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Abstract
Despite the technological advancements in the transportation sector, the 
industry continues to grapple with increasing energy consumption and 
vehicular emissions, which intensify environmental degradation and climate 
change. The ine!cient management of tra!c flow, the underutilization of 
transport network interconnectivity, and the limited implementation of artificial 
intelligence (AI)-driven predictive models pose significant challenges to 
achieving energy e!ciency and emission reduction. Thus, there is a timely 
and critical need for an integrated, sophisticated approach that leverages 
intelligent transportation systems (ITSs) and AI for energy conservation 
and emission reduction. In this paper, we explore the role of ITSs and AI in 
future enhanced energy and emission reduction (EER). More specifically, we 
discuss the impact of sensors at di"erent levels of ITS on improving EER. We 
also investigate the potential networking connections in ITSs and provide 
an illustration of how they improve EER. Finally, we discuss potential AI 
services for improved EER in the future. The findings discussed in this paper 
will contribute to the ongoing discussion about the vital role of ITSs and AI 
applications in addressing the challenges associated with achieving energy 
savings and emission reductions in the transportation sector. Additionally, it 
will provide insights for policymakers and industry professionals to enable 
them to develop policies and implementation plans for the integration of ITSs 
and AI technologies in the transportation sector.

Key words: intelligent transportation systems (ITSs); 
artificial intelligence (AI); energy conservation; emissions; 
sensors; networking.
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Introduction
The transportation sector in Saudi Arabia plays a significant role in 
contributing to carbon emissions and other environmental issues. Traditional 
private cars are the primary mode of transportation in the country, accounting 
for a significant portion of greenhouse gas emissions (United Nations 2014). 
The use of such vehicles has led to tra!c congestion and air pollution, 
which in turn can lead to an increase in energy consumption. To address 
these challenges, there has been a growing need to promote the use 
of advancements in technology and data science, demonstrated by the 
integration of intelligent transportation systems (ITSs) and artificial intelligence 
(AI), which can mitigate the problems posed by energy demand and 
greenhouse gas emissions.

ITSs refer to a vast network of cutting-edge 
technologies and applications created to improve 
the performance of transportation systems in terms 
of sustainability, e!ciency, and safety (Veres and 
Moussa 2020). Using information and communication 
technology, ITSs contain several components, such 
as people, vehicles, devices, and infrastructure. More 
specifically, ITSs encompass numerous interconnected 
architectural components, as shown in Fig. 1. Real-time 
data are collected by sensors and data sources that  
are installed in vehicles, devices, and infrastructure. 
Data sharing between components is made possible by 

communication networks, including backhaul, vehicle-
to-vehicle (V2V), and vehicle-to-infrastructure (V2I) 
networks. To make e!cient decisions and manage 
the transportation network, control centers need to 
process and evaluate the received data. Intelligent apps 
and algorithms can process the data to optimize tra!c 
flow, increase safety, and o"er environmentally friendly 
services. Travelers can access real-time information 
and services through user interfaces and applications, 
enabling them to select the optimal route for their 
journey and thus contributing to reducing energy 
consumption and emissions.
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Figure 1. ITS Infrastructure and Communication Architecture.

Source: Authors.
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ITS Sensor-Based 
Environmentally 
Friendly Services
The range and depth of services that an ITS can o"er are intrinsically linked 
to its sensing capabilities, forming a dynamic ecosystem where enhanced 
sensing facilitates increased service delivery. We categorize ITSs from the 
sensor level into three categories: (i) vehicle-based sensors, (ii) infrastructure-
based sensors, and (iii) device-based sensors. With proper optimization of ITS 
sensing capabilities, it is possible to achieve nontraditional enhanced energy 
and emission reduction (EER) services such as eco-driving assistance, tra!c 
flow optimization, and intelligent freight management.

Vehicle-based sensors: Vehicle-based sensors 
encompass a diverse range of sensors integrated within 
vehicles to collect and monitor various types of data 
(Guerrero-Ibáñez, Zeadally, and Contreras-Castillo 2018). 
These sensors can be categorized as follows based on 
their overall goals within an ITS.

• Surrounding/environmental sensors, such as light 
detection and ranging sensors (LiDARs), cameras, 
temperature sensors, humidity sensors, and air 
quality sensors, capture information about a vehicle’s 
surroundings, road conditions, and environmental 
parameters. These sensors enable applications such 
as object detection, lane departure warning, weather 
monitoring, and pollution detection.

• Vehicle-specific sensors, including speed sensors, 
brake sensors, engine sensors, fuel consumption 
sensors, emission sensors, energy meters, cameras, 
and LiDARs, monitor parameters related to a 
vehicle’s performance, energy e!ciency, emission 
levels, and energy consumption. These sensors 
facilitate vehicle diagnostics, fuel economy analysis, 
compliance with environmental regulations, and 
energy management.

• Vehicle-based sensors provide data on vehicle 
performance, fuel consumption, and emissions. 
These data can be used to optimize driving 
behavior through eco-driving assistance systems, 
minimizing fuel consumption and reducing emissions. 
Additionally, vehicle sensors enable the monitoring 
and management of electric vehicles, promoting the 
adoption of zero-emission vehicles and reducing the 
reliance on fossil fuels.

