniques.
Internal. The implementation of ZigZagFuzz may contain bugs that can a"ect the experiment results. To control
this threat, we have tested our implementation extensively. Another threat may be that we gave Con!gFuzz a
program option grammar that was semi-automatically generated from manual pages/usage messages of a target
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Table 2. The total numbers of the unique bugs detected and the average numbers of branches covered by the state-of-the-art
program option fuzzers

Programs AFL++-argv AFL++-all Eclipser CarpetFuzz Con!gFuzz POWER ZigZagFuzz

B Cov B Cov B Cov B Cov B Cov B Cov B Cov

avconv 0 4224.6 1 16454.0 0 6148.4 4 15543.2 1 9978.4 3 10201.4 13 18881.6
bison 0 1342.4 4 4218.4 1 3340.6 0 5213.4 2 5433.8 0 5212.2 4 6207.6
cjpeg 0 210.6 0 3239.8 0 2654.2 0 2841.2 0 4305.0 0 4376.6 0 4416.6
dwarfdump 1 853.6 2 2408.6 2 6128.4 2 8074.6 3 8097.8 5 9072.2 6 9320.4
exiv2 0 2042.0 0 4722.0 0 2944.4 2 3581.0 0 5846.0 0 6222.2 0 7967.0
"mpeg 1 26321.6 1 33832.2 0 17641.6 1 37310.0 1 19967.8 3 39008.4 11 42761.0
gm 10 14711.8 0 5599.8 1 3875.8 0 6539.6 3 13162.6 8 14116.0 17 19298.0
gs 6 13384.0 0 19009.4 0 15880.2 0 19531.4 1 20789.0 1 29345.6 8 35604.6
jasper 0 641.0 0 1486.2 0 3389.0 1 3713.2 2 3740.4 1 3598.6 1 4073.0
mpg123 0 134.0 1 4292.0 0 2797.2 1 3115.8 2 3587.4 0 3802.4 1 4587.2
nasm 3 5200.8 9 6750.0 2 3141.8 1 5325.4 11 8536.6 13 8857.2 11 8448.2
objdump 0 6285.2 0 17036.2 0 5728.8 2 31429.4 0 23615.8 2 29538.0 2 27759.6
pdftohtml 1 662.4 0 4163.0 0 1967.8 0 4633.4 0 4973.6 0 5703.4 1 5029.4
pdftopng 0 1007.8 1 5496.8 0 5014.8 1 6700.2 1 6538.4 1 7199.6 2 8225.2
pspp 0 2577.4 2 4105.4 2 3003.4 8 6465.2 5 5727.6 6 7174.8 5 6690.2
readelf 0 894.8 0 5712.0 0 3796.4 2 10065.8 2 9843.8 2 9987.4 2 9600.0
ti"2pdf 0 147.0 0 2907.4 0 2435.2 0 4472.8 1 4404.2 0 4576.8 0 4384.8
ti"2ps 0 168.4 0 2015.0 0 1808.0 0 3864.2 0 3939.0 0 4212.6 0 4091.6
xmllint 1 13752.4 1 16045.2 0 5418.0 4 12886.0 0 15531.0 0 15663.0 1 17118.2
xmlwf 0 568.0 0 2086.2 0 2403.4 0 4019.2 0 3685.0 0 3087.0 0 3628.0

Total # of bugs 23 22 8 29 35 45 85

Avg. # of 4756.5 8079.0 4975.9 9766.3 9085.2 11047.8 12404.6
branches covered

* The B means the number of unique bugs detected, and the Cov means the average number of branches covered.

program, which might reduce performance of Con!gFuzz. We think that this threat is unavoidable for the fair
comparison of Con!gFuzz with the other fuzzers.

5 EXPERIMENT RESULTS
Tables 2, 3, 4, 5 and Figure 6 report the number of unique bugs detected and the number of branches covered by
each fuzzing technique on the 20 fuzzing subjects.

5.1 RQ1. Fuzzing E"ectiveness of ZigZagFuzz Compared to the State-of-the-art Program Option
Fuzzers

5.1.1 Bug Detection Achieved. The experiment results show that ZigZagFuzz detects signi!cantly more (1.9 to
10.6 times more) unique bugs than the other state-of-the-art POI fuzzing techniques. Table 2 shows the number
of unique bugs detected and the number of branches covered by AFL++-argv, AFL++-all, Eclipser, CarpetFuzz,
Con!gFuzz, POWER, and ZigZagFuzz (the best numbers are marked in a bold font).
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Fig. 4. The relative ratio of the unique bugs detected for each target subject program (the most e"ective fuzzer’s e"ectiveness
is normalized to one)

ZigZagFuzz detected 85 unique bugs on 15 subjects. ZigZagFuzz detected 3.7 (= 85/23), 3.9 (= 85/22), 10.6 (=
85/8), 2.9 (= 85/29), 2.4 (= 85/35), and 1.9 (= 85/45) times more unique bugs than AFL++-argv, AFL++-all, Eclipser,
CarpetFuzz, Con!gFuzz, and POWER, respectively. Also, note that, among the 17 target subjects from which
at least one of the fuzzers detected a bug, ZigZagFuzz is most e"ective for the 10 subjects (i.e., avconv, bison,
dwarfdump, ffmpeg, gm, gs, objdump, pdftohtml, pdftopng, and readelf) and the second most e"ective for the
four subjects (jasper, mpg123, nasm, and xmllint).
Figure 4 visually illustrates the relative fuzzing e"ectiveness in terms of the uniquely detected bugs of the

fuzzers for each target subject. For each target subject, the most e"ective fuzzer’s e"ectiveness is normalized
to one, and the relative e"ectiveness of the other fuzzers is computed in relation to the normalized value. As
shown in the !gure, ZigZagFuzz is obviously the most e"ective fuzzer among the compared techniques (i.e.,
ZigZagFuzz’s bars are higher than the other techniques for most subjects).
In addition, the Venn diagram in Figure 5 shows how many unique bugs were found by each of the top four

fuzzing techniques (i.e. CarpetFuzz, Con!gFuzz, POWER, and ZigZagFuzz). It shows that ZigZagFuzz detected
the largest number of unique crashes that were not found by the other techniques (46). ZigZagFuzz also detected

, Vol. 1, No. 1, Article . Publication date: September 2024.



ZigZagFuzz: Interleaved Fuzzing of Program Options and Files • 19

Fig. 5. The relation of the unique bugs found by the top four fuzzers

most of the unique bugs found by the other three fuzzers (i.e., 44.8% (=13/29), 68.9% (= 31/45), and 74.3% (=26/35)
of the bugs detected by CarpetFuzz, POWER, and Con!gFuzz, respectively).

We can make a few additional observations as follows:
• ZigZagFuzz has superior bug detection ability for large target programs than the other fuzzers:
For the top three largest subjects (ffmpeg, gs, and objdumpwhose sizes are larger than 1MLoC), ZigZagFuzz
detected the far larger number of bugs among the compared fuzzing techniques. For example, for ffmpeg,
ZigZagFuzz detected 11 bugs while the second most e"ective fuzzer (POWER) did only three.

• ZigZagFuzz has superior bug detection ability for hard-to-!nd bugs than the other fuzzers:
For the eight subjects with hard-to-!nd crashes (i.e., the subjects with eight or fewer bugs detected by all
seven fuzzers such as jasper, mpg123, objdump, pdftohtml, pdftopng, readelf, tiff2pdf, and xmllint),
ZigZagFuzz detected the largest number of bugs for the four subjects (objdump, pdftohtml, pdftopng,
readelf) and the second largest number of bugs for the three subjects (jasper, mpg123, and xmllint).

5.1.2 Branch Coverage Achieved. ZigZagFuzz covered signi!cantly more branches than the other techniques.
For example, on average, ZigZagFuzz covered 2.6 (=12404.6/4756.5) times more branches than AFL++-argv and
1.4 (=12404.6/9085.2) times more branches than Con!gFuzz. Figure 6 shows the branch coverage increase over
time. X-axis and y-axis represent execution time in hours and the number of covered branches, respectively.
ZigZagFuzz achieved the highest branch coverage for the 12 subjects (avconv, bison, cjpeg, dwarfdump,

exiv2, ffmpeg, gm, gs, jasper, mpg123, pdftopng, and xmllint) and the second highest branch coverage for the
three subjects (pdftohtml, pspp, and tiff2ps). Even for the remaining !ve subjects (nasm, objdump, readelf,
tiff2pdf, and xmlwf), ZigZagFuzz’s coverage is almost same to the most e"ective fuzzer per subject (i.e.,
ZigZagFuzz covered 88.3% (=27759.6/31429.4 on objdump) to 95.8% (=4384.8/4576.8 on tiff2pdf) of the branches
covered by the most e"ective fuzzer per subject).