Infrastructure-based sensors: Infrastructure-based 
sensors encompass a diverse range of sensors that are 
strategically deployed within transportation infrastructure 
to fulfill specific functional roles in an ITS (Soga and 
Schooling 2016). Infrastructure-based sensors and their 
uses are listed below.

• Road condition monitoring sensors, such as pavement 
quality analyzers and surface temperature sensors, are 
installed directly on the road surface to continuously 
assess pavement conditions, detect cracks and 
potholes, and monitor temperature variations.

• Vehicle presence and behavior sensors, including 
license plate recognition cameras, LiDARs, and 
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 weigh-in-motion systems, are strategically positioned 
on tra!c lights, overhead structures, or roadside 
gantries to capture crucial data related to vehicles on 
the road, such as identification, classification, speed, 
and weight measurements. These sensors facilitate 
e!cient tra!c management and enforcement 
operations, and they support autonomous vehicle 
(AV) technologies.

• Environmental monitoring sensors, such as weather 
stations, air quality sensors, visibility sensors, 
and noise sensors, are strategically located near 
roadways or in surrounding areas to monitor 
weather conditions, air pollution levels, visibility, and 
noise levels, aiding informed decision making for 
climate adaptation, pollution control strategies, and 
urban planning.

• Tra!c monitoring sensors, such as inductive loop 
detectors embedded in the road surface, microwave 
radar sensors, Bluetooth detectors, and cameras, 
enable real-time tra!c flow analysis, vehicle 
counting, speed measurements, and incident 
detection (Klein, Mills, and Gibson 2006). These 
sensors are strategically placed at specific points 
within the road network to provide vital information 
for congestion mitigation, signal optimization, and 
proactive tra!c management.

At the infrastructure level, sensors such as tra!c sensors 
and environmental sensors contribute to tra!c flow 
optimization and congestion reduction. By e!ciently 
managing tra!c signals based on real-time data, these 
sensors help minimize the number of stops and delays, 
leading to a smoother tra!c flow and reduced fuel 
consumption (Bernas et al. 2018). Environmental sensors 
assist in monitoring air quality, weather conditions, and 
visibility, providing insights for pollution control measures 
and climate adaptation strategies.

Device-based sensors: Device-based sensors refer 
to sensors integrated within personal devices, such as 
smartphones, wearables, and connected devices. These 
sensors capture various types of data, including location 
from global positioning system (GPS) sensors, movement 
from accelerometers and gyroscopes, proximity and light 
information from sensors, and environmental data such 
as temperature and humidity. Image sensors, such as 
cameras, allow for visual data collection.

The data obtained from these sensors have diverse 
applications in ITSs, including real-time tra!c monitoring, 

travel analysis, personalized navigation, crowd sensing 
for road conditions, and incident reporting. Device-
based sensors can also gather user-specific data such 
as biometrics for driver monitoring and health-related 
applications. Device-based sensors o"er opportunities 
for personalized services and real-time data collection. 
By utilizing location data, travel behavior patterns can be 
analyzed to optimize transportation services, encourage 
shared mobility options, and reduce the number of 
individual vehicle trips. Moreover, these sensors can 
facilitate user engagement and behavioral change 
through feedback and recommendations, encouraging 
energy-e!cient transportation choices (Nafrees et al. 
2021; Rinchi, Assaid, and Khasawneh 2021).

Optimizing sensing resources requires an integration of 
sensing capabilities from di"erent levels. For instance, in 
Fig. 2, sensors on both the vehicle and infrastructure are 
appropriately utilized to enhance EER. More specifically, 
the vision sensors on the tra!c light (e.g., cameras, 
LiDARs, or depth sensors) send real-time information 
about tra!c flow, tra!c light timing, and road obstructions, 
while GPSs, inertial measurement units (IMUs), and 
vision sensors on the vehicle send more insights about 
the position, speed, and surroundings of the vehicle, 
respectively (Ma et al. 2009). An algorithm located on 
an edge device, the cloud, or a central processor that 
could take the form of a deterministic algorithm or AI 
processes the received data and sends back navigation 
recommendations for each vehicle, while tra!c lights 
receive timing and management commands. Such a 
scenario can directly pave the way for advanced tra!c 
management strategies such as cooperative adaptive 
cruise control (CACC) and smart intersection management, 
which can result in a significant improvement in EER. 
Furthermore, intelligently adjusting tra!c light timings 
and vehicle navigation recommendations can reduce 
the idling time at intersections. Less time spent idling 
leads to decreased fuel consumption and, consequently, 
lower emissions. An appropriate adjustment of vehicle 
speed and following distance based on current and 
anticipated tra!c conditions can prevent unnecessary 
acceleration and braking, resulting in a smoother tra!c 
flow and minimizing fuel consumption. Lower fuel 
consumption directly translates into lower emissions. 
Furthermore, these systems encourage smoother driving 
behaviors, reducing the need for rapid accelerations 
and sudden braking, which are ine!cient in terms of fuel 
consumption and increase the wear and tear on vehicles. 
By promoting more uniform speeds and smoother driving, 
these systems further enhance energy e!ciency and 
reduce emissions.
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The potential applications of integrated sensors in future 
transportation systems go beyond the enhanced EER 
problem, as they can yield more generic advanced 
ITSs. For instance, vehicle-based sensors enable real-
time updates through consistent data collection and 
analysis, resulting in mitigated tra!c congestion and 
shorter travel times. Simultaneously, they greatly enhance 
public transport e!ciency by tracking vehicle locations, 
occupancy, and estimated arrival times.