5.2 RQ2. Fuzzing E"ectiveness of the Interleaving of POI Mutation Phases with FI Mutation Phases
The experiment results in two hours show that the interleaving scheme improves the performance of ZigZagFuzz.
Table 3 shows that, by interleaving POI mutation phases with FI mutation phases, ZZF𝑁𝑈-𝑎𝑏𝑐 detected 25.0%
(=(40-32)/32) more unique bugs and covered 21.7% (=(9114.7- 7487.0)/7487.0) more branches than ZZF𝑁𝑈-𝑋𝑁𝑀 . For
example, on objdump, pdftopng, and xmllint, ZZF𝑁𝑈-𝑎𝑏𝑐 detected a bug while ZZF𝑁𝑈-𝑋𝑁𝑀 did not. Moreover,
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Fig. 6. The branch coverage results for the state-of-the-art fuzzing techniques over time
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Table 3. The total number of the unique bugs detected and the average numbers of the branches covered in two hours by the
variants of ZigZagFuzz with/without interleaving

Programs

ZZF𝑁𝑈-𝑋𝑁𝑀 ZZF𝑁𝑈-𝑎𝑏𝑐

Programs

ZZF𝑁𝑈-𝑋𝑁𝑀 ZZF𝑁𝑈-𝑎𝑏𝑐
(two hours run) (two hours run) (two hours run) (two hours run)

#uniq. #branch #uniq. #branch #uniq. #branch #uniq. #branch
bugs covered bugs covered bugs covered bugs covered

avconv 4 7966.2 3 10784.0 nasm 5 5934.4 8 7084.6
bison 1 4970.0 2 5676.8 objdump 0 13844.8 1 18544.2
cjpeg 0 1537.2 0 4206.6 pdftohtml 0 3968.6 0 4442.2
dwarfdump 5 8069.0 4 8593.2 pdftopng 0 6211.8 1 6774.0
exiv2 0 5098.4 0 6361.2 pspp 1 3219.2 2 3419.6
"mpeg 2 13175.0 2 20895.8 readelf 1 4875.2 1 7893.4
gm 9 12118.2 10 14591.6 ti"2pdf 0 2920.6 0 3739.2
gs 3 31288.2 5 30680.8 ti"2ps 0 2418.6 0 3496.8
jasper 1 3706.2 0 3724.0 xmllint 0 14228.6 1 14978.0
mpg123 0 2647.8 0 3752.2 xmlwf 0 1541.4 0 2656.4

Total # of bugs 32 40

Avg. # of branches covered 7487.0 9114.7

ZZF𝑁𝑈-𝑎𝑏𝑐 covered more branches than ZZF𝑁𝑈-𝑋𝑁𝑀 for 19 out of the 20 subject programs (except gs). For example,
ZZF𝑁𝑈-𝑎𝑏𝑐 covered 18544.2 branches while ZZF𝑁𝑈-𝑋𝑁𝑀 did only 13844.8 branches of objdump on average.
Also, to see the e"ectiveness of the iterative/interleaving POI mutation phases with FI mutation phases to

reach deep code segments through complex condition checks, we counted the number of the test inputs that
satis!ed all branch conditions to reach the crashing line (Line 12) in the dwarfdump crash example in Figure 1.
On average, Con!gFuzz made only 409.6 test inputs while ZigZagFuzz made 3754.4 test inputs that satis!ed all
branch conditions and detected bug in Figure 1. This observation shows that the interleaving of POI mutation
phases with FI mutation phases of ZigZagFuzz can successfully generate e"ective test inputs (pairs of POIs and
FIs) to reach hard-to-reach deep code segments, which leads to signi!cantly higher bug detection and higher
branch coverage than the other fuzzers.

5.3 RQ3. Fuzzing E"ectiveness of Corpus Shrinking of ZigZagFuzz
The experiment results show that the domain-wise corpus shrinking improves the performance of ZigZagFuzz.
Table 4 shows that ZigZagFuzz detected 1.15 (=85/74) times more unique bugs and covered 5.4% (= (12404.6-
11743.3)/11743.3) more branches than ZZF𝑁𝑈-𝑎𝑏𝑐 . For example, on bison, ZigZagFuzz detected four bugs while
ZZF𝑁𝑈-𝑎𝑏𝑐 did only two bugs. For another example, on ffmpeg, ZigZagFuzz covered 42761.0 branches while
ZZF𝑁𝑈-𝑎𝑏𝑐 did only 34122.2 branches on average.
In addition, the Venn diagram in Figure 7 shows how many unique bugs were detected by ZigZagFuzz and

ZZF𝑁𝑈-𝑎𝑏𝑐 . ZigZagFuzz utilizes function coverage information (instead of !ne-grained branch or path coverage
which incurs heavy run-time overhead) for e#cient domain-wise corpus shrinking. The Venn diagram clearly
shows that ZigZagFuzz detected most bugs detected by ZZF𝑁𝑈-𝑎𝑏𝑐 (62/74), and also it detected a large number (23)
of the unique bugs that were not detected by ZZF𝑁𝑈-𝑎𝑏𝑐 .
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Table 4. The total number of unique bugs detected and the average numbers of branches covered by the variants of
ZigZagFuzz with/without corpus shrinking

Programs
ZZF𝑁𝑈-𝑎𝑏𝑐 ZigZagFuzz

Programs
ZZF𝑁𝑈-𝑎𝑏𝑐 ZigZagFuzz

#uniq. #branch #uniq. #branch #uniq. #branch #uniq. #branch
bugs covered bugs covered bugs covered bugs covered

avconv 10 15653.2 13 18881.6 nasm 8 8420.6 11 8448.2
bison 2 6092.8 4 6207.6 objdump 2 27591.2 2 27759.6
cjpeg 0 4398.2 0 4416.6 pdftohtml 1 4858.4 1 5029.4
dwarfdump 5 9139.0 6 9320.4 pdftopng 2 7359.4 2 8225.2
exiv2 0 7638.8 0 7967.0 pspp 5 5656.8 5 6690.2
"mpeg 7 34122.2 11 42761.0 readelf 2 10032.8 2 9600.0
gm 16 18846.6 17 19298.0 ti"2pdf 0 4484.8 0 4384.8
gs 11 37919.6 8 35604.6 ti"2ps 0 3969.0 0 4091.6
jasper 1 4025.4 1 4073.0 xmllint 1 17268.6 1 17118.2
mpg123 1 4391.8 1 4587.2 xmlwf 0 2998.0 0 3628.0

Total # of bugs 74 85

Avg. # of branches covered 11743.4 12404.6

Fig. 7. The relation of the unique bugs detected by ZigZagFuzz and ZZF𝑁𝑈-𝑎𝑏𝑐

5.4 RQ4. Fuzzing E"ectiveness of Di"erent Schemes for POI Mutation of ZigZagFuzz
The experiment results show that using both structural mutation and byte-level mutation on POI signi!cantly
increases testing e"ectiveness. Table 5 shows the number of the unique bugs detected and the number of branches
covered by ZZF𝑓𝑔𝑀𝑂 , ZZF𝑎𝑀𝑐𝑑𝑒𝑀 , and ZigZagFuzz (the largest numbers are marked in a bold font). On average,
ZZF𝑓𝑔𝑀𝑂 and ZZF𝑎𝑀𝑐𝑑𝑒𝑀 detected similar number of unique bugs and covered similar number of branches while
ZigZagFuzz detected signi!cantly more unique bugs and covered more branches.

5.4.1 Bug Detection Achieved. ZigZagFuzz detected 1.7 (= 85/49) and 1.6 (= 85/53) times more unique bugs than
ZZF𝑓𝑔𝑀𝑂 and ZZF𝑎𝑀𝑐𝑑𝑒𝑀 , respectively. For example of avconv, ZigZagFuzz detected 13 unique bugs while ZZF𝑓𝑔𝑀𝑂
and ZZF𝑎𝑀𝑐𝑑𝑒𝑀 did only four and !ve bugs, respectively.
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Fig. 8. The relation of the unique bugs detected by ZZF𝑓𝑔𝑀𝑂 , ZZF𝑎𝑀𝑐𝑑𝑒𝑀 , and ZigZagFuzz

The Venn diagram in Figure 8 shows the number of unique bugs detected by ZZF𝑓𝑔𝑀𝑂 , ZZF𝑎𝑀𝑐𝑑𝑒𝑀 , and ZigZagFuzz.
From the diagram, we make the following observations:

• Combining the two mutation schemes on POI improves bug detection ability:
ZigZagFuzz detected 32 unique bugs that were not detected by the two variants with di"erent mutation
schemes. Also, ZigZagFuzz detected the majority of the unique bugs detected by the two variants (i.e.,
ZigZagFuzz detected 71.4% (= 35/49) of the unique bugs detected by ZZF𝑓𝑔𝑀𝑂 and 60.3% (= 32/53) of the
unique bugs of ZZF𝑎𝑀𝑐𝑑𝑒𝑀 ).