In contrast, infrastructure-based sensors revolutionize 
smart parking and public transport management.  
They allow for e"ective space management, reduce 
the time spent searching for parking, and lower fuel 
consumption and emissions. Moreover, these sensors 
facilitate more e!cient scheduling, route planning, 
and fleet management. Device-based sensors play a 
transformative role in user-facing applications such as 
smart ticketing and mobility as a service (MaaS). They 
allow for smooth, contactless transactions, reducing wait 
times and creating a more frictionless interaction with the 
transportation system. In the MaaS context, these sensors 
enable a seamless interface among various modes of 
transport, contributing to a more integrated and e!cient 

urban mobility ecosystem. Finally, within ridesharing 
applications, sensors of all types ensure the accurate 
tracking of vehicles and passengers, providing a safe and 
reliable service.

New generations of vision sensors, such as LiDARs, are 
capable of converting the surrounding environment into 
a three-dimensional (3D) representation of point clouds 
(Rinchi et al. 2023). Unlike traditional red-green-blue 
(RGB) pixel-based video cameras, LiDARs do not collect 
personal identifiable information (PII), which protects the 
privacy of humans in their surroundings. Furthermore, 
LiDARs do not require any illumination to work, which 
allows them to work day and night. Moreover, due to their 
unique independence of texture in their surroundings, 
LiDARs are less subject to model discrimination for 
people with di"erent skin colors, are less subject to 
optical illuminations, and can lead to easier background 
subtraction compared to other vision techniques. For 
these reasons, new directions are needed to integrate 
LiDARs into future ITS infrastructure, such as typical 
on-vehicle LiDARs, elevated LiDARs (ELiDs) (Lucic et al. 
2020), and LiDAR-integrated unmanned aerial vehicles 
(UAVs) (ULiDs) (Osterwisch et al. 2023).

Figure 2. Hybrid sensing collaboration.

Source: Author.
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ITS Interconnected 
Networks for EER
Modern transportation systems strive for higher energy e!ciency and lower 
emissions, and the necessity of sharing data and commands in real time 
has increasingly grown. Therefore, an intricate network system composed 
of interconnected V2V, V2I, vehicle-to-cloud (V2C), and backhaul networks 
plays a necessary role (Khan et al. n.d.). Each network not only enables the 
real-time exchange of crucial information and commands but also serves 
unique functions in the quest to enhance transportation e!ciency and reduce 
environmental impacts.

V2C networks: V2C communication networks connect 
vehicles with various cloud-based services through 
wireless cellular networks, often using 4G long-term 
evolution (LTE) or 5G technology (Yu et al. 2022). This 
connection provides access to an extensive range 
of data, including real-time tra!c updates, weather 
conditions, and predictive maintenance alerts. V2C plays 
a crucial role in e!cient route planning and in optimizing 
vehicle performance, both of which contribute to 
lowering fuel consumption and reducing CO2 emissions. 
Moreover, with advancements in machine learning (ML) 
and AI, cloud-based data can be leveraged to develop 
sophisticated tra!c management systems and optimize 
vehicle performance.

Backhaul networks: Backhaul networks form the 
backbone of any ITS, acting as the essential conduit 
connecting peripheral components, such as sensors and 
roadside units (RSUs), to the core system where data 
processing and decision making take place. The heart 
of this system comprises several key elements. Access 
points (Aps) serve as the initial data collection nodes; 
for instance, in a V2I scenario, an AP could be an RSU 
amassing data from passing vehicles. These Aps connect 
to the central system through backhaul links, which 
can be either wired, employing fiber optic cables, or 
wireless, using cellular, satellite, Wi-Fi communication. The 
selection of the communication medium and frequency 
band is contingent on several factors including the 

V2V networks: V2V communication networks utilize 
wireless technology for vehicles to share important 
operational data directly with each other. These systems 
often use dedicated short-range communication (DSRC) or 
cellular-V2X (C-V2X) technologies. DSRC, which is a form 
of Wi-Fi, operates in the 5.9 GHz band specifically set aside 
for intelligent transportation systems (Kamal, Srivastava, 
and Tariq 2021). In contrast, C-V2X uses cellular networks 
(4G or 5G) and operates in the bands assigned to the 
cellular provider or in the 5.9 GHz band. By maintaining 
a steady flow of data on each vehicle’s speed, position, 
and direction, V2V communication enables vehicles to 
anticipate and respond to each other’s actions, reducing 
the likelihood of accidents. In turn, this reduction in the 
likelihood of accidents ensures a smoother tra!c flow, 
leading to more e!cient fuel usage and lower emissions.