• The two variants with di"erent mutation schemes detected much di"erent sets of unique bugs:
ZZF𝑓𝑔𝑀𝑂 detected only 32.1% (=17/53) of the unique bugs detected by ZZF𝑎𝑀𝑐𝑑𝑒𝑀 . Similarly, ZZF𝑎𝑀𝑐𝑑𝑒𝑀 detected
only 34.6% (= 17/49) of the unique bugs detected by ZZF𝑓𝑔𝑀𝑂 . This indicates that the mutation scheme has a
high impact on detecting unique bugs.

5.4.2 Branch Coverage Achieved. ZigZagFuzz covered about 1.1 (= 12404.6/10877.1) and 1.2 (= 12404.6/10877.1)
times more branches than ZZF𝑓𝑔𝑀𝑂 and ZZF 𝑎𝑀𝑐𝑑𝑒𝑀 , respectively. For example of avconv, ZigZagFuzz covered
18881.6 branches while ZZF𝑓𝑔𝑀𝑂 and ZZF𝑎𝑀𝑐𝑑𝑒𝑀 did only 15312.6 and 12475.0 branches on average, respectively.

6 DISCUSSION
6.1 Real-world Bugs Detected by ZigZagFuzz
Among the 85 bugs detected by ZigZagFuzz, we reported 61 bugs to the original developers of the target programs.
To reduce the developer’s burden to review many bug reports, we excluded 11 reports detected in the latest
release version but could not replicate in the latest development version. Also, we did not report the 13 bugs in
avconv because it is no longer supported by the developers. We received the following positive responses from
the developers:

• 44 reported bugs have been !xed by the original developers
• 17 bugs are waiting to be con!rmed

As shown in the following case studies, ZigZagFuzz can successfully detect complex bugs that require a speci!c
POI and a speci!c FI to trigger.
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Table 5. The total number of the unique bugs detected and the average numbers of the branches covered by the variants of
ZigZagFuzz with di"erent mutation schemes

Programs ZZF𝑓𝑔𝑀𝑂 ZZF𝑎𝑀𝑐𝑑𝑒𝑀 ZigZagFuzz

#uniq. #branch #uniq. #branch #uniq. #branch
bugs covered bugs covered bugs covered

avconv 4 15312.6 5 12475.0 13 18881.6
bison 3 6118.4 1 5299.2 4 6207.6
cjpeg 0 4275.8 0 4165.0 0 4416.6
dwarfdump 7 9284.2 4 8952.8 6 9320.4
exiv2 0 8121.2 1 7034.2 0 7967.0
"mpeg 1 38096.2 5 28570.6 11 42761.0
gm 5 11760.4 15 19608.4 17 19298.0
gs 7 23253.6 3 31589.2 8 35604.6
jasper 0 3789.0 2 3664.0 1 4073.0
mpg123 1 4536.8 0 3661.4 1 4587.2
nasm 9 8158.6 12 8247.0 11 8448.2
objdump 2 31134.4 0 28593.0 2 27759.6
pdftohtml 1 4699.4 0 4986.4 1 5029.4
pdftopng 2 7033.8 1 7257.2 2 8225.2
pspp 4 4505.2 3 6258.0 5 6690.2
readelf 2 8595.6 1 9769.0 2 9600.0
ti"2pdf 0 4255.2 0 4139.6 0 4384.8
ti"2ps 0 4018.6 0 3835.6 0 4091.6
xmllint 1 17215.6 0 14422.2 1 17118.2
xmlwf 0 3376.8 0 2655.2 0 3628.0

Total # of bugs 49 53 85

Avg. # of branches 10877.1 10759.2 12404.6

mpg123 -smooth --listentry -z -w l --quiet --index --4to1 -2 -q --fifo --outfile @@

Fig. 9. POI generated by ZigZagFuzz that triggers a crash in mpg123

6.1.1 Case Study 1: mpg123. ZigZagFuzz detected a new crash bug in mpg123 by generating a program option
con!guration containing the 13 command-line options shown in Figure 9. -2 or –2to1 options make the program
to downsample an audio !le. –index option makes the program to scan through an audio !le.

The crash bug was triggered when mpg123 tries to scan an audio !le with invalid sampling rate value. mpg123
supports speci!c sampling rate values that range from 8kHz to 48.0kHz. If an audio !le with low sampling rate
value (e.g., 11,025Hz) is given as FI to mpg123 with -2 option, the program tries downsampling the audio !le
and makes an invalid audio !le with an unsupported sampling rate value (e.g., 5,512 Hz). Thus, by using –index
option with -2 option, it results in a wrong memory access when the program reads an invalid track in the audio
!le.
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objdump @@ --adjust-vma=4 --start-address=0x0 -Wc -S -x -Ud 8-S o@rchite -g -f -Wm -Ud
-mh --file-offsets -f -a -mnf -Wf -Wo

Fig. 10. POI generated by ZigZagFuzz that triggers a segmentation violation error in objdump

We reported the bug to the developer of mpg123 (the bug report is available at https://sourceforge.net/p/
mpg123/bugs/322/) and the developer !xed the bug within 33 hours from the initial bug report. The developer
was highly interested in ZigZagFuzz because, although mpg123 had been extensively fuzzed by using Google’s
OSS-fuzz [14], the reported bug was not detected before. The response of the developer is as follows: “Interesting
approach you !nd stu" where oss-fuzz didn’t anymore”.

6.1.2 Case Study 2: objdump. The following two new features of ZigZagFuzz enabled the successful detection of
a segmentation violation error in objdump:

• Iterative/interleaved POI mutations with FI mutations:
To trigger the crash, a test input should satisfy a complex intermixed sequence of POI- and FI-dependent
conditions like Figure 1. The interleaving of POI mutations with FI mutations of ZigZagFuzz can generate
a proper pair of a POI and a FI that can satisfy conditions in a complex intermixed sequence of POI- and
FI-dependent conditions.
ZigZagFuzz triggered this crash bug when objdump is commanded to show the disassembled code of
an object !le for Netronome Flow Processor (NFP) architecture. -m nfp or -mnf option generated by
ZigZagFuzz causes objdump to show the disassembled code of an object !le for NFP architecture.
To detect the crash error, a test input should contain both a proper POI (i.e., -mnf) that triggers objdump
to handle NFP architecture and a proper FI that contains a corrupted NFP !le which contains an empty
section owner information; when objdump tries to access the corresponding section, it causes a crash error.
By using the interleaved mutation approach for POI and FI, ZigZagFuzz successfully generated a test input
that caused the crash error.

• Combined application of both structural and byte-level mutations to POI:
ZigZagFuzz could generate a POI that leads to the crash by utilizing both structural mutation and byte-level
mutation on POI. Figure 10 shows the POI generated by ZigZagFuzz that triggers the segmentation violation
error. It shows that ZigZagFuzz created a complex POI by using both structural mutation and byte-level
mutation. The tokens such as –start-address is generated by structural mutation and -mnf is generated
by byte-level mutation (-mnf is not included in a dictionary used by ZigZagFuzz, since it is not an o#cially
documented program option).

We reported this bug to objdump developers and they !xed the bug by applying the patch in Figure 11 (the
patch checks if the given section owner information is empty or not in Lines 5-6). The patch indicates that the
crash bug is induced when an NFP !le has an empty section owner information.

6.2 Dependency of Bugs on POIs and FIs Generated by ZigZagFuzz
Table 6 presents the 22 bugs of gm and pspp detected by ZigZagFuzz as an example to show dependencies between
the bugs and input components generated by ZigZagFuzz. The third row shows a failure type of each bug. The
fourth and !fth rows indicate whether each bug is dependent solely on a POI or a FI, respectively. The sixth row
indicates whether each bug is dependent on both POIs and FIs. Lastly, the seventh row indicates if the bug was
detected by ZigZagFuzz only among the top four program option fuzzers in RQ1.

We determined the dependency between a bug and an input component as follows:
• A bug is dependent solely on a POI if the bug is triggered with a speci!c POI with any FIs (or no FI).
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Fig. 11. The fix commit of the corrupted NFP file bug in objdump

Table 6. Dependency analysis results on 22 bugs detected by ZigZagFuzz

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Prog. gm pspp

Fail. ty. a.v. a.v. a.v. a.v. f.p. f.p. h.b. s.f. h.b. s.f. s.f. s.f. s.f. s.f. s.f. h.b. s.f. a.v. a.v. a.v. a.v. h.b.