V2I networks: V2I communication networks enable 
vehicles to communicate with transport infrastructure, 
such as tra!c signals, road signs, and tra!c management 
systems. Similar to V2V, V2I communications also often 
use DSRC or C-V2X technologies (Gupta et al. 2022). 
V2I networks provide valuable information on tra!c 
congestion, road conditions, and tra!c light status, 
among others, facilitating real-time decision making 
to optimize routes and manage speeds. By minimizing 
stop-and-go tra!c and unnecessary idling, V2I networks 
significantly contribute to enhancing fuel e!ciency and 
reducing emissions.
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the varied data tra!c and ensuring that critical data 
are prioritized. Techniques such as packet scheduling 
and tra!c shaping are employed to manage network 
resources e!ciently.

As we move toward a future with more connected devices 
and vehicles, the role of backhaul communications in 
ensuring e"ective and e!cient operation of ITSs becomes 
increasingly crucial. Technological advancements and 
better network management strategies promise to further 
enhance the capabilities of backhaul communications in 
the years to come.

One possible example that illustrates the utilization of 
interconnected networks to enhance EER is illustrated 
in Fig. 3. This figure illustrates a connected autonomous 
vehicle (CAV) concept where a platoon of multiple 
vehicles travels closely together and is controlled by  
a lead vehicle to maintain safety and e!ciency. The  
lead vehicle is connected to the rest of the platoon 
vehicles through V2V links and receives information  
about the surrounding environment through V2I links. 
With appropriate processing of the received data, it is 
possible to control the positions and velocities of all of  
the platoon vehicles, which can ensure safety, e!ciency, 
and enhanced EER. More specifically, it was observed 

geographical region, the specific application, and the 
volume of data to be transmitted. In particular, the 5G 
network, with superior attributes such as its high data 
capacity, low latency, and high reliability, is well positioned 
to manage the torrent of data generated by ITSs, 
facilitating swift delivery to the central system. The central 
system represents the hub where data from disparate 
APs are accumulated, processed, and converted 
into actionable decisions. Quick data processing is 
essential in ITSs to ensure timely actions based on the 
collected information. This requirement becomes of 
paramount importance as the trove of data produced by 
vehicles, infrastructure, and devices continues to grow 
exponentially. As a result, there is an escalating demand 
for e!cient and high-capacity backhaul networks capable 
of processing this burgeoning data load e"ectively and 
expeditiously. In terms of network architecture, backhaul 
communications often adopt a hierarchical structure, 
with multiple layers of networks catering to di"erent 
areas of coverage. At the highest level, the core network 
connects large geographical regions, while at lower 
levels, metropolitan area networks (MANs) and local area 
networks (LANs) provide connectivity in smaller areas. 
This tiered network design helps to manage network 
tra!c e"ectively and reduce latency. Furthermore, quality 
of service (QoS) parameters are essential in managing 

Figure 3. Wireless resource allocation for energy-e!cient CAVs, cutting congestion, and CO2 emissions.

Source: Authors.
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that driving in such a formation can exploit aerodynamic 
drafting (Liang, Mårtensson, and Johansson 2016). When 
vehicles travel closely together, the lead vehicle breaks 
the air resistance for the following vehicles, which then 
need less energy to maintain the same speed. This 
reduced need for energy can result in significant fuel 
savings and emission reduction. Achieving a significant 
EER enhancement requires an optimal optimization  
of interconnected network resources, where a  

decision-making algorithm takes the form of a convex/
nonconvex optimization problem. The decision-making 
algorithm takes the received signals from the V2V/V2I  
communications and allocates wireless resources 
(i.e., frequency, time, and power) for each vehicle as 
an output. However, due to the complexity, stochastic 
nature, and high dynamics of the ITS context, convex/
nonconvex optimization as decision makers might result in 
a suboptimal solution that can delay the communications 

Figure 4. Platoon formations.

Source: Authors.
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between the ITS elements, which can lead to an 
inappropriate control of passions and velocities of the 
platoon vehicles, which can risk safety and EER e!ciency. 
Therefore, new AI-based solutions are emerging to tackle 
this problem. For instance, reinforcement learning  
(RL)-based AI has the capacity to control multiple agents 
(i.e., vehicles) with appropriate robustness against system 
dynamics and stochasticity.

The role of AI in this example goes beyond the resource 
allocation of communication links to further include the 
optimal platoon formation of multiple vehicles on the  
road. As shown in Fig. 4, a typical scenario includes 
a road with multiple vehicles of various shapes, sizes, 
destinations, speeds, and positions. In this context, AI 
receives this information as inputs in addition to other 
environmental/infrastructure parameters (e.g., airspeed, 
air direction) and computes the optimal platoon formations 
between the available vehicles with their typologies in 