POI ↭ ↭ ↭ ↭ ↭

FI ↭ ↭ ↭ ↭

Both ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭

ZZF ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭ ↭

a.v.: assert violation, f.p.: $oating point exception, h.b.: heap-bu"er-over$ow, s.f.: segmentation fault

• A bug is dependent solely on a FI if the bug is triggered with a speci!c FI with a default initial POI in
Section 4.3.1.

• A bug is dependent on both POIs and FIs if the bug can be triggered by a combination of a speci!c POI and
a speci!c FI.

The !ve out of the 22 bugs are dependent solely on POIs (i.e., bug indices 2, 8, 11, 14, and 17), four bugs are
dependent solely on FIs (i.e., bug indices 18, 19, 20, and 22), and the remaining 13 bugs are dependent on both POIs
and FIs. ZigZagFuzz detected various types of crash bugs. In detail, ZigZagFuzz detected eight assert violations,
two $oating point exception bugs, four heap-bu"er-over$ow bugs, and eight segmentation fault bugs. Note that,
among the top four fuzzers, only ZigZagFuzz detect three POI-dependent bugs and seven POI-FI-dependent bugs.

7 RELATED WORK
7.1 Fuzzers that Mutate Program Option Input (POI)
TOFU [42] is a fuzzer that mutates program option con!gurations for directed fuzzing. It generates many di"erent
option con!gurations by using structural mutation and tries to !nd an option con!guration that gives the closest
distance to a target basic block. TOFU receives a speci!cation of program options (i.e., the name of options
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and the type of option argument if any) from a user and performs structural mutation on the program option
con!gurations by using the speci!cation as a dictionary. Unlike TOFU, ZigZagFuzz just requires a list of program
option keywords that are described in the manual pages and/or the help messages of target programs. Also,
ZigZagFuzz actively generates diverse POIs with accompanying FIs to explore large path space while TOFU
mutates POI only until it !nds a path to a target block.

Zeller et al. [47] (an online course) developed a fuzzer that automatically infers the program option grammar
of Python programs that use argparse function. They use the inferred program option grammar to generate
valid program option con!gurations and fuzz input !les with the generated option con!gurations.

CLIFuzzer [15] also tried to automatically infer program option input grammar from the usage of standard
C library function getopt. CLIFuzzer’s applicability is limited, since many real-world programs use its own
program option handling logic, not getopt (CLIFuzzer was evaluated on small C/C++ programs with a maximum
size of 81,215 lines). In contrast, we target much larger real-world programs whose average size is 307,866 lines
(only six of the target subjects use getopt).

Eclipser [7] supports option con!guration mutation. Eclipser tracks relation between each input byte and
branch constraints with light-weight instrumentation on binary code, and it supports tracking not only input !le
bytes but also POI’s bytes. After tracking the relation, it searches for correct values of the related bytes with
multiple executions to cover the branches.

CarpetFuzz [38] does notmutate POIs, but it selects e"ective POIs from possible option combinations by utilizing
relationship information extracted using natural language processing techniques. It parses CLI documentation
and extracts dependency or con$ict among program options. Then, it selects only valid POIs that satisfy the
extracted relationship conditions. After selecting POIs, CarpetFuzz mutates only FIs using the selected POIs.
Con!gFuzz [48] mutates both POI and FI by mutating input bytes and interpreting the !rst few bytes as POI

and the remaining bytes as FI. Based on a manually written program option grammar, Con!gFuzz inserts, at the
entry point of the main function, code that converts input bytes into a program option con!guration. In contrast,
ZigZagFuzz’s clear separation and interleaving of POI mutation phases and FI mutation phases enables to explore
deeper state of a target program and, thus, detects more bugs.

7.1.1 Comparison between ZigZagFuzz and POWER. ZigZagFuzz has the following new features compared to its
predecessor POWER [19]:

(1) Unlike POWER, ZigZagFuzz separately mutates POIs and FIs in an iterative/interleaving manner because a
target program may have a complex intermixed sequence of POI-dependent branches and FI-dependent
branches that depend on each other (see Section 2). In contrast, POWER mutates both POIs and FIs together
for the !rst one hour and it mutates only FI for the remaining time.
We illustrate the necessity of iterative/interleaved application of POI mutations with FI mutations in Figure 1
in Section 2. Section 4.1 (RQ 2: Fuzzing E"ectiveness of the Interleaving of POI Mutation Phases with FI
Mutation Phases) and Section 5.2 show that this iterative/interleaving mutations of POIs with FIs improve
bug detection ability by 25.0% and branch coverage achievements by 21.7%.

(2) ZigZagFuzz considers the distinct characteristics of POIs and FIs and applies a reduction strategy by
clustering POIs and FIs separately (Section 3.6). In contrast, POWER adopts a selective approach, greedily
targeting promising POIs. Also, ZigZagFuzz employs function coverage as a criterion for corpus reduction
while POWER prioritizes expensive function relevance. This new corpus shrinking method improves test
coverage 5.6% and bug detection 14.9% (RQ3 in Section 5.3).

(3) ZigZagFuzz applies both byte-level mutations and structural mutations to POIs (which improves bug
detection by 60.4% (= (85-53)/53) compared to applying only structural mutations in RQ4) while POWER
does only structural mutations to POI (see Section 3.4 and Section 5.4).
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7.2 Structural Mutation in Fuzzing Techniques
Structural mutation was developed for e"ective fuzzing for simply structured !le inputs (to structured !le inputs
of high complexity, grammar-based fuzzing [17, 32, 39] are applied). It receives a dictionary containing tokens
provided by users or automatically extracted from source code and/or documents of a target program. Structural
mutation adds/deletes/replaces a token to e"ectively generate test inputs that satisfy the input constraints of a
target program. Zest [31] performs structural mutation by utilizing manually written parametric generators which
convert a byte sequence into a structured input such as a XML format !le. Yoo et al. [44] utilizes grammar-aware
mutation operators for e"ective continuous unit-level fuzzing. Superion [39] improves AFL’s dictionary-based
mutation to align with their grammar-aware fuzzing.
The main di"erence between ZigZagFuzz and the above fuzzers is that ZigZagFuzz applies both structural

mutation and byte-level mutation to POI while Zest and Superion applies structural mutation to FI without
recognizing the importance of diverse POI.

7.3 Heuristics to Select Test Inputs
AFLfast [2] favors inputs that execute rarely executed paths. FairFuzz [21] and Vuzzer [34] favor inputs which
execute rarely executed branches and which execute basic blocks located in deep control-structure, respectively.
CollAFL [13] favors inputs whose execution paths have many uncovered neighbor branches. Ankou [26] de!nes
a distance between two di"erent execution paths and scores each input according to its execution path’s
“uniqueness” which is measured using the distances to other paths. TortoiseFuzz [41] favors inputs which execute
many functions, loops, and basic blocks that have many memory access operators. SAVIOR [5] statically labels
suspicious basic blocks which contain (or which can reach) operators that can lead to unde!ned behaviors and it
scores each input in terms of a number of the suspicious basic blocks visited by the test input.
While the aforementioned selection/prioritization heuristics of these fuzzers consider only FI (not POI),

ZigZagFuzz selects test inputs based on both POI and FI and, thus, improves bug detection ability further (see
Section 3.6 and Section 5.3).

8 CONCLUSION
This paper presents a novel fuzzing technique ZigZagFuzz, which improves bug detection ability by separately
fuzzing !le input and program option input in an interleaving manner. We have applied ZigZagFuzz to the 20
popular real-world subjects and con!rmed that ZigZagFuzz signi!cantly outperforms the state-of-the-art fuzzing
techniques (i.e., ZigZagFuzz detected 1.9 to 10.6 times more unique bugs than the compared cutting-edge fuzzers).
Also, we have demonstrated that the core ideas of ZigZagFuzz (i.e., di"erent fuzzing strategies for di"erent input
domains, interleaving phases of mutating program option input with ones of mutating !le input, domain-wise
corpus shrinking by reducing POIs and FIs separately, and applying both structural and random byte mutations
to POIs) are e"ective to improve fuzzing performance.

For future work, we will apply the key ideas of ZigZagFuzz to not only programs with program option input,
but also to programs with con!gurations of di"erent types such as build con!gurations. Also, we observed
that di"erent fuzzing techniques detected di"erent sets of unique bugs as shown in Figure 5 in Section 5.1. We
plan to study the di"erences between the unique bugs detected by each fuzzer, which can help improve fuzzing
e"ectiveness.
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