a way that ensures optimal fuel e!ciency. Moreover, 
interoperability emerges as a critical requirement in 
ensuring the e!cient functionality of ITSs. It exemplifies 
the principle of interconnectivity, enabling diverse 
systems and devices – including tra!c control systems, 
vehicle systems, and public transport systems – to 
communicate and exchange information seamlessly. This 
intercommunication concerns not only linkage but also 
ensuring that these di"erent entities can understand and 
utilize shared information e"ectively, thereby enhancing 
overall network coordination and management. The 
result is an optimized tra!c flow, heightened safety, and 
improved system e!ciency. Beyond these immediate 
benefits, interoperability ensures that the ITS is scalable 
and adaptable, accommodating the smooth integration of 
new systems and technologies as transportation networks 
evolve. Interoperability is a fundamental prerequisite 
that guarantees an integrated, e!cient, and future-ready 
urban mobility system, unlocking the full potential of ITSs.
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Promoting Enhanced 
EER in ITSs through AI
As ITSs continue to evolve, the inherent complexities and uncertainties 
within these systems also increase. As a result, various reasons can limit 
the e"ectiveness of the current ITS architectures. For instance, (i) traditional 
algorithms may not be able to process and analyze the vast amount of data 
generated in ITSs in a timely manner due to their limited computational 
e!ciency. (ii) Traditional algorithmic approaches often struggle with uncertainty 
and incomplete information, which are common issues in complex, dynamic 
systems such as ITSs. (iii) Conventional methods often follow predetermined 
rules and cannot adapt to new or unforeseen circumstances. (iv) Traditional 
statistical methods may not have the predictive power necessary for many ITS 
applications, such as predicting tra!c congestion or public transport demand. 
(v) Conventional ITS methods often apply the same rules or treatments to all 
users, ignoring individual di"erences. (vi) Traditional algorithms often struggle to 
integrate and interpret multimodal data – information from di"erent sources and 
in di"erent formats. Finally, (vii) traditional methods may not e"ectively optimize 
resource allocation, leading to ine!ciencies such as buses running with few 
passengers or tra!c congestion at intersections.

As a result, AI, with its ability to learn from large  
amounts of data, handle complex systems, and adapt  
to new situations, is uniquely positioned to address  
these challenges. AI techniques such as ML can model 
complex behaviors and patterns without needing  
explicit programmatic rules, making them e"ective in 
dealing with the dynamic and stochastic nature of ITSs. 
Furthermore, these techniques can generalize from 
learned data to new, unseen situations, making them 
robust to the varied and changing conditions in ITSs. 
Moreover, as previously mentioned, RL is specifically 
well suited to handle the optimization problems that lie 
at the heart of improving energy e!ciency and reducing 
emissions (Pandharipande et al. 2023). RL can learn from 
interaction with the environment to make sequences  
of decisions that maximize a reward function, such as 

minimizing energy use or emissions. Importantly, it can 
do so without a model of the environment, making it an 
e"ective tool in situations where building an accurate 
model is di!cult or impractical. AI’s prowess extends 
beyond predictive capabilities. It is also instrumental 
in automating decision-making processes, optimizing 
resource allocation, and enabling real-time adaptability, 
all of which are crucial for managing and operating 
next-generation ITSs. This section explores how AI is 
harnessed across various facets of ITSs, from tra!c 
management and fleet management to AV operation, 
predictive maintenance, smart grids, eco-driving systems, 
and emission monitoring and prediction. Each of these 
areas showcases AI’s instrumental role in enhancing 
energy e!ciency, reducing emissions, and paving the way 
toward a sustainable future.
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A. AI in Tra!c 
Management and 
Optimization
Tra!c management and optimization encompass the 
strategies and technologies employed to enhance the 
flow of tra!c on roadways, mitigate congestion, and boost 
overall transportation e!ciency. In today’s bustling urban 
environments, tra!c congestion is a pervasive issue, 
causing significant time loss, escalated fuel consumption, 
and heightened levels of air pollution.

AI has brought a revolutionary shift in this arena, o"ering 
advanced, adaptive, and scalable solutions to these 
challenges. Historically, tra!c management was largely 
dependent on predefined rules and schedules.

However, these approaches often falter when confronted 
with the dynamic nature of tra!c, which is influenced by 
a multitude of factors, including peak hour congestion, 
road accidents, weather conditions, and special events. 
The capabilities of AI, which has the ability to ingest and 
process vast volumes of data from diverse sources such as 
road sensors, tra!c cameras, GPS tracking from vehicles, 
and social media feeds, become increasingly significant 
in this context. Harnessing ML algorithms, AI can learn 
complex tra!c patterns, predict congestion levels, and 
adapt tra!c control measures in real time. One of the 
most common AI techniques employed in this context is 
RL. In the context of tra!c management, the tra!c system 
constitutes the environment, the agent may represent a 
tra!c signal controller, and the reward could be defined as 
a combination of elements such as minimizing the average 
delay, the number of stops, and queue lengths.

AI’s contributions to tra!c management are multifaceted:

• Tra!c signal control: AI can be employed to 
dynamically optimize tra!c signal timings. In this 
regard, a real-world example is Surtrac (Smith et al. 
2013), an adaptive tra!c control system deployed 
in Pittsburgh, U.S. The system uses AI to adaptively 
time tra!c signals based on actual incoming tra!c, as 
observed through cameras mounted on signal masts. 
Surtrac has successfully reduced travel times by 25%, 
wait times by 40%, and emissions by 20%.

• Tra!c prediction: AI algorithms can predict tra!c 
congestion by analyzing historical and real-time data, 
thereby enabling proactive tra!c management.  
A case in point is Google Maps, which leverages ML 
to predict tra!c and suggest the quickest routes to 
users (Derrow-Pinion et al. 2021).

• Incident detection and management: AI can rapidly 
detect and respond to incidents such as accidents 
or roadwork by analyzing data from cameras and 
sensors. Doing so facilitates real-time tra!c rerouting 
and quick response from emergency services 
(Olugbade et al. 2022).

• Public transportation management: AI can optimize 
public transportation schedules based on predicted 
passenger demand. This optimization enhances 
the e!ciency of public transport and promotes its 
use over private transport, thereby reducing overall 
emissions (Abduljabbar et al. 2019).

B. AI in Fleet 
Management and 
Route Planning
Fleet management and route planning encapsulate 
the suite of strategies and technologies designed to 
e"ectively manage a fleet of vehicles and optimize their 
routes for e!ciency. The fleet in question may range 
from delivery trucks and taxi services to public buses and 
AV groups. The e"ective management of such fleets is 
crucial for reducing operating costs, enhancing service 
reliability, and minimizing environmental impact (Li et al.  
2015). Therefore, the integration of AI in this domain 
presents significant opportunities for e!ciency gains 
and emission reduction. In the past, fleet management 
relied on relatively static route planning, with little room 
for real-time adaptation based on tra!c conditions, 
weather, the status of vehicles, or other dynamic factors. 
This approach, however, can lead to ine!ciencies, such 
as increased travel times, fuel consumption, and carbon 
emissions. AI as an alternative can utilize historical data 
and real-time inputs from a variety of sources, such as 
GPS trackers, tra!c reports, and weather forecasts, to 
generate highly optimized and adaptive route plans. ML 
algorithms, including deep learning (DL) and RL models, 
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are commonly employed to predict tra!c patterns, 
calculate the optimal order of stops, and dynamically 
adjust routes based on changing conditions. For 
instance, consider a delivery company that uses AI to 
optimize the routes of its delivery trucks. By incorporating 
variables such as delivery locations, tra!c and weather 
conditions, vehicle capabilities, and even driver work 
hours, the AI system can generate optimal routes that 
minimize the total travel distance and time, thereby 
reducing fuel consumption and emissions. Moreover, 
the AI system can adjust these routes in real time as 
conditions change, for example, if a road is closed due 
to construction or if an additional delivery is added on 
short notice.

A real-world example of this integration of AI in action is 
the routing algorithms used by ride sharing companies 
such as Uber and Lyft. These algorithms continuously 
analyze data on tra!c, demand, and driver locations to 
e!ciently match drivers with riders and generate optimal 
routes in real time. Moreover, AI can assist in other 
aspects of fleet management beyond route planning. 
For example, predictive maintenance can be significantly 
enhanced through ML models, allowing for potential 
issues to be identified and addressed before they result 
in costly downtime. AI can also assist with e!cient 
fleet scheduling, ensuring that the number of active 
vehicles aligns with demand to avoid unnecessary fuel 
consumption and emissions (Liang et al. 2021; Shi et al. 
2019; Theissler et al. 2021).

C. AI in AVs
AVs, also known as self-driving cars, represent one 
of the most significant advancements in ITSs. These 
vehicles are designed to navigate and operate in 
their environments without human intervention. The 
realization of fully autonomous vehicles has the potential 
to dramatically transform our transportation systems, 
improving road safety, e!ciency, and sustainability. 
The development and operation of AVs heavily depend 
on AI technologies, and their role in energy e!ciency 
and emission reduction is multifaceted. At the core of 
AVs lies the AI system, which essentially acts as the 
“brain” of such a vehicle. It processes data from various 
sensors (such as LiDARs, RADAR, and cameras), creates 
a perception of the environment, makes decisions, and 
controls the vehicle’s actions. These tasks demand 
sophisticated AI techniques, with DL being prominent 

due to its superior capability in handling complex tasks 
such as object detection, recognition, and tracking, as 
well as scene understanding.

Beyond basic navigation and control, AI in AVs can 
contribute to energy e!ciency and emission reduction 
in several ways. (i) The first way is optimal path planning. 
Using AI, AVs can find the most e!cient route to a 
destination, taking into account tra!c conditions, 
the road type, and other factors. This optimized 
path planning can minimize the travel time and fuel 
consumption. (ii) The second is eco driving. AI enables 
AVs to adopt eco-driving strategies, such as smooth 
acceleration and deceleration, maintaining optimal 
speeds, and minimizing the idling time (Lakshmanan, 
Sciarretta, and Mourlan 2021). These strategies can 
significantly reduce fuel consumption and emissions.  
(iii) The third is platooning. AVs can form platoons where 
multiple vehicles travel closely together at high speed, 
reducing air resistance and, thus, energy consumption 
(Lakshmanan, Sciarretta, and Mourlan 2021). Platooning 
is made possible by V2V communication and AI 
algorithms that coordinate the vehicles. (iv) The fourth 
is predictive maintenance. ML models can predict 
maintenance needs based on vehicle usage and sensor 
data, allowing for issues to be fixed before they lead to 
higher fuel consumption or emissions. (v) The fifth and 
final way is improved tra!c flow. By reducing human 
errors, which are a major cause of tra!c congestion, AVs 
can improve overall tra!c flow and e!ciency, further 
reducing emissions.

D. AI in 
Predictive 
Maintenance
Predictive maintenance stands as a key application of 
AI in the realm of ITSs. It revolves around the use of AI 
technologies to predict equipment failures before they 
happen, based on various indicators such as vibration, 
temperature, and pressure. Through such prediction, 
maintenance can be scheduled just in time to prevent 
equipment failures, enhancing overall operational 
e!ciency, reducing downtime, and decreasing 
maintenance costs (Çınar et al. 2020). Conventionally, 
maintenance has been carried out either reactively, 
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when a failure occurs, or preventively, based on a 
predetermined schedule. Both of these strategies have 
significant drawbacks. Reactive maintenance can lead to 
unexpected downtime and potentially high repair costs, 
while preventive maintenance can result in unnecessary 
work if the equipment does not need servicing. 
Predictive maintenance, fueled by AI, presents a better 
approach, aligning maintenance activities with the actual 
status and performance of equipment. AI’s ability to learn 
from historical data and recognize patterns that may 
indicate an impending failure is the critical enabler of 
predictive maintenance. ML, particularly techniques such 
as DL and anomaly detection, is extensively used for 
this purpose.

In the context of ITSs, predictive maintenance can 
be applied to various components, such as vehicles, 
infrastructure (e.g., bridges, roads, tra!c signals), and 
equipment (e.g., sensors, cameras). For example, in 
a vehicle, an AI-powered system could monitor data 
from various sensors (engine temperature, oil pressure, 
vibration levels, and others) to predict potential 
mechanical issues. This monitoring allows for proactive 
repairs, preventing an issue from escalating into a 
major failure that could lead to more significant energy 
consumption, emissions, or even safety risks.

E. AI in Eco-
Driving Systems
Eco-driving systems represent an innovative application 
of AI within the realm of ITSs. Essentially, these systems 
utilize AI to guide drivers or control vehicles in a 
manner that optimizes fuel e!ciency and that reduces 
emissions without compromising on safety or travel time. 
Conventional driving behavior is often characterized 
by ine!cient practices such as abrupt braking, rapid 
acceleration, and excessive idling. These behaviors not 
only increase fuel consumption and emissions but also 
contribute to tra!c congestion and wear and tear on 
vehicles. Eco-driving systems aim to counteract these 
ine!ciencies by leveraging AI to provide real-time 
feedback to drivers or to control AVs for the most eco-
e!cient driving behavior (Delnevo et al. 2019).

The role of AI in eco-driving systems is twofold: (i) 
predictive modeling and (ii) control optimization. AI is 
used to predict the future state of the vehicle and its 

environment based on sensor data, while optimization 
algorithms determine the best control actions to 
minimize energy consumption. In predictive modeling, 
AI models are used to predict the vehicle’s future 
state and its environment. This prediction includes 
forecasting upcoming road conditions (such as tra!c 
lights, congestion, and the road gradient), predicting the 
vehicle’s speed and acceleration, and estimating fuel 
consumption and emissions based on driving behavior. 
In control optimization, based on the predictions, AI 
algorithms determine the optimal driving behavior 
to minimize fuel consumption and emissions. This 
determination might include the optimal acceleration 
and deceleration, speed, gear shifting (for manual 
vehicles), and idling behavior. For AVs, AI can directly 
control such vehicles based on these optimal actions. 
For human drivers, the system can provide real-time 
feedback and suggestions to guide eco-e!cient 
driving. Various ML techniques, including regression, 
neural networks, and RL, are used to create predictive 
models and optimization algorithms in eco-driving 
systems. For instance, RL can be used to create a policy 
that maximizes fuel e!ciency under various driving 
conditions, while neural networks can be used to predict 
future tra!c conditions based on real-time and historical 
data (Guo et al. 2019; Lee et al. 2020).

F. AI in Emission 
Monitoring and 
Prediction
The monitoring and prediction of emissions form a 
vital aspect of any strategy aimed at reducing the 
environmental impact of transportation systems. AI 
plays a key role in this context by enabling the accurate 
quantification of current emissions and the prediction 
of future emission trends. These capabilities are 
crucial for policy formulation, system optimization, and 
environmental protection. AI models can be trained on 
a vast array of data, including tra!c flow characteristics, 
vehicle types, weather conditions, driving behaviors, 
and sensor readings, to create comprehensive emission 
models. These models can then provide detailed 
emission inventories, identify high-emission zones and 
times, and forecast future emission scenarios under 
di"erent conditions and policies. The techniques used in 
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these models can range from traditional ML methods such 
as linear regression and decision trees to more complex 
DL approaches, depending on the complexity of the task 
and the available data. In terms of emission prediction,  
AI can be instrumental in forecasting the impacts of 
di"erent transportation strategies on emission levels. 

This forecasting can include the implementation of new 
technologies, changes in tra!c management practices, 
shifts in public transportation usage, or the introduction 
of new policies. Such predictions can inform decision 
making and help in designing strategies that maximize 
emission reduction (Chavhan et al. 2022).
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Advancing Intelligent 
Transportation: 
The Saudi Arabian 
Experience and Vision
Amid burgeoning urbanization and increasing demands on its transportation 
infrastructure, Saudi Arabia faces unique ITS challenges with regard to 
conserving energy and reducing emissions. Population growth and urban 
sprawl have heightened the necessity for sophisticated and e!cient tra!c 
management systems. Moreover, as a traditionally fossil fuel-dependent 
nation, Saudi Arabia recognizes the urgent need for sustainable solutions 
to lessen environmental impacts, stimulate economic growth, and pave 
the way for a sustainable future. In response, the Saudi government has 
spearheaded several groundbreaking initiatives aimed at revolutionizing its 
transportation landscape. A cornerstone of this transformation is the National 
Industrial Development and Logistics Program (NIDLP), designed to transform 
Saudi Arabia into a leading logistics hub, primarily by integrating diverse 
transport modes with cutting-edge technologies. Smart tra!c management 
projects, which are a crucial component of this transformation, employ 
advanced surveillance systems, intelligent tra!c signals, and real-time tra!c 
management centers. Saudi Arabia’s ambitions are further exemplified by  
the audacious NEOM project (Alam et al. 2021). Positioned to be a model for 
the cities of the future, NEOM is envisioned to be a car-free zone. Instead  
of traditional vehicles, the city plans to utilize an array of AVs, drones, and 
other advanced mobility solutions, supporting a framework where every 
destination within the city is easily reachable without the need for private 
car ownership. This paradigm shift underscores Saudi Arabia’s commitment 
to fostering sustainable, e!cient, and intelligent urban mobility. Moreover, 
significant strides have been made toward minimizing energy consumption 
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and emissions in the transport sector. Under Saudi Vision 2030, the nation 
is promoting the adoption of electric and hybrid vehicles as part of its 
sustainable transport strategy. Additionally, substantial investments in public 
transportation infrastructure, such as the Riyadh Metro and Jeddah Public 
Transport Program, aim to reduce the dependency on private vehicles, 
thereby contributing to energy conservation and reduced emissions.

These initiatives carry far-reaching implications not only 
for environmental sustainability but also for economic 
growth and tourism. Enhanced transportation e!ciency 
boosts Saudi Arabia’s logistical competitiveness, 
supporting various sectors and aiding in economic 
diversification. Moreover, improved public transportation 
infrastructure and services contribute to Saudi Arabia’s 
allure as a tourist destination by providing convenient 
access to cultural and heritage sites.

Looking forward, Saudi Arabia is poised to emerge as  
a frontrunner in the adoption of ITSs and sustainable 

transportation practices. Its commitment to digital 
transformation, as evidenced by initiatives such as 
the Digital Transformation Unit and Saudi Data and 
AI Authority, suggests the potential for significant AI 
integration in the country’s ITS. Such integration is 
expected to revolutionize tra!c management, safety, and 
user experience. Through strategic planning, e"ective 
implementation, and continued innovation, Saudi Arabia 
is charting a course toward becoming an exemplary 
figure in the realm of intelligent, sustainable, and 
inclusive transportation.
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Conclusions
In this paper, we presented a comprehensive examination of ITSs, specifically 
their potential to enhance EER through the deployment of AI. The discussion 
began with an exploration of the integral role of sensors in creating 
environmentally friendly ITS services. Whether embedded in vehicles, forming 
part of the transportation infrastructure, or integrated into devices, these 
sensors are key enablers in gathering crucial data to facilitate intelligent 
decision making and enhance energy e!ciency. The subsequent section 
delved into the interconnected networks of ITSs, highlighting how V2V, V2I, 
V2C, and backhaul networks serve as critical communication links. These 
networks underpin the functioning of ITSs, playing a pivotal role in energy 
conservation and emission reduction by improving tra!c management 
and e!ciency. Building upon the foundations of sensor technologies and 
interconnected networks, we investigated the transformative potential of 
AI in further enhancing EER in ITSs. This analysis spanned multiple facets 
of ITSs, such as tra!c management and optimization, fleet management 
and route planning, AVs, predictive maintenance, eco-driving systems, and 
emission monitoring and prediction. Each of these areas stands to gain 
significant improvements in energy e!ciency and emission reduction through 
AI integration.

In particular, the case of Saudi Arabia o"ers intriguing 
insights into the ambitious e"orts underway to harness 
the power of ITSs and AI for sustainable transportation. 
The Saudi government’s initiatives, such as the NIDLP and 
the vision of the futuristic city of NEOM, underscore its 
commitment to a transformative approach in addressing 
energy and environmental challenges.

These e"orts embody the belief that an ITS empowered  
by AI can serve as a pivotal tool in achieving significant 
EER, driving economic growth, and enhancing the quality  
of life for Saudi citizens. The journey toward a sustainable 

transportation future is multifaceted, requiring the 
integration of advanced technologies, strategic planning, 
and collaborative e"ort. As we move forward, it is clear that 
the convergence of ITSs, AI, and sustainability principles 
o"ers promising avenues to address our energy and 
environmental challenges. The ongoing endeavors in Saudi 
Arabia present a beacon of what can be achieved and are 
a testament to the transformative power of the ITS-AI-EER 
triad. This report concludes with the anticipation that Saudi 
Arabia’s vision and actions will continue to inspire and 
guide other nations in their journey toward a sustainable 
and intelligent transportation future.
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The project aims to create an evidence-based, comprehensive understanding 
of the di"erent projects, policies and regulations around international 
connectivity, regional transport and urban mobility in Saudi Arabia, their 
contribution to energy demand and lowering GHGs and emissions, as well as 
setting the Kingdom on a net-zero pathway.
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